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Preface

“For another hundred years, School will teach children ‘to do’ rather than ‘to think’” 
observed Bertrand Russell. This statement is still seen to be true without being even 
remotely contradicted.

NCF 2005 (National Curriculum Framework) provides a vision for perspective 
planning ofschool education in scholastic and non-scholastic domains. It also em-
phasizes on ‘mathematisation’ of the child’s thought and processes by recognizing 
 mathematics as an integral part of development of the human potential. The higher aim 
of teaching mathematics is to enhance the ability to visualize, logically understand, 
build arguments, prove statements and in a sense, handle abstraction. For motivated 
and talented students, there is a need to widen the horizon as these students love chal-
lenges and always look beyond the curriculum at school. 

Hence, we created this book to cater to the needs of these students. With numerous 
problems designed to develop thinking and reasoning, the book contains statements, 
definitions, postulates, formulae, theorems, axioms, and propositions, which normally 
do not appear in school textbooks. These are spelt out and interpreted to improve the 
student’s conceptual knowledge. 

The book also presents ‘non-routine problems’ and detailed, step-by-step solutions 
to these problems to enable the reader to acquire a better understanding of the concepts 
as well as to develop analytical and reasoning (logical) abilities. Thus,  readers get the 
‘feel’ of problem-solving as an activity which, in turn, reveals the innate pleasure of 
successfully solving a challenging problem. This ‘pleasure’ is permanent and helps 
to build-in them a positive attitude towards the subject. Developing ability for criti-
cal analysis and problem solving is an essential requirement if one wants to become 
 successful in life.

No one has yet discovered a way of learning mathematics better than, by  solving 
problems in the subject. This book helps students to face competitive examinations 
such as the Olympiads (RMO, INMO, IMO), KVPY and IIT-JEE confidently  without 
being befuddled by the intricacies of the subject. It has been designed to enable  students 
and all lovers of mathematics to master the subject at their own pace. 

We have made efforts to provide solutions along with the problems in an error-free 
and unambiguous manner as far as possible. However, if any error is detected by the 
reader, it may please be brought to our notice, so that we may make necessary correc-
tions in the future editions of the book. We look forward to your suggestions and shall 
be grateful for them.

Lastly, we share the observation made by Pundit Jawaharlal Nehru: “Giving 
 opportunity to potential creativity is a matter of life and death for an enlightened 
 society because the contributions of a few creative individuals are the mankind’s 
 ultimate capital asset.”

We wish best of luck at all times to all those using this book.

Vikash Tiwari

V. Seshan
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1.1 Polynomial FuncTions

Any function, f (x) = anx
n + an−1x

n−1 + … + a1x + a0, is a polynomial function in ‘x’ where 
ai(i = 0, 1, 2, 3, …, n) is a constant which belongs to the set of real numbers and some-
times to the set of complex numbers, and the indices, n, n − 1, …, 1 are natural numbers. 
If an ≠ 0, then we can say that f (x) is a polynomial of degree n. an is called leading coef-
fi cient of the polynomial. If an = 1, then polynomial is called monic polynomial. Here, 
if n = 0, then f (x) = a0 is a constant polynomial. Its degree is 0, if a0 ≠ 0. If a0 = 0, the 
polynomial is called zero polynomial. Its degree is defi ned as −∞ to preserve the first 
two properties listed below. Some people prefer not to defi ned degree of zero polyno-
mial. The domain and range of the function are the set of real numbers and complex 
numbers, respectively. Sometimes, we take the domain also to be complex numbers. If z 
is a complex number and f (z) = 0, then z is called ‘a zero of the polynomial’.

If f(x) is a polynomial of degree n and g(x) is a polynomial of degree m then

 1. f(x) ± g(x) is polynomial of degree ≤ max {n, m}
 2. f(x) ⋅ g(x) is polynomial of degree m + n 
 3. f(g(x)) is polynomial of degree m ⋅ n, where g(x) is a non-constant polynomial.

Illustrations

 1. x4 − x3 + x2 − 2x + 1 is a polynomial of degree 4 and 1 is a zero of the polynomial as

14 − 13 + 12 − 2 × 1 + 1 = 0.
 2. x3 − ix2 + ix + 1 = 0 is a polynomial of degree 3 and i is a zero of his polynomial 

as i3 − i ⋅ i2 + i ⋅ i + 1 = −i + i − 1 + 1 = 0.

 3.  x x2 3 2 6− − −( ) is a polynomial of degree 2 and 3 is a zero of this poly-

nomial as ( )3 2 − ( ) .3 2 3 6 3 3 6 6 0− − = − + − =
Note: The above-mentioned definition and examples refer to polynomial functions in 
one variable. Similarly, polynomials in 2, 3, …, n variables can be defined. The domain 

1
Chapter

Polynomials

Niccolò Fontana Tartaglia
(1499/1500–13 Dec 1557) Tartaglia was an Italian mathematician. The name “Tartaglia” is actually a nickname meaning “stammerer”, 
a reference to his injury-induced speech impediment. He was largely self-taught, and was the first person to translate Euclid’s 
Elements into a modern European language. He is best remembered for his contributions to algebra, namely his discovery of a 
formula for the solutions to a cubic equation. Such a formula was also found by Gerolamo Cardano at roughly the same time, and 
the modern formula is known as the Cardano-Tartaglia formula. Cardano also found a solution to the general quartic equation.

Joseph-Louis Lagrange
(25 Jan 1736–10 Apr 1813) Despite his French-sounding name, Lagrange was an Italian mathematician. Like many of the great 
mathematicians of his time, he made contributions to many different areas of mathematics. In particular, he did some early work 
in abstract algebra.

Évariste Galois
(25 Oct 1811–31 May 1832) Galois was a very gifted young French mathematician, and his story is one of the most tragic in the his-
tory of mathematics. He was killed at the age of 20 in a duel that is still veiled in mystery. Before that, he made huge contributions 
to abstract algebra. He helped to found group theory as we know it today, and he was the first to use the term “group”. Perhaps 
most importantly, he proved that it is impossible to solve a fifth-degree polynomial (or a polynomial of any higher degree) using 
radicals by studying permutation groups associated to polynomials. This area of algebra is still important today, and it is known as 
Galois theory in his honor.

Niels Henrik Abel
(5 Aug 1802–6 Apr 1829) Abel was a Norwegian mathematician who, like Galois, did seminal work in algebra before dying at a 
very young age. Strangely enough, he proved similar results regarding the insolvability of the quintic independently from Galois. In 
honor of his work in group theory, abelian groups are named after him. The Abel Prize in mathematics, sometimes thought of as 
the “Nobel Prize in Mathematics,” is also named for him.
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1.2  Chapter 1

for polynomial in n variables being the set of (ordered) n tuples of complex numbers 
and the range is the set of complex numbers.

Illustration f(x, y, z) = x2 − xy + z + 5 is a polynomial in x, y, z of degree 2 as both x2 
and xy have degree 2 each.

Note: In a polynomial in n variables, say, x1, x2,…, xn, a general term is x x xk k
n
kn

1 2
1 2⋅ � .

Degree of the term is k1 + k2 + … + kn where ki ∈0, i = 1, 2, …, n. The degree of a 

polynomial in n variables is the maximum of the degrees of its terms.

1.2 Division in Polynomials

If P(x) and f(x) (f(x) ≡/ 0) are any two polynomials, then we can find unique polynomi-
als Q(x) and R(x), such that P(x) = f(x) × Q(x) + R(x) where the degree of R(x) < degree 
of f(x) or R(x) ≡ 0. Q(x) is called the quotient and R(x), the remainder.

In particular, if P(x) is a polynomial with complex coefficients, and a is a complex 
number, then there exists a polynomial Q(x) of degree 1 less than P(x) and a complex 
number R, such that P(x) = (x − a)Q(x) + R.

Illustration x5 = (x − a)(x4 + ax3 + a2x2 + a3x + a4) + a5.
Here, P(x) = x5, Q(x) = x4 + ax3 + a2x2 + a3x + a4,
and R = a5.

Example 1 What is the remainder when x + x9 + x25 + x49 + x81 is divided by x3 − x.

Solution: We have, 

 x + x9 + x25 + x49 + x81 = x(1 + x8 + x24 + x48 + x80)

 = x[(x80 − 1) + (x48 − 1) + (x24 − 1) + (x8 − 1) + 5] 

 = x(x80 − 1) + x (x48 − 1) + x(x24 − 1) + x(x8 − 1) + 5x

Now, x3 − x = x(x2 − 1) and all, but the last term 5x is divisible by x(x2 − 1). Thus, the 
remainder is 5x.

Example 2 Prove that the polynomial x x x9999 8888 7777+ + + + +� x1111 1  is divisible 

by x9 + x x x8 7 1+ + + +� .

Solution: Let,

         P = x x x x9999 8888 7777 1111 1+ + + + +�

        Q = x x x x9 8 7 1+ + + + +�

P Q x x x x− = − + −9 9990 8 88801 1( ) ( ) + − + + −x x x x7 7770 11101 1( ) ( )�

= − + −x x x x9 10 999 8 10 8881 1[( ) ] [( ) ] + − + + −x x x x7 10 777 10 1111 1[( ) ] [( ) ]�  (1)

But, (x10)n − 1 is divisible by x10 − 1 for all n ≥ 1.

∴ RHS of Eq. (1) divisible by x10 − 1.

∴  P − Q is divisible by x10 − 1

As x9 + x8 + … + x + 1 | (x10 − 1)

⇒ x9 + x8 + x7 + … + x + 1 | (P − Q)
⇒ x9 + x8 + x7 + … + x + 1 | P

M01_Polynomials_C01.indd   2 8/11/2017   1:36:17 PM



Polynomials  1.3

1.3 RemainDeR TheoRem anD FacToR TheoRem

1.3.1 Remainder Theorem

If a polynomial f (x) is divided by (x − a), then the remainder is equal to f (a).

Proof:
f (x) = (x − a)Q(x) + R

and so, f (a) = (a − a)Q(a) + R = R.
If R = 0, then f (x) = (x − a)Q(x) and hence, (x − a) is a factor of f (x).
Further, f (a) = 0, and thus, a is a zero of the polynomial f (x). This leads to the fac-

tor theorem.

1.3.2 Factor Theorem

(x − a) is a factor of polynomial f (x), if and only if, f (a) = 0.

Example 3 If f (x) is a polynomial with integral coefficients and, suppose that f (1) and 
f (2) both are odd, then prove that there exists no integer n for which f (n) = 0.

Solution: Let us assume the contrary. So, f (n) = 0 for some integer n.
Then, (x − n) divides f (x).
Therefore, f (x) = (x − n)g(x)
where g(x) is again a polynomial with integral coefficients.
Now, f (l) = (1 − n) g(1) and f (2) = (2 − n) g(2) are odd numbers but one of (1 − n) 

and (2 − n) should be even as they are consecutive integers.
Thus one of f (l) and f (2) should be even, which is a contradiction. Hence, the result.

Aliter: See the Example (41) on page 6.24 in Number Theory chapter.

Example 4 If f is a polynomial with integer coefficients such that there exists four dis-
tinct integer a1, a2, a3 and a4 with f (a1) = f (a2) = f (a3) = f (a4) = 1991, show that there 
exists no integer b, such that f (b) = 1993.

Solution: Suppose, there exists an integer b, such that f (b) = 1993, let g(x) = f (x) − 
1991.

Now, g is a polynomial with integer coefficients and g (a1) = 0 for i = 1, 2, 3, 4.
Thus (x − a1)(x − a2)(x − a3) and (x − a4) are all factors of g(x).

So, g(x) = (x − a1)(x − a2)(x − a3)(x − a4) × h(x)

where h(x) is polynomial with integer coefficients.

g (b) = f (b) − 1991
= 1993 − 1991 = 2 (by our choice of b)

But, g(b) = (b − a1)(b − a2)(b − a3)(b − a4) h(b) = 2

Thus, (b − a1)(b − a2)(b − a3)(b − a4) are all divisors of 2 and are distinct.
∴ (b − a1)(b − a2)(b − a3)(b − a4) are 1, −1, 2, −2 in some order, and h(b) is an 

integer.
∴ g(b) = 4 . h(b) ≠ 2.
Hence, such b does not exist.

1.4 FunDamenTal TheoRem oF algebRa

Every polynomial function of degree ≥ 1 has at least one zero in the complex numbers. 
In other words, if we have 
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1.4  Chapter 1

f x a x a x a x an
n

n
n( ) = + + + +−
−

1
1

1 0�

with n ≥ 1, then there exists atleast one h ∈, such that

a h a h a h an
n

n
n+ + + + =−
−

1
1

1 0 0� .

From this, it is easy to deduce that a polynomial function of degree ‘n’ has exactly n 
zeroes.
i.e., f(x) = a(x − r1)(x − r2)…(x − rn) 

Notes:

 1. Some of the zeroes of a polynomial may repeat.
 2. If a root a is repeated m times, then m is called multiplicity of the root ‘a’ or a is 

called m fold root.

 3. The real numbers of the form 3,  5,  12,  27, …, 5 3+ ,  etc. are called, 

‘quadratic surds’. In general, a b a b, , ,and +  etc. are quadratic surds, if a, 

b are not perfect squares. In a polynomial with integral coefficients (or rational 
coefficients), if one of the zeroes is a quadratic surd, then it has the conjugate of 
the quadratic surd also as a zero.

Illustration f (x) = x2 + 2x + 1 = (x + 1)2 and the zeroes of f (x) are −1 and −1. Here, 
it can be said that f (x) has a zero −1 with multiplicity two.

Similarly, f (x) = (x + 2)3(x − 1) has zeroes −2, −2, −2, 1, i.e., the zeroes of f (x) are 
−2 with multiplicity 3 and 1.

Example 5 Find the polynomial function of lowest degree with integral coefficients 

with 5 as one of its zeroes.

Solution: Since the order of the surd 5 is 2, you may expect that the polynomial of 
the lowest degree to be a polynomial of degree 2.

Let, P(x) = ax2 + bx + c; a, b, c ∈

P a b c a c b( ) ( )5 5 5 0 5 5 0= + + = ⇒ + + =

But, 5  is irrational.
So,

5a + c = 0 and b = 0
⇒ c = −5a and b = 0.

So, the required polynomial function is P(x) = ax2 − 5a, a∈� \ { }0

You can find the other zero of this polynomial to be − 5.

Aliter: You know that any polynomial function having, say, n zeroes a1, a2, …, an 

can be written as P(x) = (x − a1)(x − a2) … (x − an) and clearly, this function is of nth 
degree. Here, the coefficients may be rational, real or complex depending upon the 
zeroes a1, a2, …, an.

If the zero of a polynomial is 5, then P0(x) = (x − 5)  or a(x − 5).
But, we want a polynomial with rational coefficients.
So, here we multiply (x − 5)  by the conjugate of x − 5 , i.e., x + 5.  Thus, we 

get the polynomial P(x) = (x − 5) (x + 5),  where the other zero of P(x) is − 5.
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Now, P1(x) = x2 − 5, with coefficient of x2 = 1, x = 0 and constant term −5, and all 
these coefficients are rational numbers.

Now, we can write the required polynomial as P(x) = ax2 − 5a where a is a non-zero 
integer.

Example 6 Obtain a polynomial of lowest degree with integral coefficient, whose one 

of the zeroes is 5 2+ .

Solution: Let, P x x x( ) = − + = − −( ) [( ) ].5 2 5 2

Now, following the method used in the previous example, using the conjugate, we 
get:

 P1(x) = [( ) ][( ) ]x x− − − +5 2 5 2

 = (x2 − 2 5x + 5) − 2

 = (x2 + 3 − 2 5x)

 P2(x) = [( ) ][( ) ]x x x x2 23 2 5 3 2 5+ − + +

 = (x2 + 3)2 − 20x2

 = x4 + 6x2 + 9 − 20x2

 = x4 − 14x2 + 9
 P(x) = ax4− 14ax2 + 9a, where a ∈ , a ≠ 0.

The other zeroes of this polynomial are 5 2 5− −, + − −2 5 2, .

1.4.1 Identity Theorem

A polynomials f(x) of degree n is identically zero if it vanishes for atleast n + 1 distinct 
values of ‘x’.
Proof: Let a1, a2, … an be n distinct values of x at which f(x) becomes zero.
Then we have

 f(x) = a(x − x1)(x − x2)…(x − xn)

Let an+1 be the n+1th value of x at which f(x) vanishes. Then

 f(an+1) = a(an+1 − a1)(an+1 − a2)…(an+1 − an) = 0

As an+1 is different from a1, a2 … an none of the number an+1 − ai vanishes for i = 
1, 2, 3, … n. Hence a = 0 ⇒ f(x) ≡ 0.
Using above result we can say that,
If two polynomials f(x) and g(x) of degree m, n respectively with m ≤ n have equal 
values at n + 1 distinct values of x, then they must be equal.

Proof: Let P(x) = f(x) − g(x), now degree of P(x) is at most ‘n’ and it vanishes for at 
least n + 1 distinct values of x ⇒ P(x) ≡ 0 ⇒ f(x) ≡ g(x).

Corollary: The only periodic polynomial function is constant function.
i.e., if f(x) is polynomials with f (x + T) = f(x) ∀ x ∈ for some constant T then f(x) = 
constant = c (say)

Proof: Let f(0) = c
⇒ f(0) = f(T) = f(2T) = … = c
⇒ Polynomial f(x) and constant polynomial g(x) = c take same values at an infinite 
number of points. Hence they must be identical.

M01_Polynomials_C01.indd   5 8/11/2017   1:36:19 PM



1.6  Chapter 1

Example 7 Let P(x) be a polynomial such that x ⋅ P(x − 1) = (x − 4) P(x) ∀ x ∈.
Find all such P(x).

Solution: Put x = 0, 0 = −4 P(0)
 ⇒ P(0) = 0
Put x = 1, 1 ⋅ P(0) = −3 P(1)
 ⇒ P(1) = 0
Put x = 2, 2 ⋅ P(1) = −2 P(2)
 ⇒ P(2) = 0
Put x = 3, 3 ⋅ P(2) = −P(3)
 ⇒ P(3) = 0
Let us assume P(x) = x(x − 1) (x − 2) (x − 3) Q(x), where Q(x) is some polynomial.
Now using given relation we have 

x x x x x Q x x x x x x Q x

Q x

( )( )( )( ) ( ) ( )( )( )( ) ( )

(

− − − − − = − − − −
⇒ −

1 2 3 4 1 1 2 3 4

11 0 1 2 3 4

1

) ( ) { , , , , }

( ) ( )

= ∀ ∈ −
⇒ − = ∀ ∈

Q x x

Q x Q x x

�
� (From identity theoorem)

is periodic⇒
⇒ =
⇒ = − − −

Q x

Q x c

P x cx x x x

( )

( )

( ) ( )( )( )1 2 3

Example 8 Let P(x) be a monic cubic equation such that P(1) = 1, P(2) = 2, P(3) = 3, 
then find P(4).

Solution: as P(x) is a monic, coefficient of highest degree will be ‘1’.
Let Q(x) = P(x) − x, where Q(x) is also monic cubic polynomial.

Q P Q P Q P

Q x x x

( ) ( ) ; ( ) ( ) ; ( ) ( )

( ) ( )( )(

1 1 1 0 2 2 2 0 3 3 3 0

1 2

= − = = − = = − =
⇒ = − − xx

P x Q x x x x x x

P x

−
⇒ = + = − − − +
⇒ = − − − +

3

1 2 3

4 1 4 2 4 3 4

)

( ) ( ) ( )( )( )

( ) ( )( )( ) ==10

Build-up Your Understanding 1

 1. Find a fourth degree equation with rational coefficients, one of whose roots is, 

3 7+ .
 2.  Find a polynomial equation of the lowest degree with rational coefficients whose 

one root is 2 3 43 3+ .
 3. Form the equation of the lowest degree with rational coefficients which has

2 3+  and 3 2+  as two of its roots.
 4. Show that (x – 1)2 is a factor of xn – nx + n – 1.
 5. If a, b, c, d, e are all zeroes of the polynomial (6x5 + 5x4 + 4x3 + 3x2 + 2x + 1), find 

the value of (1 + a) (1 + b) (1 + c) (1 + d) (1 + e).
 6. If 1, a1, a2, …, an−1 be the roots of the equation xn − 1 = 0, n ∈, n ≥ 2 show that 

n = (1 − a1) (l − a2)(1 − a3) … (1 − an−1).
 7. If a, β, γ, δ be the roots of the equation x4 + px3 + qx2 + rx + s = 0, show that 
  (1 + a2) (1 + β2) (1 + γ 2) (1 + δ 2) = (1 – q + s)2 + (p – r)2.
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Polynomials  1.7

 8.  If f(x) = x4 + ax3 + bx2 + cx + d is a polynomial such that f(1) =10, f(2) = 20, f(3) 

= 30, find the value of f f( ) ( )
.

12 8

10

+ −  [CMO, 1984]

 9.  The polynomial x2k + 1 + (x + 1)2k is not divisible by x2 + x + 1. Find the value  
of k ∈ .

 10. Find all polynomials P(x) with real coefficients such that

(x − 8)P(2x) = 8(x − 1)P(x).

 11. Let (x − 1)3 divides (p(x) + 1) and (x + 1)3 divides (p(x)−1). Find the polynomial 
p(x) of degree 5.

1.5 Polynomial equaTions

Let, P(x) = anx
n + an−1 x

n−1 + … + a1x + a0; an ≠ 0, n ≥ 1 be a polynomial function.

Then, P(x) = a x a x a x an
n

n
n+ + + + =−
−

1
1

1 0 0�  is called a polynomial equation in 

x of degree n. Thus,

 1. Every polynomial equation of degree n has n roots counting repetition.
 2. If anx

n + an−1x
n−1 + … + a1x + a0 = 0 (1)

an ≠ 0 and ai, (i = 0, 1, 2, 3, …, n) are all real numbers and if, a + iβ is a zero of (1), 
then a − iβ is also a root. For real polynomial, complex roots occur in conjugate pairs.

However, if the coefficients of Eq. (1) are complex numbers, it is not necessary that 
the roots occur in conjugate pairs.

Example 9 Form a polynomial equation of the lowest degree with 3 + 2i and 2 + 3i as 
two of its roots, with rational coefficients.

Solution: Since, 3 + 2i and 2 + 3i are roots of polynomial equation with rational coef-
ficients, 3 − 2i and 2 − 3i are also the roots of the polynomial equation. Thus, we have 
identified four roots so that there are 2 pairs of roots and their conjugates. So, the low-
est degree of the polynomial equation should be 4. The  polynomial equation should be

P(x) = a [x − (3 − 2i)][x − (3 + 2i)][x − (2 + 3i)] [x − (2 − 3i)] = 0
⇒ a [(x − 3)2 + 4][(x − 2)2 + 9] = 0 
⇒ a ((x − 3)2(x − 2)2 + 9(x − 3)2 + 4(x − 2)2 + 36) = 0 
⇒ a ((x2 − 5x + 6)2 + 9(x2 − 6x + 9) + 4(x2 − 4x + 4) + 36) = 0 
⇒ a (x4 − 10x3 + 50x2 − 130x + 169) = 0, a ∈\{0}

1.5.1 Rational Root Theorem

An important theorem regarding the rational roots of polynomial equations:

If the rational number 
p

q
p q q, , , , where ∈ ≠� 0  gcd(p, q) = 1, i.e., p and q are 

relatively prime, is a root of the equation

anx
n + an−1x

n−1 + … + a1x + a0 = 0
where a0, a1, a2,…, an are integers and an ≠ 0, then p is a divisor of a0 and q that of an.

Proof: Since 
p

q
 is a root, we have
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a
p

q
a

p

q
a

p

q
an

n

n

n








 +









 + + + =−

−

1

1

1 0 0�

⇒ + + + + =−
− −a p a qp a q p a qn

n
n

n n n
1

1
1

1
0 0�   (1)

⇒ + + + + = −−
−

−
− − −a p a p q a q p a q

a p

q
n

n
n

n n n n
n

1
1

2
2

1
2

0
1�  (2)

Since the coefficients an−1, an−2,…, a0 and p, q are all integers, hence the left-hand side 
is an integer, so the right- hand side is also an integer. But, p and q are relatively prime 
to each other, therefore q should divide an.

Again,

           a p a qp a q p a qn
n

n
n n n+ + + =−
− −

1
1

1
1

0�

    
⇒ + + + =

⇒

−
−

− −a p a qp a q
a q

p

p a

n
n

n
n n

n
1

1
2

1
1 0

0

�

|
 

(3)

As a consequence of the above theorem, we have the following corollary.

1.5.2 Corollary (Integer Root Theorem)

Every rational root of x a xn
n

n+ + +−
−

1
1 � a i n0 1;0 ≤ ≤ −  is an integer, where ai(i = 0, 

1, 2, …, n − 1) is an integer, and each of these roots is a divisor of a0.

Example 10 Find the roots of the equation x4 + x3 − 19x2 − 49x − 30, given that the 
roots are all rational numbers.

Solution: Since all the roots are rational by the above corollary, they are the divisors 
of −30.

The divisors of −30 are ±1, ±2, ±3, ±5, ±6, ±10, ±15, ±30.
By applying the remainder theorem, we find that −1, −2, −3, and 5 are the roots.
Hence, the roots are −1, −2, −3 and +5.

Example 11 Find the rational roots of 2x3 − 3x2 − 11x + 6 = 0.

Solution: Let the roots be of the form 
p

q
,  where (p, q)= 1 and q > 0.

Then, since q | 2, q must be 1 or 2
and p | 6 ⇒ p = ±1, ±2, ±3, ±6
By applying the remainder theorem,

f f f
1

2

2

1

3

1
0







 =

−





 =







 = .

(Corresponding to q = 2 and p = 1; q = 1, p = −2; q = 1, p = 3, respectively.)

So, the three roots of the equation are 
1

2
,  −2, and 3. 

M01_Polynomials_C01.indd   8 8/11/2017   1:36:22 PM



Polynomials  1.9

Example 12 Solve: x3 − 3x2 + 5x − 15 = 0. 

Solution: x3 − 3x2 + 5x − 15 = 0 ⇒ (x2 + 5)(x − 3) = 0

⇒ = ±x i5 3, .

So the solution are 3, 5 5i i, .−

Example 13 Show that f (x) = x1000 − x500 + x100 + x + 1 = 0 has no rational roots.

Solution: If there exists a rational root, let it be
p

q
where (p, q) = 1, q ≠ 0. Then, q 

should divide the coefficient of the leading term and p should divide the constant term.

Thus, q | 1 ⇒ q = ± 1, 

And   p | 1 ⇒ p = ±1

Thus, 
p

q
 = ±1 

If the root 
p

q
 = 1, 

Then,  f (1) = 1 − 1 + 1 + 1 + 1 = 3 ≠ 0, 

so, 1 is not a root.

If 
p

q
 = −l, 

Then, f (−1) = 1 − 1 + 1 − 1 + 1 = 1 ≠ 0
And hence, (−1) is not a root.
Thus, there exists no rational roots for the given polynomial.

1.6 vieTa’s RelaTions

If a1, a2, a3, …, an are the roots of the polynomial equation

anxn + an−1x
n−1 + an−2x

n−2 +  … + a0 = 0 (an ≠ 0),

then, α α αi
n

ni n
i j

i j n

n

n

a

a

a

a
= − ⋅ =−

≤ ≤ ≤ < ≤

−∑ ∑1

1 1

2;

α α α α α α αi j k
i j k n

n

n
n

n

n

a

a

a

a1

3
1 2 3

01
≤ < < ≤

−∑ = − = −, ; ( )� �

If we represent the sum ∑ai, ∑aiaj, …, ∑aiaj… an, respectively, as σ1, σ2, σ3, …, σn, 
(Read it ‘sigma 1’, ‘sigma 2’, etc.)

then, σ σ1
1

2
2= − =− −a

a

a

a
n

n

n

n

, , ...

 σ σr
r n r

n
n

n

n

a

a

a

a
= − = −−( ) , , ( )1 1 0…

These relations are known as Vieta’s relations.
Let us consider the following quadratic, cubic and biquadratic equations and see how 
we can relate σ σ σ1 2 3, , , ...,  with the coefficients.

Francois Viète

1540–23 Feb 1603
Nationality: French
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 1. ax2 + bx + c = 0, where a and β are its roots. Thus,

σ α β1 = + =
−b

a
 and σ αβ2 = =

c

a

 2. ax3 + bx2 + cx + d = 0, where a, β and γ are its roots. Thus,

σ α γ1 = + + = −β
b

a

σ αβ βγ γα2 = + + =
c

a

σ αβγ3 = =
−d

a

  Here, expressing σ2 = a(β + γ) + βγ = c

a
 will be helpful when we apply this prop-

erty in computations.

 3. ax4 + bx3 + cx2 + dx + e = 0, where a, β, γ, δ are its roots. Thus,

σ α β γ δ1 = + + + =
−b

a

σ αβ αγ αδ βγ βδ γδ2 = + + + + + =
c

a

σ αβγ αβδ αγδ βγδ

σ αβγδ

3

4

= + + + =
−

= =

d

a
e

a

,

Here, again, σ2 can be written as (a + β)(γ + δ ) + aβ + γδ and σ3 can be written 
as aβ (γ + δ ) + γδ (a + β).

Example 14 If x2 + ax + b + 1 = 0, where a, b ∈  and b ≠ −1, has a root in integers 
then prove that a2 + b2 is a composite.

Solution: Let, a and β be the two roots of the equation where, a ∈ . Then,

 a + β = −a (1)

 a ⋅ β = b + 1 (2)

∴ β = −a − a is an integer. Also, since b + 1 ≠ 0, β ≠ 0.

From Eqs. (1) and (2), we get 

a2 + b2 = (a + β)2 + (aβ − l)2

= a2 + β2 + a2β2 + 1
= (1 + a2)(l + β2) 

Now, as a ∈  and β is a non-zero integer, 1 + a2 > 1 and 1 + β2 > 1.
Hence, a2 + b2 is composite number.

Example 15 For what value of p will the sum of the squares of the roots of
x2 − px = 1 − p be minimum?

Solution: If r1 and r2 are the roots of x2 − px + (p − 1) = 0,
then rl + r2 = p, r1r2 = p − 1
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r2
1 + r2

2 = (r1 + r2)
2 − 2r1r2 = p2 − 2p + 2 = (p − l)2 + 1

and r2
1 + r2

2 is minimum when (p − l)2 is minimum, then p = 1. 
Thus, for p = 1, the sum of the squares of the roots is minimum.

Example 16 Let u, v be two real numbers none equql to −1, such that u, v and uv are 
the roots of a cubic polynomial with rational coefficients. Prove or disprove that uv is 
rational.

Solution: Let, x3 + ax2 + bx + c = 0 be the cubic polynomial of which u, v, and uv are 
the roots and a, b, and c are all rationals. 

u + v + uv = −a
⇒ u + v = −a − uv, (1)

uv + uv2 + u2v = b (2)

and  u2v2 = − c (3)

From (2) b = uv + uv2 + u2v = uv(1 + v + u)
= uv(1 − a − uv) (From (1))
= (1 − a) uv − u2v2

= (1 − a)uv + c
⇒ (1 − a) uv = b − c

As a ≠ 1, uv = ( )b c

a

−
−1

and since, a, b, c are rational, uv is  rational.

Note that a = 1 ⇒ 1 + u + v + uv = 0 ⇒ (1 + u)(1 + v) = 0 ⇒ u = −1 or v = −1, which is 
not the case.

Example 17 Solve the cubic equation 9x3 − 27x2 + 26x − 8 = 0, given that one of the 
root of this equation is double the other.

Solution: Let the roots be a, 2a and β.

Now, 3
27

9
3α β+ = −

−
=

⇒ β = 3(1 − a) (1)

2  32α αβ+ =
26

9
 (2)

2
8

9
2α β =  (3)

From Eqs. (1) and (2), we get

2 3 3 1
26

9
2α α α+ × − =( )

⇒ 63a2 − 81a + 26 = 0
⇒ (21a − 13)(3a − 2) = 0

So, α =
13

21

2

3
or 

If α =
13

21
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∴ β = −





 = =3 1

13

21

24

21

8

7

This leads to 2 2α β = × × ≠2
169

441

8

7

8

9
 (a contradiction)

So, taking α =
2

3
,  β = −






 = × =3 1

2

3
3

1

3
1

Hence, α α β+ + = + + =2
2

3

4

3
1 3,

 
2 3 2

4

9

3 2

3
1

26

9
2α αβ+ = × +

×
× = ,

and 2 2
4

9
1

8

9
2α β = × × =

Thus, the roots are 
2

3

4

3
1, . , and 

Example 18 Solve the equation 6x3 − 11x2 + 6x − 1 − 0, given that the roots are in 
harmonic progression.

Solution: Let the roots be a, β and γ. 
Since they are in HP,

∴ β
αγ

α γ
=

+
2

 (1)

Now, σ α β γ1
11

6
= + + =  (2)

 σ β α γ αγ2 1= + + =( )  (3)

 σ αβγ3
1

6
= =  (4)

Using Eqs. (1) and (3), we get

2
1

αγ
α γ

α γ αγ
( )

( )
+

× + + =

⇒ 3aγ = 1

⇒ αγ =
1

3
 (5)

From Eqs. (4) and (5), we get

β = ÷ =
1

6

1

3

1

2
 (6)

From Eqs. (2) and (6), we get

α γ+ = − = =
11

6

1

2

8

6

4

3

∴ α γ= −
4

3
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∴ α γ γ γ× = ⇒ −





 =

1

3

4

3

1

3

γ γ2 4

3

1

3
0− + =

3γ 2 − 4γ + 1 = 0
(3γ − 1) (γ − 1) = 0

γ γ= =
1

3
1or

Hence, a = 1 or α =
1

3
.

Thus, the roots are 1, 
1

2

1

3

1

3

1

2
1, , , .or

Example 19 If the product of two roots of the equation 4x4 − 24x3 + 31x2 + 6x − 8 = 0 
is 1, find all the roots.

Solution: Suppose, the roots are a, β, γ, δ and aβ = 1.

Now, σ α β γ δ1
24

4
6= + + + = −

−
=( ) ( )  (1)

σ α β γ δ αβ γδ2
31

4
= + + + + =( )( )

⇒ + + + = − =( )( )α β γ δ γδ
31

4
1

27

4
 (2)

σ γδ α β αβ γ β3
3

2
= + + + =

−
( ) ( )

⇒ γδ α β γ δ( ) ( )+ + + =
−3

2
 (3)

σ αβγδ4 2= = −
⇒ γδ = −2 (4)

From Eqs. (2) and (4), we get

        ( )( )α β γ δ+ + =
35

4
 (5)

From Eqs. (3) and (4), we get

− + + + =
−

2
3

2
( ) ( )α β γ δ  (6)

From Eqs. (1) and (6), we get

3
15

2
( )α β+ =

or α β+ =
5

2
 (7)

and aβ = 1

⇒ β
α

=
1
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1.14  Chapter 1

Putting the value of β in Eq. (7), we get

α
α

+ =
1 5

2

⇒ 2a2 − 5a + 2 = 0
⇒ (2a − 1)(a − 2) = 0

⇒ α α= =
1

2
2or

Hence, β = 2 or β =
1

2
.

Taking α =
1

2
 and β = 2,  and substituting in Eq. (5), we get γ δ+ =

7

2
.

We know that γδ = −2.

Again, solving for γ and δ, we get

γ δ δ γ=
−

= =
−

=
1

2
4

1

2
and or and 4

Thus, the four roots are 
1

2

1

2
2 4, , , .

−
and

Example 20 One root of the equation x4 − 5x3 + ax2 + bx + c = 0 is 3 2+ .  If all the roots 
of the equation are real, find extremum values of a, b, c; given that a, b and c are rational.

Solution: Since the coefficients are rational, where 3 2+  is a root, so 3 2−  is also 
a root.

Thus, if the other two roots are a and β, we have

σ α β1 3 2 3 2 5 5= + + + + − = − − =( )

⇒ a + β = −1

σ α β αβ2 3 2 3 2 3 2 3 2= + + + − + + + − =( )( ) ( )( ) a

or 6(a + β) + aβ + 7 = a
or aβ = a − 1

σ αβ α β3 3 2 3 2 3 2 3 2= + + − + + − +
= −

( ) ( )( )( )

b

= 6aβ + 7 (−1) = −b

or αβ =
−7

6

b

 σ αβ4 7= = c

⇒ αβ =
c

7

Since, we are interested in finding a, b and c, we take a + β = −l, αβ = k.  a and β are 

the roots of x x k2 0+ + = .

Since the roots of the given equation are real and hence, the roots of above equation 
are real, if
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D k

k

≥ ⇒ − ≥

≤

0 1 4 0

1

4
or,

Now for a, k = a − 1

 

⇒ − ≤

⇒ ≤

a

a

1
1

4
5

4

So, the greatest value of a is 
5

4
.

For b, k
b

=
−7

6

⇒
−

≤
7

6

1

4

b

⇒ ≥ −

⇒ ≥

b

b

7
3

2
11

2

So, least value of b will be 
11

2
 and for c, take k

c
=

7
 

⇒ ≤

⇒ ≤

c

c

7

1

4
7

4

So, maximum value of c will be 
7

4
For these extremum values of a, b and c, the equation becomes

x x x x4 3 25
5

4

11

2

7

4
0− + + + =

The four roots of this equation are

3 2 3 2
1

2

1

2
+ −

− −
, , ,  (verify this)

Build-up Your Understanding 2

 1. Find the rational roots of x4 − 4x3 + 6x2 − 4x + 1 = 0.
 2. Solve the equation x4 + 10x3 + 35x2 + 50x + 24 = 0, if sum of two of its roots is 

equal to sum of the other two roots.
 3. Find the rational roots of 6x4 + x3 − 3x2 − 9x − 4 = 0.
 4. Find the rational roots of 6x4 + 35x3 + 62x2 + 35x + 2 = 0.
 5. Given that the sum of two of the roots of 4x3 + ax2 − x + b = 0 is zero, where a, b 

∈. Solve the equation for all values of a and b.
 6. Find all a, b, such that the roots of x3 + ax2 + bx − 8 = 0 are real and in G.P.
 7. Show that 2x6 + 12x5 + 30x4 + 60x3 + 80x2 + 30x + 45 = 0 has no real roots.
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1.16  Chapter 1

 8. Construct a polynomial equation, of the least degree with rational coefficients, 
one of whose roots is sin 10°.

 9. Construct a polynomial equation of the least degree with rational coefficients, one 
of whose roots is sin 20°.

 10. Construct a polynomial equation of the least degree, with rational coefficients, 
one of whose roots is (a) cos 10°  (b) cos 20°.

 11. Construct a polynomial equation of the least degree with rational coefficient, one 
of whose roots is (a) tan 10° (b) tan 20°.

 12. Construct a polynomial equation with rational coefficients, two of whose roots are 
sin 10° and cos 20°.

 13. If p, q, r are the real roots of x3 − 6x2 + 3x + 1 = 0, determine the possible values 
of p2q + q2r + r2p.

 14. The product of two of the four roots of the quartic equation x4 − 18x3 + kx2 + 200x 
− 1984 = 0 is −32. Determine the value of k. 
 [USA MO, 1984]

1.7  Symmetric Functions

The following expressions are examples of symmetric functions: 

 (i) a + β + γ
 (ii) a2 + β2 + γ 2

 (iii) (β − γ)2 + (γ − a)2 + (a − β)2

 (iv) (a + β)aβ + (β + γ)βγ + (γ + a)γa
 (v) (a + β)(β + γ)(γ + a)

In the above expressions, you can easily verify that if any two of the variables a, β, 
and γ are interchanged, the expression remains unaltered. Such functions are called 
symmetric functions.

In general, a function f (a1, a2, a3, …, an) of n variables is said to be a symmetric 
function if it remains unaltered by interchanging any two of the n variables.

Thus, σ1, σ2, σ3, …, σn of the previous section are symmetric functions of a1, a2, 
a3,…, an.

The functions σ1, σ2, σ3, …, σn are called elementary symmetric functions.
It can be proved that every rational symmetric function of the roots of a polynomial 

equation can be expressed in terms of the elementary symmetric functions and coef-
ficients of the polynomial.

Example 21 If x + y = 1 and x4 + y4 = c,  find x3 + y3 and x2 + y 2 in terms of c.

Solution: We have, x + y = 1

 ⇒ x2 + y2 = 1 − 2xy

and, (x2 + y2)2 = (1 − 2xy)2

 ⇒ x4 + y4 = 1 + 4x2y2 − 4xy − 2x2y2

 = 2x2y2 − 4xy + 1 (1)

but, x4 + y4 = c

So Eq. (1) becomes 2x2y2 − 4xy + 1 − c = 0
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So, xy
c

c
c

=
± + −

=
± +

± +

4 16 8 8

4

4 8 8

4
1

1

2
1or ( )

and hence, x y c

c

2 2 1 2 1
1

2
1

1 2 1

+ = − ± +










= − ± +

( )

( )

For x y x y xy x y

xy x y

c

3 3 3 3

1 3 1

1 3
2 2 2

2

2

+ = + − +
= − + =

= − ×
± +











=
−

( ) ( )

( )∵

66 3 2 2

2

2
3

2
2 2

± +

= − ± +

c

c

Example 22 Find, all real x, y that satisfy x3 + y3 = 7 and x2 + y2 + x + y + xy = 4.

Solution: Let, x + y = a and xy = β and hence, x2 + y2 = a2 − 2β. 

Now, (x3 + y3) = (x + y)(x2 − xy + y2)

= a(a2− 3β) = 7
= a3−3aβ = 7 (1)

And, x2 + y2 + x + y + xy = 4 

⇒ a2−2β + a + β = 4
⇒ a2 − β + a = 4
⇒ β = a2 + a − 4 (2)

From Eqs. (1) and (2), we have

a3− 3a(a2 + a − 4) = 7 (3)
⇒ f (a) = 2a3 + 3a2 − 12a + 7 = 0

f (l) = 2 + 3 − 12 + 7 = 0
and hence, (a − 1) is a factor.

So, f (a) = 2a3 + 3a2 − 12a + 7 = 0

⇒ (a − l)(2a2 + 5a − 7) = 0
⇒ (a − l)(a − l)(2a + 7) = 0

So, a = 1 or α =
−7

2

When a = 1, then β = −2 and when, α β=
−

=
7

2

19

4
, .

If we take a = 1 and β = −2, then x and y are the roots of

t2 + t − 2− 0
⇒ (t + 2)(t − 1) = 0
⇒ t = −2 and t = 1

M01_Polynomials_C01.indd   17 8/11/2017   1:36:31 PM
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i.e., x = −2 and y = 1 or x = 1 and y = −2.

If we take α =
−7

2
 and β =

19

4
,  then x, y are the roots of 4t2 + 14t + 19 = 0, and here 

the discriminant 142 − 4 × 4 × l9 < 0. Hence, there are no real roots.
Thus, the real values of x, y satisfying the given equations are (2, −1) or (−1, 2).

Example 23 If a, β, γ, are the roots of x3 + px + q = 0, then prove that

 (i) 
α β γ α β γ α β γ5 5 5 3 3 3 2 2 2

5 3 2

+ +
=

+ +
×

+ +

 (ii) 
α β γ α β γ α β γ7 7 7 5 5 5 2 2 2

7 5 2

+ +
=

+ +
×

+ +

Solution:
 (i) Since, a, β, γ, are the roots of

x3 + px + q = 0. (1)
  We have,

α α

β β

γ γ

3

3

3

0

0

0

+ + =

+ + =

+ + =









p q

p q

p q

 (2)

From Eq. (2),

∑ + ∑ + =α α3 3 0p q( )

⇒ ∑a3 = −3q ( ∴∑a = 0) (3)

∑a2 = (∑a)2 − 2∑aβ
= 02 − 2 × p (

∴

 ∑aβ = p)
= −2p (4)

Multiplying Eq. (1) by x2, we get

x5 + px3 + qx2 = 0 (5)

and a, β, γ are three roots of Eq. (5).
So,

α α α

β β β

γ γ γ

5 3 2

5 3 2

5 3 2

0

0

0

+ + =

+ + =

+ + =









p q

p q

p q

 (6)

From Eq. (6), ∑a5 + p∑a3 + q∑a2 = 0

∑a5 = −(p∑a3 + q∑a2)

= −[p (−3q) + q (−2p)]

= 3pq + 2pq = 5pq (7)

or 
1

5
5∑ =α pq

= − ×∑





 − ∑







1

2

1

3
2 3α α
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= ∑





∑





1

3

1

2
3 2α α

α β γ α β γ α β γ5 5 5 3 3 3 2 2 2

5 3 2

+ +
=

+ +







×

+ +







  (8)

 (ii) Multiplying Eq. (1) by x, we get

x4 + px2 + qx = 0 (9)

hence, ∑a 4 + p∑a2 + q∑a = 0

⇒ ∑a4 = −p∑a2 ( ∴ ∑a = 0)

Again, multiplying Eq. (1) by x4, we get

 x7 + px5 + qx4 = 0 (10)

hence, ∑a7 = −p∑a5 − q∑a4 = 0

or ∑a7 = −p∑a5 + q∑a4

 = −p × 5pq − q∑a4

 = −p × 5pq − q (−p∑a2)

 = −5p2q − 2p2q

 = −7p2q

or 
1

7
7 2∑ = −α p q  = pq × (−p)

= ∑





× ∑







1

5

1

2
5 2α α

or α β γ α β γ α β γ7 7 7 5 5 5 2 2 2

7 5 2

+ +







 =

+ +







×

+ +









Example 24 If a + β + γ = 0, show that

3(a2 + β2 + γ 2)(a5 + β5 + γ 5) = 5(a3 + β3 + γ 3)(a4 + β4 + γ 4)

Solution: Since a + β + γ = 0; a, β and γ can be the roots of the equation

x3 + px + q = 0 (1)

 a + β + γ = 0 (2)

 (a2 + β2 + γ2) = (a + β + r)2 − 2∑aβ
 = 0 − 2p = −2p (3)

and ∑a3 = 3aβγ (as, a + β + γ = 0)

 = −3q

Multiplying Eq. (1) by x, we get

 x4 + px2 + qx = 0 (4)

Again, a, β and γ are three of the roots of this polynomial. By substituting a, β, γ in 
Eq. (4), and adding, we get 
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∑ + ∑ + ∑ =α α α4 2 0p q

⇒ ∑a4 = −p∑a2 = −p × −2p = 2p2

Similarly     Σ Σ Σα α α5 3 2= − −p q

 = 3pq + 2pq = 5pq

∴ 3 (a2 + β2 + γ 2)(a5 + β5 + γ 5) = 3 × (−2p) × (5pq)

= 5(−3q) × (2p2)

= 5(a3 + β3 + γ  3)(a4 + β4 + γ  4)

Example 25 Show that there do not exist any distinct natural numbers a, b, c, d, such 
that

a3 + b3 = c3 + d3 and a + b = c + d.

Solution: Suppose that a3 + b3 = c3 + d3 and a + b = c + d

Let, a + b = c + d = m (say)

∴ (a + b)3 = (c + d)3

⇒ 3ab(a + b) = 3cd(c + d)

⇒ ab = cd = n (say)

If a and b are the roots of a quadratic equation, then the equation is x2 − mx + n = 0
But,     a + b = m and ab = n

So, a and b are the roots of this equation. For similar reasons, c and d are also the 
roots of the same equation.

But, a quadratic equation can have at most two distinct roots.
Hence, either a = c or a = d, so that b may be one of c or d.

Example 26 Determine all the roots of the system of  simultaneous equations x + y + z 

= 3, x2 + y2 + z2 = 3 and x3 + y3 + z3 = 3. 

Solution: Let, x, y, z be the roots of the cubic equation

 t3 − at2 + bt − c = 0 (1)

 σ1 = x + y + z = a (2)

 σ2 = xy + yz + zx = b (3)

⇒ 2xy + 2yz + 2zx = 2b (4)

From Eq. (2), we get a = 3.
From Eqs. (2) and (3), we get

2b = 2xy + 2yz + 2zx = (x + y + z)2 − (x2 + y2 + z2) 

= 9 − 3 = 6 

⇒ b = 3

Since, x, y and z are the roots of Eq. (1), substituting and adding, we get

(x3 + y3 + z3) − a(x2 + y2 + z2) + b(x + y + z) − 3c = 0 

⇒ 3 − 3a + 3b − 3c = 0 
⇒ 3 − 9 + 9 − 3c = 0

or c = 1
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Thus Eq. (1) becomes

 t3 − 3t2 + 3t − 1 = 0 

 ⇒ (t − l)3 = 0

Thus, the roots are 1, 1, 1.
Hence, x = y = z = 1 is the only solution for the given equations.

Example 27 Given real numbers x, y, z, such that x + y + z = 3, x2 + y2 + z2 = 5,

x3 + y3 + z3 = 7, find x4 + y4 + z4.

Solution: We know x2 + y2 + z2 = 5.

∴ 5 = x2 + y2 + z2 = (x + y + z)2 − 2xy − 2yz − 2xz

 = 9 − 2(xy + yz + xz) 
⇒ xy + yz + zx = 2.

We know that

x3 + y3 + z3 − 3xyz = (x + y + z) [x2 + y2 + z2 − (xy + yz + xz)]

 ⇒ 7 − 3xyz = 3[5 − 2] = 9

Or, xyz =
−2

3
.

 x4 + y4 + z4 = (x2 + y2 + z2)2 − 2[(xy)2 + (yz)2 + (zx)2]

 = 25 − 2[(xy + yz + zx)2 − 2(xy2z + yz2x + zx2y)]

 = 25 − 2 [22 − 2xyz(x + y + z)]

 
= − + ×





= − =

25 2 4
4

3
3

25 16 9

Build-up Your Understanding 3

 1. If a and β are the roots of the equation x2 − (a + d)x + ad − bc = 0, show that a3 
and β3 are the roots of

  y2 − (a3 + d3 + 3abc + 3bcd)y + (ad − bc)3 = 0.

 2. If a3 + b3 + c3 = (a + b + c)3, prove that a5 + b5 + c5 = (a + b + c)5. Generalize your 
result.

 3. If p, q and r are distinct roots of x3 − x2 + x − 2 = 0, find the value of p3 + q3 + r3.

 4. Find the sum of the 5th powers of the roots of the equation x3 + 3x + 9 = 0.

 5. Find the sum of the fifth powers of the roots of the equation x3 – 7x2 + 4x – 3 = 0.

 6. a, β, γ are the roots of the equation x3 − 9x + 9 = 0. Find the value of

a −3 + β −3 + γ −3 and a −5 + β −5 + γ −5.

 7. Form the cubic equation whose roots are a, β, γ such that 
    (i) a + β + γ = 9
   (ii) a2 + β2 + γ 2 = 29
  (iii) a3 + β3 + γ 3 = 99

  Hence, find the value of (a 4 + β 4 + γ 4).
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 8. If a + β + γ  = 4, a2 + β2 + γ 2 = 7, a3 + β3 + γ 3 = 28, find a4 + β4 + γ 4 and a5 + β5 
+ γ  5.

 9. Solve: x3 + y3 + z3 = a3, x2 + y2 + z2 = a2, x + y + z = a in terms of a. 
 10. If a, β, γ  be the roots of 2x3 + x2 + x + 1 = 0, show that

1 1 1 1 1 1 1 1 1
16

3 3 3 3 3 3 3 3 3β γ α γ α β α β γ
+ −









 + −








 + −








 = .

 11. Find x, y, ∈  such that x5 + y5 = 275, x + y = 5.

 12. Find real x such that 97 54 4− + =x x .

1.8  common RooTs oF Polynomial equaTions

A number a is a common root of the polynomial equations f (x) = 0 and g(x) = 0, if and 
only if, it is a root of the HCF of the polynomials f (x) and g(x).

HCF of two polynomials, f (x) and g(x), is a polynomial h(x) of the greatest possible 
degree which divides both f (x) and g(x), exactly.

Note: The HCF of two polynomials is not unique, because a ⋅ h(x) is also a HCF, 
where a ≠ 0 is a constant (either real or complex). The HCF of two polynomials can be 
found by the Euclidean algorithm.

Example 28 Find the common roots of the polynomials x3 + x2 − 2x − 2 and

x3 − x2 − 2x + 2.

Solution: Find the HCF by using the Euclidean algorithm,

x x x x x x

x x x

3 2 3 2

3 2

2 2 2 2

2 2

1+ − − − − +

+ − −
− − + +( ) ( ) ( ) ( )

                   

− + + − −

−
− +

−
2 4 2 2

2

1

2
2 3 2

3

x x x x

x x

x

( ) ( )

         

x x

x

2 2

2

2 2 4

2 4

2

0

− − +

− +
+ −

−

( ) ( )

Thus, the HCF is x2 − 2 and hence, the common roots of the given equations are the 
roots of x2 − 2 = 0, i.e., ± 2.

Example 29 Find the common roots of x4 + 5x3 − 22x2 − 50x + 132 = 0 and
x4 + x3 − 20x2 + 16x + 24 = 0, and solve the equations.

Solution: You can see that 4(x2 − 5x + 6) is HCF of the two equations and hence, the 
common roots are the roots of x2 − 5x + 6 = 0, i.e., x = 3 or x = 2.
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Now, x4 + 5x3 − 22x2 − 50x + 132 = 0 (1)

and x4 + x3− 20x2 + 16x + 24 = 0 (2)

have 2 and 3 as their common roots.
If the other roots of Eq. (1) are a and β, then 

  a + β + 5 = −5,

⇒ a + β = −10 from Eq. (l)

 6aβ = 132
⇒ aβ = 22

So, a and β are also the roots of the quadratic equation x2 + 10x + 22 = 0.

∴ =
− ± −

=
− ± ⋅

= − ±x
10 100 88

2

10 2 3

2
5 3

So, the roots of Eq. (1) are 2, 3, ( ),− +5 3  ( ).− −5 3

For Eq. (2), if a1 and β1 be the roots of Eq. (2), then we have 

α β1 1 5 1+ + = −

 α β1 1 6+ = −

6 24 41 1 1 1α β α β= =or

So, a1 and β1 are the roots of 

x2 + 6x + 4 = 0

x =
− ± −

= − ±
6 36 16

2
3 5

So, the roots of Eq. (2) are 2, 3, −3 + 5,  −3 − 5.

Example 30 Show that the set of polynomials

P = {pk (x): pk(x) = x5k + 4 + x3 + x2 + x + 1, k ∈ }

has a common non-trivial polynomial divisor. 

Solution: If k = 1

p1(x) = x9 + x3 + x2 + x + 1

= x9 − x4 + x4 + x3 + x2 + x + 1

= x4(x5 − 1) + (x4 + x3 + x2 + x + 1) 

= x4(x − 1) (x4 + x3 + x2 + x + 1) + (x4 + x3 + x2 + x + 1)

= (x4 + x3 + x2 + x + 1) [x4(x − 1) + 1] 

Thus, x4 + x3 + x2 + x + 1 is a non-trivial polynomial divisor of p1(x).

pk(x) = x(5k+4) − x4 + (x4 + x3 + x2 + x + 1)

= x4 [x5k − 1] + (x4 + x3 + x2 + x + 1)

(x5 − 1) divides (x5)k − 1, x4 + x3 + x2 + x + 1 divides x5 − 1 and hence, x5k − 1.

Therefore, x4 + x3 + x2 + x + 1 divides Pk (x) for all k.
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Build-up Your Understanding 4

 1. Find the common roots of the equations

x3 − 3x2 − 4x + 12 = 0 and x3 + 9x2 + 26x + 24 = 0.

 2. Find the common roots of the equations

x4 − 5x3 + 2x2 + 20x − 24 = 0 and
x4 + 7x3 + 8x2 − 28x − 48 = 0.

 3. If d, e, f are in GP and the two quadratic equations ax2 +2bx + c = 0 and dx2 + 2ex 

+ f = 0 have a common root, then prove that
d

a

e

b

f

c
, , are in HP.

 4. If n is an even and a, β, are the roots of the equation x2 + px + q = 0 and also of the 

equation x p x q f x
x

x
n n n n

n

n
2 0

1

1
+ + = =

+
+

and ( )
( )

where an + βn ≠ 0, p ≠ 0, find 

the value of f
α
β









 .

1.9 iRReDucibiliTy oF Polynomials

An irreducible polynomial is, a non-constant polynomial that cannot be factored into 
the product of two non-constant polynomials. The property of irreducibility depends 
on the set (usually we take , , , or ) to which the coefficients are considered to 
belong. 

A polynomial that is not irreducible over a set is said to be reducible over the set. 
Observe the following illustrations to understand reducible and irreducible polyno-

mials over the sets , , , or .

 1. p x x x x x1
26 19 15 2 3 3 5( ) ( )( )= − + = − −

 2. p x x x x2
2 16

25

4

5

4

5
( ) ,= − = −






 +







 3. p x x x x3
2 3 3 3( ) ( )( ),= − = − +

 4. p x x x i x i4
2 4 2 2( ) ( )( )= + = + −

Over the integers, only first polynomial is reducible the last two are irreducible. The 
second is not a polynomial over the integers).

Over the rational numbers, the first two polynomials are reducible, but the other 
two are irreducible 

Over the real numbers, the first three polynomials are reducible, but last one is  
reducible.

Over the complex numbers, all four polynomials are reducible.

Example 31 Factorize x4 + 4 as a product of irreducible polynomials over each of the 
following sets: 

 (i) 

 (ii) 

 (iii) 
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Solution:

 (i) Over :

  x x x x x x4 4 2 2 2 2 24 4 4 4 2 2+ = + + − = + −( ) ( ) = + + − +( )( )x x x x2 22 2 2 2

 (ii) Over :
  It is same as in ,

  i.e., x x x x x4 2 24 2 2 2 2+ = + + − +( )( )

 (iii) Over � :

We need further factorization of x x2 2 2+ +  and x x2 2 2− + ,  for this let us solve 

x x x x i2
2

2 2 0
2 2 4 1 2

2
1+ + = ⇒ =

− ± − × ×
⇒ = − ±  

And x x x x i2
2

2 2 0
2 2 4 1 2

2
1− + = ⇒ =

± − × ×
⇒ = ±

Hence, x x i x i x i x i2 4 1 1 1 1+ = − − + − − − − + − −( ( ))( ( ))( ( ))( ( )).

Example 32 Check whether following polynomials are reducible or irreducible over .

 (i) x x x4 3 1+ − −
 (ii) x x x3 2 3+ + +

Solution:

 (i) x x x x x x x x x x x x4 3 3 3 21 1 1 1 1 1 1 1+ − − = + − + = + − = + − + +( ) ( ) ( )( ) ( )( )( )  

  Hence it is reducible over .
 (ii) As it is a cubic, if this is reducible then it would have to have a linear factor

x −α ,  hence a root (α ∈�). But by integer root theorem a would have to be an 
integer divisor of constant 3, hence would have to be 1, −1, 3 or −3. By direct 
checking we see that none of these is a root, and hence the polynomial is irre-
ducible.

Example 33 Show that x x x4 3 1+ − +  is irreducible over �.

Solution: As in previous example here also if there were a linear factor then there 
would be an integer root which, since it would have to divide the constant term, could 
be only ±1,  but clearly neither of these is a root; hence no linear factor. 

To determine whether it factorizes as the product of two quadratics, let us try:

x x x x ax b x cx d4 3 2 21+ − + = + + + +( )( )

Now by equating coefficients, we get a c b ac d ad bc bd+ = + + = + = − =1 0 1 1, , , .
Bearing in mind that a, b, c, d all are integers, we have either 

b d= =1  or b d= = −1.

In the first case the other equations become a c ac a c+ = = − + = −0 2 1, ,  which is 
impossible. 

And in the second case we obtain a c ac+ = =1 2,  which has no integer solution. 
Thus there is no factorization, and the polynomial is irreducible.

Example 34 Prove that if the integer ‘a’ is not divisible by 5, then f x x x a( ) = − +5  
cannot be factored as the product of two non-constant polynomials with integer coef-
ficients.
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Solution: Suppose f can be factored, then

f x x n g x( ) ( ) ( )= −  or f x x bx c( ) ( )= − +2  g(x)

In the former case, f n n n a( ) .= − + =5 0  Now n n5 ≡  (mod 5) by Fermat’s little theo-

rem⇒ − =5 5( ) ,b b a  a contradiction. 

In the later case, dividing f x x x a( ) = − +5  by x bx c2 − + ,  we get the remainder

( ) ( ).b b c c x b c bc a4 2 2 3 23 1 2+ + − + + +  Since x bx c2 − +  is a factor of f x( ),  both 

coefficients of remainder equal to 0. 
That is,

                                                     b b c c4 2 23 1 0+ + − =  (1)
and

  b c bc a3 22 0+ + =  (2)

Now b(1) − 3(2) gives

b b b c c b c bc a b b bc a( ) ( )4 2 2 3 2 5 23 1 3 2 5 3 0+ + − − + + = − − − =

⇒ = − −3 55 2a b b bc  is divisible by 5. 

⇒5 a  which is a contradiction.

Example 35 Let f x a x a x a x an
n

n
n( ) = + + + +−
−

1
1

1 0�  be a polynomial with integer 

coefficients, such that | |a0  is prime and | | | | | | | | .a a a an0 1 2> + + +�  Prove that f x( )  is 
irreducible over . 

Solution: Let a be any complex zero of f. 

Case 1: Consider | | ,α ≤1  then | | | | | | | |,a a a a an
n

n0 1 1= + + ≤ + +α α� �
 which is a contradiction. 

Case 2: Therefore, all the zeros of f satisfies | | .α >1

Now, let us assume that f x g x h x( ) ( ) ( ),=  where g and h are non-constant integer 

polynomials. Then a f g h0 0 0 0= =( ) ( ) ( ).  Since | |a0  is a prime, one of | ( )|, | ( )|g h0 0  

equals 1. Say | ( )| ,g 0 1=  and let b be the leading coefficient of g. 

Let α α α1 2, , ..., k  are the roots of g, then | ... |
| |

.α α α1 2
1

1k
b

= ≤  (As b b∈ ⇒ ≥� \ { } | | )0 1

But, α α α1 2, , ..., k  are also zeros of f, and from case 1 we have magnitude of each  
ai greater than 1.

⇒ >| ... | .α α α1 2 1k  Which is a contradiction. 

Hence, f is irreducible.

Note: If a polynomial has integer coefficients, then the concepts of (ir) reducibility 
over the integers and over the rationals are equivalent. This is true because of a Lemma 
by Gauss.

1.9.1 Gauss Lemma

If a polynomial with integer coefficients is reducible over , then it is reducible over  .
The following theorem is very useful for deciding irreducibility of some integer 

polynomials over .

Johann Carl
Friedrich Gauss

30 Apr 1777–23 Feb 1855 
Nationality: German
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1.9.2 Eisenstein’s Irreducibility Criterion Theorem

Let f x a x a x a x an
n

n
n( ) = + + + +−
−

1
1

1 0�  be a polynomial with integer coefficients 
and there exist a prime p such that,

 1. p a i ni| ,for 0 1≤ ≤ −
 2. p an

 3. p a2
0 .

Then f (x) is irreducible over the integers.

Proof: If possible let us assume f x g x h x( ) ( ) ( ),= ⋅ such that 

g x b x b x b x bm
m

m
m( ) ,= + + +−
−

1
1

1 0

 h x c x c x c x ck
k

k
k( ) ,= + + +−
−

1
1

1 0

where b c i b c m k ni i m k, , , , ...; , ; , .∈ ∀ = ≠ ≠ ≤ ≤ −� 0 1 2 0 0 1 1

Comparing leading coefficient on both side we get a b cn m k= .  

As p a p b c b p cpn m k m k   ⇒ ⇒ .and

Comparing constant term on both side we get a b c0 0 0= . As p a p a| 0
2

0and   

⇒ |p b c0 0  but p cannot divide both b0 and c0. Without loss of generality, suppose that 

p b| 0  and p c 0 .  Suppose i be the smallest index such that bi is not divisible by p. 
There is such an index i since p bm  where ⋅ ≤ ≤1 i m.  Depending upon i viz a viz k 
we have following two cases:

Case 1: for ⋅ ≤i k, a b c b c b ci i i i= + + +0 1 0�

Case 2: for i k> , a b c b c b ci i i i m m= + + + −0 1 �

We have p ai| and by supposition p divides each one of b b b p b ci i0 1 1 0, , ..., |− ⇒ . 
But p  c0 ⇒ p | bi, which is a contradiction. Therefore f (x) is irreducible.

Example 36 Prove that 16 35 105 1753 2x x x− + +  is irreducible over .

Solution: This is irreducible by Eisenstein’s Criterion with the prime p being taken to 
be 7: for 7 does not divide the leading coefficient but it divides all the others, and its 
square, 49, does not divide 175.  Note that using the prime 5 is not valid since 52 does 
divide the constant coefficient 175.

Example 37 Prove that x x x3 23 3 22− + +  is irreducible over .

Solution: Let f (x) = x x x3 23 3 22− + + .  Eisenstein Criterion does not apply since there 
is no suitable prime. Substituting x − 1 for x gives the polynomial x x x3 26 6 21− + +  to 
which Eisenstein does apply, with p = 3. Writing f (x) for the original polynomial, we 

deduce that f (x − 1) is irreducible. But a factorization of f (x) would give a factorization 

of f (x − 1), hence f (x) is irreducible over . 

Example 38 Let p be a prime number. Show that Φ p
p px x x x( ) = + + + +− −1 2 1�  is 

irreducible.

Solution: The given polynomial is called pth Cyclotomic polynomial 

 Φ p
p p

p

x x x x x
x

x
( ) = + + + + + =

−
−

− −1 2 2 1
1

1
�

Ferdinand Gotthold
Max Eisenstein

16 Apr 1823–11 Oct 1852 
Nationality: German
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Consider Φ p

p p p p p p
p
p

p
x

x

x

x x x x
( )

( )

( )
+ =

+ −
+ −

=
+ ( ) + ( ) + + ( ) +− −

− −
1

1 1

1 1

1
1

2
2

2
2� 11

p x

x

( )

                                = + ( ) + ( ) + + ( ) + ( )− − −
− −x x x xp p p p p

p
p

p
p1

1
2

2
3

2 1�

As p i pi
p| , , , ..., ,( ) ∀ = −1 2 3 1 so all the lower coefficients are divisible by p, and 

the constant coefficient is exactly p, so is not divisible by p2. Thus, Eisenstein’s cri-
terion applies, and Φ p x( )+1 is irreducible. Certainly if Φ p x g x h x( ) ( ) ( )=  then 

Φ p x g x h x( ) ( ) ( )+ = + +1 1 1  gives a factorization of Φ p x( ).+1  Thus, Φ p  has no 

proper factorization.

1.9.3 Extended Eisenstein’s Irreducibility Criterion Theorem

Let f x a x a x an
n( ) = + + +� 1 0  be a polynomial with integer coefficient. If there exist 

a prime number p and an integer k n∈ −{ , , , }0 1 1…  such that p | a0, a1, …, ak; p  ak+1 

and p2  a0, then f x( )  has an irreducible factor of a degree at least k +1.
In particular, if p can be taken so that k n= −1,  then f x( )  is irreducible.

Proof: Like in the proof of Eisenstein’s irreducibility criterion, suppose that 
f x g x h x( ) ( ) ( )= ⋅ such that 

g x b x b x b x bk
k

k
k( ) ,= + + + +−
−

1
1

1 0�
 h x c x c x c x cr

r
r

r( ) ,= + + + +−
−

1
1

1 0�

where b c i b c m r ni i k r, , , , ; , ; , .∈ ∀ = ≠ ≠ ≤ ≤ −� …0 1 2 0 0 1 1

Since a b c0 0 0=  is divisible by p and not by p2 ,  exactly one of b c0 0,  is a multiple 

of p. without loss of generality assume that p b| 0  and p c 0 .

Now, p a b c b c p b c p bo| | | .1 0 1 1 0 1 1= + ⇒ ⇒

Similarly, p a b c b c b c p b c p bo| | |2 0 2 1 1 2 0 2 2= + + ⇒ ⇒  and so on. 

We conclude that all coefficients b b bk0 1, ,...,  are divisible by p,
Now, ak+1 = bkc1 + bk−1c2 + bk−2c2 + … ⇒ p | ak+1 but p ak +1.  It follows that degree 

of g k≥ +1.

Example 39 Let, f x x x nn n( ) ,= + + >−5 3 11  is an integer. Prove that f x( )  cannot 
be expressed as a product of two polynomials, each of which has all its coefficient 
integers and degree at least 1. [IMO, 1993]

Solution: Rewrite the given polynomial as

f x x x x xn n n n( ) = + + ⋅ + ⋅ + +− − −5 0 01 2 3 � 0 3⋅ +x .

Now take prime p = 3,  obviously 3 0 1 2 2| , , , ..., ;a i ni∀ = −  32  a0 = 3, 3  an−1 = 5.

Hence by the extended Eisenstein criterion, f has an irreducible factor of degree at 
least n − 1. 

If possible, let us take one factor of degree n − 1 then other must be linear and monic 
(as f is monic) this implies f has integral roots. By integer root theorem this root must 
be an integer divisor of constant 3, hence would have to be 1, −1, 3 or −3. By direct 
checking we see that none of these is a root, and hence the polynomial is irreducible. 
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Build-up Your Understanding 5

 1. Prove that for any prime p, polynomial, x pn −  is irreducible over .

 2. Prove that x x7 48 24+ −  is irreducible over .

 3. Prove that x x x4 22 2 2+ + +  is not the product of two polynomials x ax b2 + +  

and x cx d2 + +  where a, b, c, d are integers.

 4. Prove that x x x x5 4 3 236 6 30 24− + + +  is irreducible over .

 5. Prove that x x x3 23 5 5+ + +  is irreducible over .

 6. Prove that x x6 25 8+ +  is reducible over .

 7. Prove that if x px pp + + −1  is reducible for some prime of then p must be ‘2’.

 8. Let a x a x a x an
n

n
n+ + + +−
−

1
1

1 0�  is polynomial over  and irreducible over it. 

Prove that a x a x a x an n
n n0 1

1
1+ + + +−
−�  is also irreducible over �  and use this 

to show that 21 49 14 45 3 2x x x− + −  is irreducible over �.

 9. If a a an1 2, , ,… �∈  are distinct, then prove that ( )( ) ( )x a x a x an− − − −1 2 1…  is 
irreducible over � .

 10. Prove that 1 2 1+ + + + −x x xp p p p� ( )  is irreducible over �.

Solved Problems

Note: In solving some problems, you may have to use simple trigonometric identities. 
These formulae would be given wherever they are used in solving problems, and also 
given in appendix.

Problem 1 Solve for x: 2p(p − 2)x = (p − 2).

Solution:  2p(p − 2)x = (p − 2) (1)

⇒ =
−
−

x
p

p p

( )

( )

2

2 2
 (2)

If p = 0 or 2, the above Eq. (2) is undefined.
However, if p = 0, then Eq. (1) becomes 0 = −2, which is inconsistent. Hence, no 

value of x will satisfy Eq. (1), and there is no solution for p = 0.
If p = 2, then by Eq. (1), 0 = 0. 
Thus, every value from the domain of x will satisfy Eq. (1) and hence, there exists 

an infinite number of solution for Eq. (1), when p = 2.

If p ≠ 2, p ≠ 0; then Eq. (2) is well-defined and the solution is x
p

=
1

2
.

Aliter: 2p(p − 2)x = p − 2

⇒ 2p(p − 2)x − (p − 2) = 0

⇒ (p − 2)(2px − 1) = 0

⇒ p = 2 or 2px = 1

⇒ p = 2 or x
p

=
1

2
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Thus, p = 2 guarantees infinitely many values for x, where p = 2 is itself sufficient to 

get (p − 2)(2px − 1) = 0 and if, p ≠ 2, x
p

=
1

2
 must be true and hence, p = 0 does not 

satisfy. 

Problem 2 If x1 and x2 are non-zero roots of the equation ax2 + bx + c = 0, and −ax2 

+ bx + c = 0, respectively, prove that 
a

x bx c
2

02 + + =  has a root between x1 and x2, 

where a ≠ 0.

Solution: x1 and x2 are roots of 
ax2 + bx + c = 0 (1)

and −ax2 + bx + c = 0 (2)

We have

ax1
2 + bx1 + c = 0

and −ax2 
2 + bx2 + c = 0

Let, f x
a

x bx c( ) .= + +
2

2

This, f x
a

x bx c( )1 1
2

1
2

= + +  (3)

f x
a

x bx c( )2 2
2

2
2

= + +  (4)

Adding 
1

2 1
2ax  in Eq. (3), we get 

f x ax ax bx c( )1 1
2

1
2

1
1

2
0+ = + + =

⇒ f x ax( )1 1
21

2
= −  (5)

Subtracting 
3

2 2
2ax  from Eq. (4), we get

f x ax ax bx c( )2 2
2

2
2

2
3

2
0− = − + + =

⇒ f x ax( ) .2 2
23

2
=

Thus, f (x1) and f (x2) have opposite signs and hence, f (x) must have a root between x1 
and x2.

Problem 3 Let, P(x) = x2 + ax + b be a quadratic polynomial in which a and b are 
integers. Show that there is an integer M, such that P(n) ⋅ P(n + 1) = P(M) for any 
integer n.

Solution: Clearly, P(n) × P(n + 1) is of 4th degree in ‘n’ as P(n) and P(n + 1) are of 
second degree each in n, and so P(n) × P(n + 1) will be a polynomial of 4th degree in 
n with leading coefficient 1.
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So, if there exists an M, so that P(M) = P(n) × P(n + 1), then M must be in the form 
of a quadratic in n, with leading coefficient 1.

Let M = n2 + cn + d, where c and d are integers.

Now,

P(M) = P(n2 + cn + d)

   = (n2 + cn + d)2 + a(n2 + cn + d) + b

   =  n4 + 2cn3 + (c2 + 2d + a)n2 + (2cd + ac)n + d2 + ad + b 

and 

P(n) × P(n + 1) = (n2 + an + b)[(n + l)2 + a(n + 1) + b]

  =  n4 + 2 (a + 1)n3 + [(a + l)2 + (a + 2b)]n2 + (a + 1)(a + 2b)n + b(a + b + 1) 

Now, comparing the coefficients of n3 and the constant terms of P(M) and P(n) × P(n + 1),  
we get

2c = 2(a + 1)

⇒ c = (a + 1)

and d 2 + ad + b = ab + b2 + b
⇒ d2 − b2 + ad − ab = (d − b)(d + a + b) = 0
⇒ d = b or d = −(a + b)

Using these values of d = b and c = a + 1, the coefficient of n2 and n in P(M) are

c2 + 2d + a = (a + l)2 + 2b + a

and 2cd + ac = 2(a + 1) b + a(a + 1)

 = (a + 1)(2b + a), respectively.

But, these are the coefficients of n2 and n in P(n) × P(n + 1). Thus, with these values for 
c and d, P(M) = P(n) × P(n + 1). So, the M of the desired property is n2 + (a + 1)n + b.

Thus, we can verify that d = −(a + b), c = (a + 1), if P(M) and P(n) × P(n + 1) 
are identical and hence, show that there exists exactly one M for every n which is a 
 function of n,

i.e., M = f (n) = n2 + (a + 1)n + b

Aliter: Let P(x) = x2 + ax + b ≡ (x − a) (x − β), where a + β = −a, a ⋅ β = b.

Now, P(n) P(n + 1) = (n − a)(n − β) ⋅ (n + 1 − a)(n + 1 − β)

= (n − a)(n + 1 − β) (n − β)(n + 1 − a)

= (n2 − (a + β − 1)n + aβ − a) (n2 + (a + β − 1)n + aβ − β)

= (n2 + (a + 1)n + b − a) (n2 + (a + 1) n + b − β)

= (M − a) (M − β)

= P(M) where M = n2 + (a + 1) n + b.

Problem 4 Prove that, if the coefficients of the quadratic equation ax2 + bx + c = 0 are 
odd integers, and then the roots of the equation cannot be rational numbers.

Solution: Let there be a rational root p

q
, where (p, q) = 1. Then,
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ap

q

bp

q
c

2

2
0+ + =

⇒ ap2 + bpq + cq2 = 0
Now, p, q both may be odd or one of p, q be even.

If both p and q are odd, then ap2 + bpq + cq2 is an odd number and cannot be equal 
to zero.

Again, if one of p and q is even, then two of the terms of the left-hand side of the 
equation are even, and the third term is odd and again, its sum is odd and cannot be 
equal to zero.

Hence, the above equation cannot have rational roots.

Problem 5 If 
1 1 1 1

a b c a b c
+ + =

+ +
,  then prove that

1 1 1 1

a b c a b cn n n n n n
+ + =

+ +
 for all odd n.

Solution: We have, 
1 1 1 1

a b c a b c
+ + =

+ +
.

None of a, b, c and a + b + c are zero. 

Now, 
1 1 1 1

a b a b c c
+ =

+ +
−

⇒ a b

ab

a b

a b c c

+
=

− +
+ +
( )

( )
⇒ c (a + b)(a + b + c) + ab(a + b) = 0
⇒ (a + b) (b + c) (c + a) = 0
⇒ a = −b or b = −c or c = −a

If a = −b, then an = −bn for n odd ⇒ 
1 1

a bn n
= −

So, 1 1 1 1 1

0

1

a b c c c a b cn n n n n n n n
+ + = =

+
=

+ +
The equality can be proved similarly in the other two cases also.

Problem 6 Show that

a

a b a c

b

b a b c

c

c a c b
a b c

3 3 3

( )( ) ( )( ) ( )( )− −
+

− −
+

− −
= + +

Solution: We have, 
a

a b a c

a

a b c a

3 3

( )( ) ( )( )− −
=

−
− −

b

b a b c

b

a b b c

3 3

( )( ) ( )( )− −
=

−
− −

and c

c a c b

c

b c c a

3 3

( )( ) ( )( )− −
=

−
− −

 

a

a b a c

b c a c a b a b c

a b b c c a

3 3 3 3

( )( )

( ) ( ) ( )

( )( )( )− −
= −

− + − + −
− − −









∑∑
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Numerator of RHS is a cyclic symmetric expression in a, b, c in 4th degree and writing 
b = c, we get 0 + (c − a)b3 + (a − b)c3 = 0.

So (b − c), and hence (c − a) and (a − b) are factors. Since it is a fourth degree sym-
metric expression, (a + b + c) is also a factor.

Thus, we have k(a + b + c)(a − b)(b − c)(c − a) = (b − c)a3 + (c − a)b3 + (a − b)c3

If a = 1, b = −1, c = 2, we get on 
LHS = k × 2(2)(−3) × 1 = −12k 

and RHS = −3 + (−1) + 16 = 12 ⇒ k = −1

∴ =
+ + − − −

− − −
= + +The expression

( )( )( )( )

( )( )( )
(

a b c a b b c c a

a b b c c a
a b cc).

Problem 7 Let, a1, a2, …, an be non negative real numbers not all zero. Prove that 

xn − a1x
n−1 − … − an−1x − an = 0

has exactly one positive real root.

Solution:

xn − a1x
n−1 − … − an−1x − an = 0

⇒ − − + + + +




=x

a

x

a

x

a

x
n n

n
1 01 2

2
�

Let, f x
a

x

a

x

a

x
n
n

( ) = + + +1 2
2

�

f (x) is a decreasing function as x increases in (0, ∞), f (x) decreases in (∞, 0). Hence, 
there exists a unique positive real number R, such that

f R
a

R

a

R

a

R
n
n

( ) = + + + =2
2

1�

∴ xn − a1x
n−1 − … − an−1x − an = − − + + + +






x

a

x

a

x

a

x
n n

n
1 1 2

2
�

and for x = R, we get

− − + + + +





 = − − + =R

a

R

a

R

a

R
Rn n

n
n1 1 1 01 2

2
� [ ]

Therefore, R is a root of the given equation.

Problem 8 Let P(x) be a real polynomial function, and P(x) = ax3 + bx2 + cx + d. 
Prove, if |P(x)| ≤ 1 for all x, such that |x| ≤ 1, then |a| + |b| + |c| + |d| ≤ 7.

[IMO, 1996 Short List]

Solution: Considering the polynomials ±P(±x) we may assume without loss of gener-
ality that a, b ≥ 0.

Case 1: If c, d ≥ 0, then

|a| + |b| + |c| + |d| = a + b + c + d = p(1) ≤ 1< 7

Case 2: If d ≤ 0 and c ≥ 0, then |a| + |b| + |c| + |d|

 = a + b + c − d = (a + b + c + d) − 2d

 = P(1) − 2P(0) ≤ 1 + 2 = 3 < 7
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Case 3: If d ≥ 0, c < 0

|a| + |b| + |c| + |d| = a + b − c + d

= − − − 





 +

−







4

3
1

1

3
1

8

3

1

2

8

3

1

2
P P P P( ) ( )

        ≤ + + + = =
4

3

1

3

8

3

8

3

21

3
7

Case 4: If d < 0, c < 0

|a| + |b| + |c| + |d| = a + b − c − d

= − 





 +

−







5

3
1 4

1

2

4

3

1

2
P P P( )

≤ + + = =
5

3
4

4

3

21

3
7.

Problem 9 A person who left home between 4 p.m. and 5 p.m. returned between 5 p.m. 
and 6 p.m. and found that the hands of his watch has exactly changed places. When 
did he go out?

Solution: The dial of a clock is divided into 60 equal divisions. In one hour, the minute 
hand makes one complete revolution, i.e., it moves through 60 divisions and the hour 
hand moves through 5 divisions.

Suppose, when the man went out, the hour hand was x divisions ahead of the point 
labeled 12 on the dial, where 20 < x < 25 (as he went out between 4 p.m. and 5 p.m.). 
Also suppose, when the man returned, the hour hand was y divisions ahead of zero 
mark and 25 < y < 30.

Since the minute hand and hour hand exactly interchanged places during the inter-
val that the man was out, the minute hand was at y when he went out and at x when he 
returned.

Since the minute hand moves 12 times as fast as the hour hand, we have

y = 12(x − 20)

and x = 12(y − 25)

⇒ y = 12[12(y − 25) − 20]
 = 144y − 3600 − 240
or 143y = 3840

⇒ y = =
3840

143
26

122

143

The minute hand was at y when he went out. So, he went out at 26
122

143
 minutes past 

4 p.m.

Problem 10 If a13 = 1 and a ≠ 1, find the quadratic equation whose roots are a + a3 
+ a4 + a −4 + a−3 + a −1 and a2 + a5 + a6 + a −6 + a −5 + a −2.

Solution: Let
 A = a + a3 + a4 + a −4 + a−3 + a −1

 = a + a3 + a4 + a9 + a10 + a12 ( ∴ a13 = 1) 

and B = a2 + a5 + a6 + a −6 + a −5 + a −2

 = a2 + a5 + a6 + a7 + a8 + a11
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 A + B = a + a2 + a3 + a4 + a5 + a7 + a8 + a9 + a10 + a11 + a12 

 = (1 + a + a2 + a3 + … + a12) − 1

 
=

−
−

− = −
( )

( )

α
α

13 1

1
1 1

 (A × B) = (a + a3 + a 4 + a9 + a10 + a12) × (a2 + a5 + a6 + a8 + a11)

 = 3(a + a2 + a3 + … + a12)

 = 3 (−1) = −3.

Therefore, the required equation is x2 + x − 3 = 0.

Problem 11 Determine all pairs of positive integers (m, n), such that

(1 + xn + x2n + … + xmn) is divisible by (1 + x + x2 + … + xm).

Solution:

1
1

1
2

1

+ + + + =
−

−

+
x x x

x

x
n n mn

m n

n
�

( )

( )verify

and 1
1

1
2

1

+ + + + =
−

−

+
x x x

x

x
m

m

�

We must find m and n, so that 1

1

2

2

+ + + +
+ + + +
x x x

x x x

n n mn

m

�
�

 is a polynomial in ‘x’, i.e.,

x

x

x

x

x x

x x

m n

n

m m

n m

( ) ( ) ( )

( )( )

+ + +

+

−
−

÷
−

−
=

−( ) −

− −

1 1 1

1

1

1

1

1

1 1

1 1

must be a polynomial. 
Now, if k and l are relatively prime, then (xk − 1) and (xl − 1) have just one com-

mon factor which is x − 1. For xk − 1 = 0, say 1, w1, w2, …, wk−1, are all distinct roots. 

Similarly, those of xl − 1 = 1, ′w1,  ′w2 ,  …, ′−wl 1  are distinct roots.

By Demoivre’s theorem, the roots of xk − 1 = 0 are cos sin
2 2n

k
i

n

k

π π
+  for n 

= 0, 1, 2, …, k − 1 and those of xl − 1 = 0 are cos sin
2 2n

l
i

n

l

π π
+  for n = 0, 1, 

2,…, l − 1. If l and K are co-prime integer other than zero, cos sin
2 2n

l
i

n

l

π π
+  and 

⋅ +cos sin ,
2 2n

k
i

n

k

π π
 will be  different. 

Since, all the factors of xn(m+1) − 1 are distinct, xm+l − 1, xn − 1 cannot have any com-
mon factors other than (x − 1). Thus, (m + 1) and ‘n’ must be relatively prime.

Again, xn(m+1) − 1 = (xn)m+1 − 1 = (xm+1)n − 1.

So, xn(m+1) − 1 is divisible by (xn − 1) and, also by (xm+1) − 1

Thus, 
[ ]( )

( )( )

( )x x

x x

m n

n m

+

+

− −
− −

1

1

1 1

1 1
 is a polynomial which shows that the condition (m + 1) 

and n must be relatively prime is also sufficient.

Problem 12 Show that (a − b)2 + (a − c)2 = (b − c)2 is not solvable when a, b and c 
are all distinct.
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Solution: We have, (a − b)2 + (a − c)2 = (b − c)2

⇒ 2a2 − 2ab − 2ac + 2bc = 0
⇒ a2 − a(b + c) + bc = 0
⇒ (a − b)(a − c) = 0
⇒ a = b or a = c

Thus, the equation has no solution, if a, b and c are all distinct.

Aliter: Let a − b = x and a − c = y
⇒ b − c = y − x

Hence, given equation becomes 

x2 + y2 = (y − x)2 ⇒ 2xy = 0
⇒ x = 0 or y = 0
⇒ a = b or a = c

Problem 13 If P(x) is a polynomial of degree n such that P(x) = 2x for x = 1, 2, 3, …, 
n + 1,  find P(x + 2).

Solution: 2m = (1 + 1)m = 
m m m m

m0 1 2









 +









 +









 + +









�  for m = 1, 2, …, n + l.

Now, consider the polynomial

f x
x x x x

n
( ) =

−







 +

−







 +

−







 + +

−

















2

1

0

1

1

1

2

1
�

where 
x

r

x x x r

r

−







 =

− − −1 1 2( )( )...( )

!

Clearly, f (x) is of degree n.

Now, f r
r r r

r

r

r

r
( ) =

−







 +

−







 + +

−
−









 +

−







 + +

−
2

1

0

1

1

1

1

1
� �

11

1 1

n

r n





















≤ ≤ +where

But, 
r

k

−







 =

1
0  for all k > r − 1 where k and r are integers

So f(r) = 2 ⋅ 2r−1 = 2r for all r = 1, 2, …, n + 1

∴ Thus, f (x) is the required polynomial

∴ + =
+







 +

+







 + +

+



















= −+

f n
n n n

n

n

( )

[

2 2
1

0

1

1

1

2 2 11

�

]] = −+2 22n

Similarly,                   p(x + 2) = 2x+2 − 2.

Problem 14 If a, b, c, d are all real and a2 + b2 + c2 + d2 = ab + bc + cd + da, then 
show that a = b = c = d.
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Solution: We have, 2(a2 + b2 + c2 + d2) − 2(ab + bc + cd + da) = 0  

⇒ (a2 − 2ab + b2) + (b2 + c2 − 2bc) + (c2 + d2 − 2cd) + (d 2 + a2 − 2da) = 0 

⇒ (a − b)2 + (b − c)2 + (c − d)2 + (d − a)2 = 0 

⇒ a = b, b = c, c = d, d = a

⇒ a = b = c = d.

Problem 15 Determine x, y, z ∈ , such that 

2x2 + y2 + 2z2 − 8x + 2y − 2xy + 2xz − 16z + 35 = 0.

Solution: 2x2 + y2 + 2z2 − 8x + 2y − 2xy + 2xz − 16z + 35 = 0
⇒ (x − y)2 + (x + z)2 + z2− 16z − 8x + 2y + 35 = 0

⇒ (x − y − l)2 + (x + z − 3)2 + z2− 10z + 25 = 0

⇒ (x − y − l)2 + (x + z − 3)2 + (z − 5)2 = 0

Thus, x − y = 1, x + z = 3, z = 5 and hence, x = −2, y = −3.

Thus, the solution is x = −2, y = −3 and z = 5.

Problem 16 Find all real numbers satisfying x8 + y8 = 8xy − 6.

Solution: We know x8 + y8 + 6 = 8xy.
⇒ x and y must be of same sign, otherwise LHS > 0 and RHS < 0
Moreover (x, y) is a solution ⇔ (−x, −y) also WLOG x, y > 0

Now x8 + y8 + 1 + 1 + 1 + 1 + 1 + 1 = 8xy

By AM−GM inequality.

x y8 8 1 1 1 1 1 1+ + + + + + +

≥ × × × × × × × × ×8 1 1 1 1 1 1 18 88 x y

≥ × × =8 88 88 x y x y| |

But, by hypothesis, equality holds. Hence, all the 8 terms are equal. Therefore, 

x8 = y8 = 1.

Hence, (x, y) ≡ (1, 1), (−1, −1) is the solution set.

Problem 17 Solve the systems of equations for real x and y.

5 1
1

12 5 1
1

4
2 2 2 2

x
x y

y
x y

+
+









 = −

+








 =, .

Solution: Given that

5 1
1

12
2 2

x
x y

+
+









 =

∴ 25
144

1
1

2

2 2

2
x

x y

=

+
+











 (1)
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And similarly, we can find by the second equation

 25
16

1
1

2

2 2

2
y

x y

=

−
+











 (2)

By adding Eqs. (1) and (2), we get

25
144

1
1

16

1
1

2 2

2 2

2

2 2

2
( )x y

x y x y

+ =

+
+











+

−
+











 (3)

Let, 1 1
2 2

2 2

x y
t x y

t+
= + = so that .

Now 
25 144

1

16

12 2t t t
=

+
+

−( ) ( )

⇒ 144t(1 − t)2 + 16t(1 + t)2 = 25(1 − t2)2

⇒ 32t(5t2 − 8t + 5) = 25(t4 − 2t2 + 1)

Dividing both sides by t2, we get

32 5
1

8 25
1

4
2

t
t

t
t

+





 −









 = +






 −













Putting t
t

+ =
1

α  in the above equation, we get

25a2 − 160a + 156 = 0 ⇒ =α
6

5

26

5
,

⇒ + = =t
t

1 6

5

26

5
α or

⇒ 5t2 − 6t + 5 = 0 or 5t2 − 26t + 5 = 0

Since the discriminant of 5t2 − 6t + 5 = 0 is 36 − 100 < 0, there is no real root.

5t2 − 26t + 5 = 0, the roots are 5 and 1

5
.

Thus, x2 + y2 = 
1

5
 or x2 + y2 = 5

If x y x2 2 5 1
1

5
12+ = +






 =, then 5  and 5y 1

1

5
4−






 =

Thus, by solving, we get

x = 2 and y = 1

If x y x y2 2 1

5
1 5 12 1 5 4+ = + = − =then 5 and 5( ) ( )

Thus, by solving, we get

x y= =
−2

5

1

5
and .
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The two solution are x = 2, y = 1 and x y= =
−2

5

1

5
, .

Aliter: Let z x iy x y z z z= + ⇒ + = = ⋅2 2 2| |

Now Eq. (1) + i Eq. (2) ⇒ + +
−
+









 = +5 12 4

2 2
x iy

x iy

x y
i

⇒ +
⋅







 = + ⇒ − + + =

⇒ =
+ ± + −

5 12 4 5 12 4 5 0

12 4 12 4 100

2

2

z
z

z z
i z i z

z
i i

( )

( )

22 5

12 4 28 2 48

10

12 4 64 36 2 8 6

10

12 4 8 6

10

( )

( )

=
+ ± + ×

=
+ ± − + × ×

=
+ ± +

i i

i i i i

== + −

⇒ ≡
−








2
2

5

1

5

2 1
2

5

1

5

i i

x y

,

( , ) ( , ), ,

Problem 18 Solve the system
( )( )x y x y z+ + + =18

( )( )y z x y z+ + + = 30

( )( )z x x y z L+ + + = 2  in terms of L.

Where x, y, z, L ∈ +

Solution: Adding the three equations, we get

2(x + y + z)2 = 48 + 2L

or x y z L+ + = +24 .

Dividing the three equation by x y z L+ + = +24 ,  we get 

x y
L

y z
L

z x
L

+ =
+

+ =
+

+ =
+

18

24

30

24

24

24
, , .

Also, by solving, we get

x
L

L

L

L
=

+ −

+
=

−

+

( )
,

24 30

24

6

24

2

y
L L

L

L

L
=

+ −

+
=

−

+

( )
,

24 2

24

24

24

and z
L

L

L

L
=

+ −

+
=

+

+

24 18

24

6

24
 where 6 < L < 24

Problem 19 Solve:

x + y − z = 4 (1)

x2 − y2 + z2 = −4 (2)

xyz = 6  (3)
Where x, y, z ∈ 
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Solution: From Eq. (1), (x − z) = (4 − y)

⇒ x2 − 2xz + z2 = 16 − 8y + y2

⇒ (x2 + z2 − y2) − 2xz + 8y − 16 = 0

⇒ xz = 2(2y − 5) ( ∴ x2 + z2 − y2 = −4) (4)

From Eqs. (3) and (4), we get

y × 2(2y − 5) = 6
⇒ 2y2 − 5y − 3 = 0
⇒ (2y + l)(y − 3) = 0

⇒ y y= − =
1

2
3or .

Putting the value of y = −
1

2  
in Eqs. (1) and (3), we get

x z− = 4
1

2  
and xz = −12

( ) ( ) .x z x z xz+ = − + = 





 − <2 2  4 4

1

2
48 0

2

So, y = 3 is the only valid solution for y.

x − z = 1, xz = 2 (5)

⇒ (x + z)2 = (x − z)2 + 4xz = 9
⇒ x + z = ±3 (6)

Solving Eqs. (5) and (6), we get

x = 2 and z = 1 or x = −1 and z = −2. 

So, the solution is x = 2, y = 3 and z = 1
or, x = −1, y = 3, z = −2.

Problem 20 Solve:

3x(x + y − 2) = 2y
y(x + y − 1) = 9x 

Solution:  3x(x + y − 2) = 2y (1)

 y(x + y − 1) = 9x (2)

Multiplying Eqs. (1) and (2), we get

3xy(x + y − 2)(x + y − 1) = 18xy

⇒ 3xy[(x + y − 2)(x + y − 1) − 6] = 0

⇒ 3xy[(x + y)2 − 3(x + y) − 4] = 0

⇒ 3xy(x + y − 4)(x + y + 1) = 0 (3)

So, x = 0 or y = 0 or x + y = 4 or x + y = −1. Putting x + y = 4 in Eq. (1), we get 

 6x = 2y

⇒ y = 3x

⇒ x = 1, y = 3
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Putting x + y = −1 in. Eq. (1), we get

  

y
x

x

x y

=
−

⇒
−

= −

⇒ = =
−

9

2
7

2
1

2

7

9

7
,

 (As x + y = −1)

Also, x = 0 ⇔ y = 0

Thus, the solutions are (0, 0), (1, 3), 2

7

9

7
, .
−








Problem 21 Solve:
xy + x + y = 23
 yz + y + z = 31
 zx + z + x = 47.

Solution: We know
xy + x + y = 23 (1)
yz + y + z = 31 (2)
zx + z + x = 47 (3)

Adding 1 in both sides of Eq. (1), we get
xy + x + y + 1 = 24 

⇒ (x + l)(y + 1) = 24 (4)
Similarly, we get

(y + 1)(z + 1) = 32 (5)

and  (z + 1)(x + 1) = 48 (6)

By multiplying Eqs. (4), (5) and (6), we get 

(x + l)2(y + 1)2(z + 1)2 = 24 × 32 × 48

⇒ (x + l)(y + l)(z + 1) = ±(24 × 8)

Since none of (x + 1), (y + 1) and (z + 1) is zero, we get

z + 1 = ±8

x + 1 = ±6

y + 1 = ±4 
Thus, we have two solutions x = 5, y = 3, z = 7 and x = −7, y = −5, z = −9.

Problem 22 Find all the solutions of the system of equations y = 4x3 − 3x, z = 4y3 − 3y 
and x = 4z3 − 3z.

Solution: If x > 1, then y = x3 + 3x(x2 − 1) > x3 > x > 1,

z = 4y3 − 3y = y3 + 3y(y2 − 1) > y3 > y > 1

and x = 4z3 − 3z = z3 + 3z(z2 − 1) > z3 > z > 1.
Thus, z > y > x > z, which is impossible, ⇒ x ≤ 1 and, again, x < −1, and lead to

x > y > z > x, so x ≥ −1.

So, |x| ≤ 1, |y| ≤ 1, |z| ≤ 1.

And hence, we can write x = cosθ, where 0 ≤ θ ≤ π.
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Now, y = 4 cos3θ − 3 cos θ = cos 3θ, z = 4y3 − 3y = 4 cos3 3θ − 3 cos 3θ = cos 3 × 3θ 
= cos 9θ and x = 4z3 − 3z = 4 cos3 9θ − 3 cos 9θ  = cos 3 × 9θ = cos 27θ

Since trigonometric functions are periodic, it is  possible.

Thus,
cos θ = cos 27θ

⇒ cos θ − cos 27θ = 0
⇒ 2 sin 14θ sin 13θ = 0
⇒ sin 14θ = 0 or sin 13θ = 0

 so whereθ
π

= =
k

k
13

0 1 2 12 13, , , ..., ,

 
or whereθ

π
= =

k
k

14
1 2 13, , ...,

and the solution is (x, y, z) = (cosθ, cos 3θ, cos 9θ) where θ takes all the above values.

Problem 23 Let, x = p, y = q, z = r and w = s be the unique solutions of the system of 

linear equations x + aiy + a z a w a ii i i
2 3 4 1 2 3 4+ = =, , , , .  Express the  solution of the fol-

lowing system in terms of p, q, r and s.

x a y a z a w a ii i i i+ + + = =2 4 6 8 1 2 3 4, , , ,

Assume the uniqueness of the solution.

Solution: Consider: the quadratic equation
p + qt + rt2 + st3 = t4

or t4 − st3 − rt2 − qt − p = 0.

Now, by our assumption of the problem, a1 a2, a3 and a4 are the solution of this equa-
tion and hence, 

σ1 = a1 + a2 + a3 + a4 = s

σ2 = (a1 + a2) (a3 + a4) + a1a2 + a3a4 = −r

σ3 = a1a2 (a3 + a4) + a3a4 (a1 + a2) = q

σ4 = a1a2a3a4 = −p

The second system of equation is

( ) ( ) ( ) ( )t w t z t y t x2 4 2 3 2 2 2 0− − − − =

Putting t2 = u, we have

u4 − wu3 − zu2 − yu − x = 0

and the roots can be seen to be a a a a1
2

2
2

3
2

4
2, , and

and σ1 1
2

2
2

3
2

4
2= + + + =a a a a w

⇒ = ( ) − = +∑ ∑
<

w a a a s ri i j
i j

2 22 2

σ 2
2 2= = −

<
∑a a zi j
i j

or z a a a a a a a a a a a ai j
i j

i j
i j

i i j k
i j

= − = −








 + ( ) −

< < <
∑ ∑ ∑2 2

2

1 2 3 42 2
<<
∑

k
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[As        (a2 
1 a

2 
2 + a2 

1 a
2 
3 + a2 

1 a
2 
4 + a2 

2 a
2 
3 + a2 

2 a
2 
4 + a2 

3 a
2 
4) = (a1a2 + a1a3 + a1a4 + a2a3 + a2a4 

+ a2a4)
2 − 2(a1 + a2 + a3 + a4)(a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4) + 2a1a2a3a4]

and hence, z = −r2 + 2qs + 2p, 

σ3 1
2

2
2

3
2

1
2

2
2

4
2

1
2

3
2

4
2

2
2

3
2

4
2= + + + =a a a a a a a a a a a a y

y a a a a a a a a a a a a

a a a a a a a a a a

= + + +
− + +
( )

( )(
1 2 3 1 2 4 1 3 4 2 3 4

2

1 2 3 4 1 2 1 3 12 44 2 3 2 4 3 4

2 2

+ + +

= −

a a a a a a

q pr

)

Finally, σ 4 1
2

2
2

3
2

4
2= = −a a a a x

or x a a a a a a a a p= − = − = −( ) ( )1
2

2
2

3
2

4
2

1 2 3 4
2 2

∴ x p y q pr z r qs p= − = − = − + +2 2 22 2 2, ,

and w s r= +2 2 is the solution.

Problem 24 Find out all values of a and b, for which

xyz + z = a (1)
xyz2 + z = b (2)

and x2 + y2 + z2 = 4 (3)

has only one solution.

Solution: You may observe that both (x, y, z) and (−x, −y, z) satisfy the system. Since, 
by the condition of the problem, there must be just one solution, we get x = y = 0 and 
so, z2 = 4  ⇒  z = ±2 by Eq. (3). 

But, by Eqs. (1) and (2), z = a or z = b. Since, there should be only one solution, 
either, a = b = 2 or a = b = −2. 

If a = b = 2, we have
xyz + z = 2 (4)

xyz2 + z = 2 (5)
x2 + y2 + z2 = 4 (6)

Eq. (5) − Eq. (4) gives

xyz(z − 1) = 0 either x, y or z = 0 or z = 1. If z = 0, from Eq. (4) 0 = 2, contradiction

If z = 1, then x, y are not zero ⇒ More than one solution of the system
Hence, a = b = 2 does not satisfy the condition.
If a = b = −2, we have

xyz + z = −2 (7)
xyz2 + z = −2 (8)

x2 + y2 + z2 = 4 (9)
Eq. (8) – Eq. (7) ⇒ xyz(z − 1) = 0 ⇒ any of x, y, and z = 0 or z = 1.

For z = 0, Eq. (7) becomes 0 = −2, contradiction.
If z = 1, then xy + 1 = −2 ⇒ xy = −3 and x2 + y2 = 3
(x + y)2 = x2 + y2 + 2xy = 3 − 6 = −3 cannot be true for any real x, y and hence, z ≠ 1.  

If one of x, y is zero, say x = 0, then

z = −2 
x2 + y2 + z2 = 4 

⇒ 0 + y2 + 4 = 4
⇒ y = 0

Thus, for a = b = −2, the given system has a unique solution, namely, (0, 0, −2).
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Problem 25 Given, a, b, and c are positive real numbers, such that

a ab
b b

c c ca a2
2 2

2 2 2

3
25

3
9 16+ + = + = + + =, , .

Find out the value of ab + 2bc + 3ca.

Solution: Let, A a ab
b

= + + =2
2

3
25,  B

b
c= + =

2
2

3
9  and C = c2 + ca + a2 = 16.

Hence, 25 = A = 9 + 16 = B + C

⇒ + + = + + + +a ab
b b

c c ca a2
2 2

2 2 2

3 3

⇒  2 02c ac ab+ − =

⇒  ab c c a= +( )2

⇒   a c
ab

c
+ =2  (1)

Again, A − B + C = 25 − 9 + 16 = 32 

⇒ 2a2 + ab + ca = a(2a + b + c) = 32

⇒ 2
32

a b c
a

+ + =  (2)

If S = ab + 2bc + 3ca

then, S = b(a + 2c)+ 3ca

=
×

+

= +










b ab

c
ca

a

c

b
c

3 1

3

3

2
2

[ ( )]from Eq.

= × =
3

9
27a

c

a

c
 (3)

But, S can also be written using Eq. (1), we get

 S = ab + 2bc + 3ca

= 2c2 + ac + 2bc + 3ca = 2c2 + 2bc + 4ac

 = 2c(c + b + 2a)

∴ + + =2
2

a b c
S

c
 (4)

From Eqs. (2), (3), and (4), we have

32 27 1

2

27

2 2a

a

c c

a

c
= × =

⇒ a

c

2

2

64

27
=

∴ a

c

a

c
= >








8

3 3
0as

But, by Eq. (3), 

S
a

c
= × =27 24 3
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Aliter: Let b = 3 k then system of equations becomes 

a2 + 3 ak + k2 = 25 or a2 + k2 − 2ak cos150° = 52

k2 + c2 = 9 or k2 + c2 − 2kc cos90° = 32

c2 + ac + a2 = 16  ⇒  a2 + c2 − 2ac cos120° = 42

Now consider a ΔABC of sides 3, 4, 5 and a point P in it such that AP = a, BP = k,  
CP = c

Now consider ab + 2bc + 3ca = a 3 k + 2 3 kc + 3ca (1)

Area of ΔABC = 
1

2
kc + 

1

2
ac sin120° + 

1

2
ak sin150° = 

1

2
 × 3 × 4

⇒ + + =

⇒ + + =

⇒ + + = =

1

2

3

4

1

4
6

2 3 3 3 24 3

2 3 24 3 3

kc
ac

ak

kc ca ak

ab bc ca k b( )as 

Problem 26 Solve: log3(log2 x) + log1/3 ⋅ (log1/2 y) = 1

xy2 = 4

Solution: We have, log3(log2x) + (log1/3 ⋅ log1/2y) = 1 

⇒ log3(log2x) − log3(log1/2y) = 1

⇒ log
log

log

log

log/
3

2

1 2

2

1 2

11 3
x

y

x

y









 = ⇒ =

/

⇒ log2x = 3log1/2y

⇒ log2 x = −3log2y = −log2 y
3

⇒ log2 xy3 = 0
⇒ xy3 = 1

But, we have xy2 = 4. So, by using the above equation, we get y =
1

4
 and x = 64. Which 

satisfy the parent equations.

Problem 27 Solve:

log2 x + log4 y + log4 z = 2
log3 y + log9z + log9 x = 2
log4 z + log16 x + log16 y = 2

Solution:

We know that, loga x = log(an)(x
n)

So, log2x = log22  x2 = log4 x
2,

 log3 y = log32 y2 = log9 y
2

 log4 z = log42 z2 = log16 z
2

So, log2x + log3y + log4z = 2

B

C

k

c a
120°

150°
P

A

3 5

4
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⇒ log4 x
2yz = 2

⇒ x2yz = 42 = 16 (1)

Similarly, y2xz = 81 (2)

and z2xy = 256 (3)

Hence, x2yz × y2xz × z2xy = 16 × 81 × 256

⇒ (xyz)4 = 24 × 34 × 44

xyz = 24 as x, y, z > 0

Dividing Eqs. (1), (2), and (3) by xyz = 24, we get

x y z= =
16

24

81

24

256

24
, and  = 

⇒ = = =x y z
2

3

27

8

32

3
, , .

Problem 28 Find all real numbers x and y satisfying
log3x + log2 y = 2; 3x − 2y = 23. 

Solution: By observation one solution is x = 3, y = 2

As log33 + log22 = 2 and 33 − 22 = 23
If x < 3, then log3x < 1. Since, log3x + log2y = 2, log2y > 1 and y > 2.

Hence,

 3x < 33 = 27 and 2y > 22 = 4

⇒ 3x − 2y < 27 − 4 = 23

So, x cannot be less than 3.
If x > 3, then log3x > 1 and log2y < 1 and so y < 2, 3x > 33 = 27 and 2y < 22 = 4.

So 3x − 2y > 27 − 4 = 23

So, x cannot be greater than 3.
Hence, x = 3
⇒ y = 2

Here, the only solution for the given equation is x = 3 and y = 2.

Check Your Understanding 

 1. Find the value of 
2 3

2 2 3

2 3

2 2 3

+

+ +
+

−

− −
.

 2. Find the value of 444445 888885 444442 444438

4444442

× × +  using algebra.

 3. Solve: x x x2 4 3 2− + ≥ − .

 4. Let a, β, γ  be the roots of x3 − x2 − 1 = 0. Then find the value of 1

1

1

1

1

1

+
−

+
+
−

+
+
−

α
α

β
β

γ
γ

.

 5. Show that (x − 1)2 is a factor of xm+1 − xm − x + 1.

 6. Find all real solution x of the equation x10 − x8 + 8x6 − 24x4 + 32x2 − 48 = 0.
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 7. Solve 2 3 2 3 2 3 099 98 97 96x x x x x+ + + + + + =�  in .

 8. Prove that 1 + x111 + x222 + x333 + x444 divides 1 + x111 + x222 + x333 +…+ x999.

 9. If x, y, z are rational and strictly positive and if 
1 1 1

x y z
+ =  show that x y z2 2 2+ +

is rational.

 10. If a2x3 + b2y3 + c2z3 = p5, ax2 = by2 = cz2 and 
1 1 1 1

x y z p
+ + = , find a b c+ +

only in terms of p.

 11. If ax3 = by3 = cz3 and 
1 1 1

1
x y z
+ + = ;  prove that ax by cz a b c2 2 23 3 3 3+ + = + + .

 12. Prove that, if (x, y, z) is a solution of the system of equations, x + y + z = a, 

1 1 1 1

x y z a
+ + = .  Then, at least one of the numbers x, y, z is ‘a’.

 13. If one root of the equation 2x2 – 6x + k = 0 is 
1

2
(a + 5i) where i2 = –1; k, a ∈ , 

find the values of ‘a’ and ‘k’.

 14. If x3 + px2 + q = 0, where q ≠ 0 has a root of multiplicity 2, prove that 4p3 + 27q = 0.
 15. If f(x) is a quadratic polynomial with f(0) = 6, f(1) = 1 and f(2) = 0, find f(3).
 16. Show that, if a, b, c are real numbers and ac = 2(b + d), then, at least one of the 

equations x2 + ax + b = 0 and x2 + cx + d = 0 has real roots.
 17. Given any four positive, distinct, real numbers, show that one can choose three 

numbers A, B, C among them, such that all the quadratic equations have only real 
roots or all of them have only imaginary roots. Bx2 + x + C = 0; Cx2 + x + A = 0; 
Ax2 + x + B = 0.

 18. Show that the equation x4 – x3– 6x2 – 2x + 9 = 0 cannot have negative roots.
 19. If a, b, c, d ∈  such that a < b < c < d, then show that, the roots of the equation 

(x – a)(x – c) +2(x – b)(x – d) = 0 are real and distinct.
 20. Find the maximum number of positive and negative real roots of the equation
  x4 + x3 + x2 – x – 1 = 0.
 21. If P(x) = ax2 + bx + c and Q(x) = –ax2 + bx + c, where ac ≠ 0, show that the equa-

tion P(x) ⋅ Q(x) = 0 has at least two real roots.
 22. Let f(x) be the cubic polynomial x3 + x + 1; suppose g(x) is a cubic polynomial, 

such that g(0) = –1 and the roots of g(x) = 0 are squares of the roots of f(x) = 0. 
Determine g(9).

 23. If p, q, r, s ∈ , show that the equation

  ( )( )( )x px q x rx q x sx q2 2 23 2 0+ + + + − + + = has at least two real roots.

 24. If tn denotes the nth term of an AP and t
q

t
p

p q= =
1 1

, ,  then show that tpq is a root 

of the equation (p + 2q – 3r)x2 + (q + 2r – 3p)x + (r + 2p – 3q) = 0.
 25. If p and q are odd integers, show that the equation x2 + 2px + 2q = 0 has no ratio-

nal roots.
 26. Show that there cannot exist an integer n, such that n3 − n + 3 divides
  n3 + n2 + n + 2.
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 27. If sn = 1 + q + q2 + … + qn and S
q q q

n

n

= +
+

+
+






 + +

+





1

1

2

1

2

1

2

2

�

  prove that n n
s

n
s

+







 +

+







 +

+









1

1

1

2

1

3
1 2 + +

+
+









 =�

n

n
s Sn

n
n

1

1
2 .

 28. Solve for x, y, z, the equations

a
xy

x y
b

yz

y z
c

xz

x z
a b c=

+
=

+
=

+
≠, , ( , , )and 0

 29. Solve and find the non-trivial solutions

x2 + xy + xz = 0

y2 + yz + yx = 0

z2 + zx + zy = 0.
 30. Solve: 

x2 + xy + y2 = 7

y2 + yz + z2 = 19
z2 + zx + x2 = 3.

 31. Determine all solutions of the equation in , 
(x2 + 3x – 4)3 + (2x2 – 5x + 3)3 =  (3x2 – 2x – 1)3

 32. Show that there is no positive integer, satisfying the condition that
  (n4 + 2n3 +2n2 + 2n + 1) is a perfect square.
 33. Find the possible solutions of the system of equations:
  ax = (x + y + z)y; ay = (x + y + z)z; az = (x + y + z)x.

 34. If a and b are given integers, prove that the systems of equations, x + y + 2z + 2t 
= a  and 2x − 2y + z − t = b has a solution in integers x, y, z, t.

 35. Show that 2x3 − 4x2 + x − 5 cannot be factored into polynomials with integer coef-
ficients.

 36. The product of two of the four roots of the equation
  x4 + 7x3 − 240x2 + kx + 2000 = 0 is −200, determine k.

 37. The product of two of the four roots of x4 − 20x3 + kx2 + 590x − 1992 = 0 is 24, 
find k.

 38. Let a, b, c, d be any four real numbers not all equal to zero. Prove that the roots 
of the polynomial f (x) = x6 + ax3 + bx2 + cx + d can not all be real.

 39. If a, b, c and p, q, r are real numbers, such that for every real number x,

  ax2 + 2bx + c ≥ 0 and px2 + 2qx + r ≥ 0, then prove that apx2 + bqx + cr ≥ 0 for all 

real number x.
 40. Find a necessary and sufficient condition on the natural number n, for the equa-

tion xn + (2 + x)n + (2 − x)n = 0 to have an integral root.
 41. Given that a, β, and γ are the angles of a right angled triangle. Prove that
  sin a sin β sin (a − β) + sin β sin γ sin (β − γ) + sin γ sin a sin (γ − a) + sin (a − β) 

sin (β − γ) sin (γ − a) = 0.
 42. For a given pair of values x and y satisfy x = sin a, y = sin β, there can be four 

different values of z = sin (a + β):
   (i)  Set up a relation between x, y, and z not involving trigonometric functions or 

radicals. 
  (ii)  Find those pairs of values (x, y) for which z = sin (a + β) takes on fewer than 

four distinct values.
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 43. Suppose, a, b, and c are three real numbers, such that the quadratic equation

x2 − (a + b + c)x + (ab + bc + ca) = 0

   has roots of the form a ± iβ, where a > 0 and β ≠ 0 are real numbers [here, i = 

−1 ]. Show that

    (i) the numbers a, b, and c are all positive.

   (ii)  the numbers a b c, , ,and  form the sides of a  triangle.

 44. Find the number of quadratic polynomials ax2 + bx + c, which satisfy the follow-
ing conditions:

    (i) a, b, c, are distinct
   (ii) a, b, c ∈ {1, 2, 3, …, 999}
  (iii) (x + 1) divides (ax2 + bx + c)
 45. Show that there are infinitely many pairs (a, b) of relatively prime integers (not 

necessarily positive) such that both quadratic equations x2 + ax + b = 0 and
  x2 + 2ax + b = 0 have integer roots. [INMO, 1995]
 46. If the magnitude of the quadratic function f (x) = ax2 + bx + c never exceeds 1 for
  0 ≤ x ≤ 1, prove that the sum of the magnitudes of the coefficients cannot  exceed 

17.
 47. Suppose that −1 ≤ ax2 + bx + c ≤ 1 for −1 ≤ x ≤ 1, where a, b, c are real numbers, 

prove that −4 ≤ 2ax + b ≤ 4 for −1 ≤ x ≤ 1. 
 48. Find the polynomial p(x) = x2 + px + q for which max | ( ) |

[ , ]x
P x

∈ −11
 is minimal.

 49. Find real numbers a, b, c for which |ax2 + bx + c| ≤ 1 ∀ |x| < 1 and 8

3
22 2a b+  is 

maximal.
 50. Let a, b, c, ∈ and a < 3 and all roots of x3 + ax2 + bx + c = 0 are negative real 

numbers. Prove that b + c < 4.

Challenge Your Understanding 

 1. xp x x p x x( ) ( ) ( ) ,− = − ∀ ∈1 30 �  find all such polynomial p(x).

 2. Find a polynomial p x( )  if it exist such that xp x x p x( ) ( ) ( ).− = +1 1

 3. Let f x( )  be a quadratic function suppose f x x( ) =  has no real roots. Prove that 

f f x x( ( )) =  has also no real roots.

 4. If 7 4 3 2( )ax bx cx dx e x+ + + + ∀ ∈� where a b c d e, , , , .∈�  Prove that 7 | ,a 7 | ,b  

7 7 7| , | , | .c d e

 5. Prove that a ab b a b a b2 2 3 1+ + ≥ + − ∀ ∈( ) , .�

 6. Let p x x x x x( ) .= + + + +4 3 2 1  Find the remainder on dividing p x( )5  by p x( ).

 7. Find the remainder when x2025  is divided by ( )( ).x x x2 21 1+ + +

 8. If A, B, C, …, a, b, c, …, K are all constants, show that all the roots of the equation 
A

x a

B

x b

C

x c

H

x h
x K

2 2 2 2

−
+

−
+

−
+ +

−
= +� are real.

 9. Prove that there does not exist a polynomial, p x a a x a x a xn
n( ) ,= + + + +0 1 2

2 �  
such that p( ),0  p( ),1  p( ),2 …  are all prime numbers.
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 10. Solve the following equations for real ‘x’ depending upon real parameter ‘a’:

  (a) x a x a+ + =

  (b) x a x a2 − − =

  (c) a a x x− + =

 11. The polynomial ax bx cx d3 2+ + +  has integral coefficients a b c d, , ,  with ad odd 
and bc even. Prove that all roots cannot be rational.

 12. If roots of x ax bx ax4 3 2 1 0+ + + + =  has real roots then find the minimum value 
of a2 + b2.

 13. If the coefficient of xk upon the expansion and collecting of terms in the expres-

sion … �� ������� �������x

n

−( ) −( ) −( ) − −


 


2 2 2 2

2 2 2 2

times

 is ak , then find a a a a0 1 2 3, , ,   and a k2 .

 14. Prove that the equations

x2 − 3xy + 2y2 + x − y = 0 and x2 − 2xy + y2 − 5x + 7y = 0

  imply the equation xy − 12x + 15y = 0.
 15. If a and b are integers and the solutions of the equation

y − 2x − a = 0 and y2 − xy + x2 − b = 0

  are rational, then prove that the solutions are integers.

 16. Solve the following system of equations for real numbers a, b, c, d, e:

3a = (b + c + d)3, 3b = (c + d + e)3, 3c = (d + e + a)3, 

3d = (e + a + b)3, 3e = (a + b + c)3. [INMO, 1996]

 17. Solve for real numbers x and y, simultaneously the equations given by

  xy2 = 15x2 + 17xy + 15y2 and x2y = 20x2 + 3y2.

 18. Solve the system of equations in integers: 3x2 – 3xy + y2 = 7, 2x2 – 3xy + 2y2 = 14.
 19. In the sequence a1, a2, a3, …, an, the sum of any three consecutive terms is 40; if 

the third term is 10 and the eighth term is 8; find the 2013th term.
 20. A sequence has first term 2007, after which every term is the sum of the squares 

of the digits of the preceding term. Find the sum of this sequence upto 2013 
terms.

 21. Find a finite sequence of 16 numbers, such that
  (a) it reads same from left to right as from right to left
  (b) the sum of any 7 consecutive terms is –1
  (c) the sum of any 11 consecutive terms is +1.

 22. A two-pan balance is inaccurate since its balance arms are of different lengths and 
its pans are of different weights. Three objects of different weights A, B and C are 
each weighed separately. When they are placed on the left pan, they are balanced 
by weights A1, B1, and C1 respectively. When A and B are placed on the right pan, 
they are balanced by A2 and B2, respectively. Determine the true weight of C in 
terms of A1, B1, C1, A2 and B2.

 [USA MO, 1980]

 23. If a and b are two of the roots of x4 + x3 − 1 = 0, prove that ab is a root of
  x6 + x4 + x3 − x2 − 1 = 0.
 [USA MO, 1977]
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 24. If P(x), Q(x), R(x), and S(x) are all polynomials, such that P(x5) + xQ(x5) + x2R(x5) 
= (x4 + x3 + x2 + x + 1) S(x), prove that (x − 1) is a factor of P(x).

 [USA MO, 1976]

  The generalization of the above problem is: if P0(x), P1(x), …, P(n−3) (x), n ≥ 3 and 
S(x) are polynomials, such that

P0(x
n) + xP1(x

n) + … + xn−3 P(n−3)(x
n) = (xn−1 + xn−2 + … + x + 1)S(x)

  then (x − 1) is a factor of Pi, (x) for all i.

 25. If x5− x3 + x = a, prove that x6 ≥ 2a − 1. [INMO, 1994]

 26. The solutions x1, x2, and x3 of the equation x3 + ax + a = 0, where a is real and

   a ≠ 0, satisfy 
x

x

x

x

x

x
1
2

2

2
2

3

3
2

1

8+ + = − ,  find x1, x2, and x3. [AMTI, 1994]

 27. Let p(x) be a polynomial with degree 2008 and leading coefficient 1 such that

  p(0) = 2007, p(1) = 2006, p(2) = 2005, …, p(2007) = 0; determine p(2008).

 28. If P(x) denotes a polynomial of degree n, such that

  P k
k

( ) =
1

for k = 1, 2, 3, …, n + 1, determine P(n + 2).

 29.  If P(x) denotes a polynomial of degree n, such that P k
k

k
( )=

+1
for k = 0, 1, 2,…, 

n, determine P(n + 1). [USA MO, 1975]

 30. Let a, b and c denote three distinct integers and let P denote a polynomial having 
all integral coefficients. Show that it is impossible that P(a) = b, P(b) = c and P(c) 
= a. [USA MO, 1974]

 31.  Let, ai, i = 1, 2, …, n be distinct real numbers b1 b2, …, bn be real numbers, 

such that the product ∏ +
=

n

j
i ja b

1
( )  is the same for each i. Prove that the product 

∏ +
=

n

i
i ja b

1
( ) is also constant for all j.

 32. In the polynomial P(x) = xn + a1x
n−1 + … + an−1 x + 1, the coefficients a1, a2, …, 

an–1 are non-negative and it has n real roots. Prove that P(2) ≥ 3n.
 33. Determine all polynomials of degree n with each of its (n + 1) coefficients equal 

to ±1, which have only real roots.
 34. Let p(x) be polynomial over  and at three distinct integers it takes ±1 value, 

prove that it has no integral root.

 35. Let a, β be the roots of x2 − 6x + 1 = 0. Prove that α βn n n+ ∈ ∀ ∈� �0 ,  also 
prove that 5 0+ + ∀ ∈( ) .α βn n n �

 36. Let P(x) be a polynomial with real coefficients such that P(x) ≥ 0 for every real x. 
Prove that

P x f x f x f xn( ) ( ) ( ) ( )= + + +1
2

2
2 2�

 [Putnam, 1999]
 37. Is it possible to find three quadratic polynomials f (x), g(x), h(x) such that the 

equation f (g(h(x))) = 0 has eight roots 1, 2, 3, 4, 5, 6, 7, 8?
 [Russian MO, 1995]
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1.52  Chapter 1

 38. Let P(z) = az3 + bz2 + cz + d, where a, b, c, d are complex numbers with |a| = |b| 
= |c| = |d| = 1. Show that |P(z)| ≥ 6  for at least one complex number z satisfying 
|z| = 1.

 39. Consider two monic polynomials f (x) and g(x) of degree 4 and 2 respectively over 
real numbers. Let there be an interval (a, b) of length more than 2 such that both 
f (x) and g(x) are negative for x ∈(a, b) and both are positive for x < a or x > b. 
Prove that there is a real number ‘a’ such that f (a) < g(a).

 40. Let P1(x) = x2 − 2 and Pj(x) = P1(Pj−1(x)) ∀ j = 2, 3, …. Show that for any positive 
integer n, the roots of the equation Pn(x) = x are real and distinct. [IMO, 1976]

 41. Find all polynomials f satisfying f (x2) + f (x) . f (x + 1) = 0 ∀ ∈x �.

 42. Find all polynomials P(x), for which P x P x P x x x( ) ( ) ( ) .⋅ = + ∀ ∈2 22 3 �
 43. Find all polynomials f (x) such that f x f x f x x x( ) ( ) ( ) .⋅ + − + + = ∀ ∈1 1 02 �
 44. Find all polynomials f (x) such that f x f x f x x( ) ( ) ( ) .⋅ − − = ∀ ∈2 0 �
 45. Prove that if a polynomial of degree 7 over  is equal to +1 or −1 for 7 different 

integers then it is irreducible over .

 46. Prove that ( ) ( ) ...( )x a x a x an− − − +1
2

2
2 2 1  is irreducible over .

 47. Prove that ( )( ) ( )x x x n+ + + +1 2 12 2 2…  is irreducible over .

 48. Let a a an1 2, , ,… �∈  are distinct, find them for which ( )( ) ( )x a x a x an− − − +1 2 1…  
can be expressible as product of two polynomials with integral coefficients.

 49. Let p x( ) be a polynomial over  such that | ( )| | ( )|p a p b= =1  for a b a b, , ;∈ <�  If

p x( ) = 0  has rational root a, then prove that a b− =1  or 2 and α =
+a b

2
.

 50. Let a a an1 2, , ,…  and ⋅ …b b bn1 2, , ,  be two distinct collections of n positive in-
tegers, where each collection may contain repetitions. If the two collections of 
integers a a i j ni j+ ≤ < ≤( )1  and b b i j ni j+ ≤ < ≤( )1  are the same, then prove 
that n is a power of 2.
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2.1 BasIc rules

2.1.1 Transitivity

The transitive property of inequality states:
If a > b and b > c, then a > c. 
More generally, if a1 > a2, a2 > a3, ..., an – 1 > an, then a1 > an.

2.1.2 Addition and Subtraction

A common constant c may be added to or subtracted from both sides of an inequality:
If a > b, then for every c, a + c > b + c and a – c > b – c.

2.1.3 Multiplication and Division

For any real numbers, a, b and non-zero c,
If c is positive, then multiplying or dividing by c does not change the inequality:
If a < b and c > 0, then ac < bc and a/c < b/c.
If c is negative, then multiplying or dividing by c inverts the inequality:
If a < b and c < 0, then ac > bc and a/c > b/c.

2.1.4 Addition and Multiplication of  Two Inequalities

If a1 > b1, a2 > b2,…, an > bn, then a1 + a2 +…+ an > b1 + b2 +…+ bn.

If a1 > b1 > 0, a2 > b2 > 0,…, an > bn > 0, then a1 a2 ... an > b1b2 ... bn.

2.1.5 Applying a Function to Both Sides of an Inequality

Any monotonically increasing function may be applied to both sides of an inequality 
(provided they are in the domain of that function) and it will still hold. Applying a 

2
Chapter

Inequalities

Hardy could be named ‘the father of the Discipline of Inequali-
ties’. He was the founder of the Journal of the London Math-
ematical Society, a proper publication for many papers on 
inequalities. In addition, together with Littlewood and Polya, 
Hardy was the editor of the volume Inequalities, a book that 
was the first monograph on inequalities. The work on the book 
started in 1929 and it was issued in 1934. The authors con-
fessed that the historical and bibliographical accounts are diffi-
cult “in a subject like this, which has applications in every part 
of mathematics but has never been developed systematically” 
(Hardy, Littlewood, & Polya, 1934). Their contribution was to track down, document, solve 
and carefully present a volume comprising of 408 inequalities, and to officially write the first 
page of the history of inequalities. One of the interesting aspects of the book is the philosophy 
inequalities, presented in the introduction: generally an inequality that is elementary should be 
given an elementary proof, the proof should be “inside” the theory it belongs to, and finally 
the proof should try to settle the cases of equality. This intro ductory chapter is recommended 
reading with ideas that are still applicable today.

Godfrey Harold Hardy

7 Feb 1877–1 Dec 1947 
Nationality: United Kingdom
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2.2  Chapter 2

monotonically decreasing function to both sides of an inequality means the opposite 
inequality now holds. 

If the inequality is strict (a < b, a > b) and the function is strictly monotonic, then 
the inequality remains strict. If only one of these conditions is strict, then the resultant 
inequality is non-strict. 

A few examples of this rule are:

 1. Taking reciprocal of both side of an inequality:

  If 0 < a ≤ b, then 
1 1

0
a b
≥ > .  

  If a ≤ b < 0, then 0
1 1

> ≥
a b

.

  If a < 0 < b, then 
1

0
1

a b
< < .

 2. Exponentiating both sides of an inequality by r > 0, when 0 < a < b, then ar < br 
and a-r > b -r.

  Similarly for r > 0 and 0 < a < 1 < b, then 0 < ar < 1 < a -r and 0 < b-r < 1 < br.
 3. Taking the natural logarithm to both sides of an inequality when x and y are posi-

tive real numbers:
  If b > 1 and x > y > 0, then logbx > logb y, 
  If 0 < b < 1 and x > y > 0, then logb x < logb y
These are true because the logarithm is a strictly increasing (or decreasing) function 
for base ‘b’ greater (or less) than 1.

Example 1 Show that, 10 1

10 1

10 1

10 1

2013

2014

3013

3014

+
+

>
+
+

Solution: Let a = 102013 and b = 101000; then we need to prove that,

a

a

ab

ab

+
+







 >

+
+









1

10 1

1

10 1

This is equivalent to (a + 1)(10ab + 1) > (10a + 1)(ab + 1)
This holds only iff 10 10 1 10 102 2a b a ab a b a ab a+ + + > + + +
i.e., 9ab > 9a ⇔ b > 1
Since, b = 101000, b > 1.
Hence, it is true.

Example 2 If a > b > 0, which of the two numbers 
1

1

2 1

2

+ + + +
+ + + +

−a a a

a a a

n

n

�
�

 and 

1

1

2 1

2

+ + + +
+ + + +

−b b b

b b b

n

n

�
�

 is greater?

Solution:

Let,   A
a a a

a a a

n

n
=

+ + + +
+ + + +

−1

1

2 1

2

�
�

and   B
b b b

b b b

n

n
=

+ + + +
+ + + +

−1

1

2 1

2

�
�
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Inequalities  2.3

1 1

1
1

1
1

1

1

2

2 1 2 1 2A

a a a

a a a

a

a a a a a

n

n

n

n
=

+ + + +
+ + + +

= +
+ + + +

= +
+ + + +− −

�
� � � aa

a

a a a a

n

n

n n n

−

− −

= +
+ + + +

1

1 2

1
1

1 1 1 1
�

Similarly, 1
1

1
1 1 1

1
B

b b bn n

= +
+ + +− �

As   a > b

⇒ ak > bk for all k ∈ 

⇒ 
1 1

a bk k
<

⇒ 
1 1

11 a bk k
k

n

k

n

<
==
∑∑

⇒ 

1

1

1

1

1 1a bk
k

n

k
k

n

= =
∑ ∑

>

⇒ 
1 1

A B
>

⇒ A < B

2.2 WeIrstras’s InequalIty

For positive numbers a1 ,a2 , …, an(n ≥ 2) we have 

(1 + a1) (1 + a2) … (1 + an) > 1 + a1 + a2 +…+ an

If a1, a2, ..., an are positive numbers less than unity, then
(1 – a1) (1 – a2) … (1 – an) > 1 – (a1 + a2 +…+ an).

Build-up Your Understanding 1

 1. If a1, a2, a3, ..., an are n positive real numbers, then prove that (1 + a1) (1 + a2) … 
(1 + an) > 1 + a1 + a2 +…+ an for n ≥ 2.

 2. Let a, b, p, q are positive reals such that a < b and q < p. Then prove that 
  (ap + bp)(aq - bq) < (aq + bq)(ap - bp).
 3. In a right angled triangle ABC, which is right angled at C, prove that an + bn < cn 

for all n > 2.
 4. For positive real numbers a, b and c, prove that ab+cbc+aca+b ≤ (aabbcc)2.
 5. For positive real numbers a and b, prove that

  
a b

a b

a

a

b

b

+
+ +

<
+

+
+1 1 1

.

 6. For n = 1, 2, 3, ..., let An
n

n

= − 





 + 






 − + − 








−3

4

3

4

3

4
1

3

4

2 3
1� ( ) ,  and Bn = 1 – An.

  Find the smallest natural number n0 such that Bn > An for all n ≥ n0.

Karl Theodor Wilhelm 
Weierstrass

31 Oct 1815–19 Feb 1897 
Nationality: German
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2.4  Chapter 2

2.3 Modulus InequalItIes

| x | = 
x if x

x if x

≥
− <




0

0
.

Also, note that |x| = max{ –x, x}. Modulus function is also called distance function. 
It denotes distance of x from origin.

 1. − ≤ ≤| | | |a a a  for each a∈�.

 2. If b ≥ 0, then | |x a b− ≤  if and only if a b x a b− ≤ ≤ + .

 3. | | | | | |.a b a b+ ≤ +  More generally, |a1 + a2+…+ an| ≤ + + +| | | | | | .a a an1 2 �

 4. ||a| – |b|| ≤ |a – b|

The above inequality (3) explain that in a triangle, sum of lengths of any two sides is 
greater than the third side. Equality holds when both x and y have same sign or atleast 
one of them is ‘0’. 
Similarly inequality (4) explain that in a triangle, difference of lengths of any two sides 
is less than the third side. Equlity holds when both x and y have same sign or atleast 
one of them ‘0’.

2.3.1 Triangular Inequalities

Let a, b, c be sides of a triangle, then we have following equivalent results:

 1. a + b > c, b + c > a, c + a > b 
 2. If c is maximum, then a + b > c
 3. a > |b – c|, b > |c – a|, c > |a – b| 
 4. |a – b| < c < a + b
 5. (a + b – c)(b + c – a)(c + a – b) > 0
 6. a = y + z, b = z + x, c = x + y, where x, y, z ∈ +

Example 3 Let A1A2A3 and B1B2B3 be triangles. If p = A1A2 + A2A3 + A3A1 + B1B2 + 
B2B3 + B3B1 and q = A1B1 + A1B2 + A1B3 + A2B1 + A2B2+ A2B3 + A3B1 +A3B2 + A3B3, 
prove that 3p ≤ 4q.

Solution: Note that, AB + BC ≥ AC
Now 

A B B A A A

A B B A A A

A B B A A A

A B B A A A

A

1 1 1 2 1 2

1 1 1 3 1 3

1 2 2 2 1 2

1 2 2 3 1 3

1

+ ≥
+ ≥
+ ≥
+ ≥

BB B A A A

A B B A A A
3 3 2 1 2

1 3 3 3 1 3

6

+ ≥
+ ≥
















ineqaulities

Similarly write six inequalities starting with each of A2, A3, B1, B2, B3 and add all 36 
inequalities to get
8(A1B1 + A1B2 + A1B3 + A2B1 + A2B2 + A2B3 + A3B1 + A3B2 + A3B3) ≥ 6(A1A2 + A2A3 + 
A3A1 + B1B2 + B2B3 + B3B1)

⇒ 8q ≥ 6p

⇒ 4q ≥ 3p.
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Inequalities  2.5

Example 4: Let n ≥ 3 be a natural number and let P be a polygon with ‘n’ sides. Let 
a1, a2, a3, …, an be the lengths of the sides of P and let p be its perimeter. Prove that, 

a

p a

a

p a

a

p a

a

p a
n

n

1

1

2

2

3

3

2
−

+
−

+
−

+ +
−

<� .

Solution:

Lemma: Let ‘r’ and ‘s’ be two positive real numbers, such that r < s or 
r

s
<1.  Then 

r

s

r x

s x
<

+
+

 for any positive real x.

Proof: 
r

s

r x

s x
r s x s r x rx sx r s<

+
+

⇔ + < ⋅ + ⇔ < ⇔ <( ) ( )

By polygon inequality,

a a a an1 2 3< + + +�

⇒ < + + + =2 1 1 2a a a a pn�

Similarly ∀ < ⇒i a pi, 2 a p a
a

p a
i i

i

i

< − ⇒
−

<1

∴
−

<
+

− +
<

a

p a

a a

p a a

a

p
i

i

i i

i i

i

( )

2
 for all i = 1, 2, 3, …, n (By applying Lemma)

Summing up this inequality over i, we get, 

a

p a

a

p a

a

p a

a

p a

a

p
n

n

i1

1

2

2

3

3

2

−
+

−
+

−
+ +

−
<

∑
�

=
+ + + +

= =
2 2

21 2 3( )
.

a a a a

p

p

p
n�

Example 5 If a, b, and c are the three sides of a triangle, and a + b + c = 2, then prove 
that a2 + b2 + c2 + 2abc < 2.

Solution: We know that a + b + c = 2. By squaring, we get

4 = (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)

⇒ a2 + b2 + c2 = 2(2 - ab - bc - ca)

Adding 2abc to both sides, we get

a2 + b2 + c2 + 2abc = 2(2 - ab - bc - ca + abc)

To prove a2 + b2 + c2 + 2abc < 2, it is enough to prove that

2(2 - ab - bc - ca + abc) < 2 or 2 + abc - ab - bc - ca < 1 

or ab + bc + ca - abc - 1 > 0
as a + b + c = 2s = 2
⇒      s = 1
Now, 1(1 - a)(l - b)(l - c) > 0 as the expression on the left is the square of the area of 
the triangle with sides a, b, c.

But, this implies

l3 - (a + b + c)l2 + (ab + bc + ca)1 - abc > 0

or 1 - 2 + ab + bc + ca - abc > 0
or ab + bc + ca - abc - 1 > 0 as desired.
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2.6  Chapter 2

Example 6 Show that for any ΔABC, the following inequality is true

a2 + b2 + c2 a b c a c2 2 2 2 23 0+ + − − >( )

where a, b, and c are the sides of the triangle in the usual notation.

Solution: Without loss of generality, we may assume a ≥ b ≥ c, so that |c2 - a2| = a2 - c2 

is the maximum of |a2 - b2|, |b2 - c2| and |c2 - a2|.

It is enough to prove that a b c a c2 2 2 2 23 0+ + − − >( )

Now,

a b c a c a a c c a c

b a c

2 2 2 2 2 2 2 2 2 23 3+ + − − > + − + − −
> −

( ) ( ) ( )

( ,as by triangle iinequality)

= + − − +2 2 2 3 32 2 2 2a c ac a c

= − + + −( ) ( ) .2 3 2 3 22 2a c ac

But, ( ) ( )3 1 2 2 32− = −  and ( ) ( )3 1 2 2 32+ = +

So a b c a c2 2 2 2 23+ + − −( ) >
− − + +[ ] [ ]( ) ( )3 1 4 3 1

2

2 2a ac c

= − − + ≥
1

2
3 1 3 1 02[( ) ( ) ] .a c

and hence the result.

2.4 suM of squares (sos)

Let x be a real number then we have x2 ≥ 0. This seems “trivial” but is the basis for 
every other inequality!

In general sum of squares of real numbers is non negative.
That is, Sx2 ≥ 0.

Example 7 Prove that x2 + y2 + z2 ≥ xy + yz + zx ∀ x, y, z ∈ .

Solution: Inequality is equivalent to 

1

2
02 2 2( ) ( ) ( ) ,x y y z z x− + − + − ≥  which is true.

Example 8 If x, y, z are real and unequal numbers, prove that, 2016 2016 62 2 2x y z+ + >
2 2013 3 3( )xy yz zx+ +

Solution: We have, ( ) ; ( ) ; ( )x y y z z x− > − > − >2 2 20 0 0
This implies that,

x y xy2 2 2+ >  (1)

y z yz2 2 2+ >  (2)

z x zx2 2 2+ >  (3)

Multiply Inequality (1) by 2013 and Inequalities (2) and (3) by 3, then we have
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2013 2013 2 20132 2x y xy+ > ( )  (4)

3 3 2 32 2y z yz+ > ( )  (5)

3 3 2 32 2z x zx+ > ( )  (6)

Adding Inequalities (4), (5) and (6), we get the desired results.

Example 9 Find all real numbers x and y, so that,

x y x y2 22
1

2
2 1+ + ≤ +( )

Solution: Multiply the given inequality by 2 

Then, 2x2 + 4y2 + 1 ≤ 2x(2y + 1) = 4xy + 2x

i.e., (4y2 + x2 - 4xy) + (x2 - 2x + 1) ≤ 0

i.e., (2y - x)2 + (x - 1)2 ≤ 0

But, by trivial inequality, a2 0≥ ∀  real ‘a’.

Hence, ( ) ( ) .2 1 0 1
1

2
y x x x y− = − = ⇒ = =and

Example 10 Three positive real numbers a, b, c are such that, a b c ab2 2 25 4 4+ + −
− =4 0bc .  Can a, b, c be the lengths of the sides of a triangle? Justify your answer.

Solution: Now, 

a b c ab bc a b ab b c bc

a b b c

2 2 2 2 2 2 2

2

5 4 4 4 4 4 4 4

2 2

+ + − − = + − + + −

= − + −

( ) ( )

( ) ( ))2

∴ Expression = − + − = ⇒ − =( ) ( )a b b c a b2 2 0 2 02 2  and b c− =2 0  or a b= 2  
and b = 2c

∴ a = 4c; this implies a : b : c = 4 : 2 : 1.
Now, (b + c) : a = 3 : 4 ⇒ the triangle law is violated.
∴ a, b, c cannot form a triangle.

Example 11 For x, y ∈ , prove that 3(x + y + 1)2 + 1 ≥ 3xy.

Solution: 3(x + y + 1)2 + 1 – 3xy ≥ 0

LHS = 3x2 + 3y2 + 3xy + 6x + 6y + 4

= + +





 + +






 ≥3

1

2
1

3

2
1 0

2 2

x y y .

Example 12 For x, y, z, ∈  such that xy + yz + zx = –1. Prove that x2 + 5y2 + 8z2 ≥ 4.

Solution: x2 + 5y2 + 8z2 – 4 = x2 + 5y2 + 8z2 + 4(xy + yz + zx)

  = (x + 2y + 2z)2 + (y – 2z)2 ≥ 0
⇒ x2 + 5y2 + 8z2 ≥ 4.

Example 13 For x, y, z ∈ +, prove that

x yz

y z

y zx

z x

z xy

x y
x y z

2 2 2+
+

+
+
+

+
+
+

≥ + + .
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2.8  Chapter 2

Solution: Consider 
x yz

y z
x

y zx

z x
y

z xy

x y
z

2 2 2+
+

− +
+
+

− +
+
+

−   

=
− + +

+
+

− + +
+

+
− + +

+

=
− −

x y z x yz

y z

y z x y zx

z x

z x y z xy

x y

x y x z

2 2 2( ) ( ) ( )

( )( )) ( )( ) ( )( )

( )( ) ( )(

y z

y z y x

z x

z x z y

x y

x y x z y z y

+
+

− −
+

+
− −

+

=
− − + −2 2 2 2 2 2 22 2 2 2 2 2

4 4 2 2 2 2 2 2

− + − −
+ + +

=
+ + − − −

x z x z y

x y y z z x

x y z x y y z z

) ( )( )

( )( )( )

xx

x y y z z x

x y y z z x

x y y z z

2

2 2 2 2 2 2 2 2 2

2

( )( )( )

( ) ( ) ( )

( )( )(

+ + +

=
− + − + −

+ + ++
≥

x)
.0

Example 14 Let a3, a4, …, a2005, a2006 be real numbers with a2006 ≠ 0.
Prove that there are not more than 2004 real numbers x such that,

1 + x + x2 + a3x
3 + a4x

4 +…+ a2005x
2005 + a2006x

2006 = 0.

Solution: Replace x by 
1

x
in equation and multiply by x2006, we get

x2006 + x2005 + x2004 + a3x
2003 +…+ a2006 = 0

Now

As

 

α α α

α α α α

i i j
i j

i i
i

i j
i j

= − =

=








 −

≤ < ≤

= ≤ < ≤

∑∑

∑

1 1

2

1 2006

2

1

2006 2

1 2

,

0006

21 2 1 1

∑∑

= − − = −( ) ( )

⇒ <∑αi
2 0  which is not possible if all ai are real.

Hence, at least two non-real roots ⇒ at most 2004 real roots. 

Example 15 Let a, b, c, d, e, f be real numbers such that the polynomial

P(x) = x8– 4x7 + 7x6 + ax5 + bx4 + cx3 + dx2 + ex + f

factorises into eight linear factors x – xi, with xi > 0 for i = 1, 2,…, 8. Determine all 
possible values of f.

Solution:     xi
i

=
=
∑ 4

1

8

 (1)

and x xi j
i j

=
≤ < ≤
∑ 7

1 8

 (2)

⇒ =








 −

= − =
= = ≤ < ≤
∑ ∑ ∑x x x xi
i

i
i

i j
i j

2

1

8

1

8 2

1 8

2

16 14 2
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Now  ( )x x x x xi j
i j

k
k

i j
i j

− = ⋅ −

= × − ×
=

≤ < ≤ = ≤ < ≤
∑ ∑ ∑2

1 8

2

1

8

1 8

7 2

7 2 2 7

0

 ⇒ = = = = = = =x x x x x x x x1 2 3 4 5 6 7 8

 ⇒ = = = = = = = =x x x x x x x x1 2 3 4 5 6 7 8
1

2
 From Eq. (1)

 ⇒ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = =f x x x x x x x x1 2 3 4 5 6 7 8 8

1

2

1

256
.

Example 16 Let a, b, c > 0 satisfy abc = 1. Prove that

1

1 1

2

1

1 1

2

1

1 1

2

2

b
a

c
b

a
c

+ +
+

+ +
+

+ +
≥ .

Solution: a, b, c > 0 and abc = 1

Let   a
x

y
b

y

z
c

z

x
x y z= = = >, , ; , , 0

Given inequality becomes,

1

1

2

1

1

2

1

1

2

2

1

2 2 1

1

2 2 1

2

1

2

y

z

y

x

z

x

z

y

x

y

x

z

y

z x y

z

x y

x

y

+ +
+

+ +
+

+ +
≥

⇔
+ +

+
+ +

+
++ +

≥
2 1

1

z x

Let, 
1 1 1

x
p

y
q

z
r= = =, , and  let us also normalize it with p + q + r = 1

Given inequality becomes, 
p

p

q

q

r

r2 2 2
1

−
+

−
+

−
≥

Now

Claim: 
u

u
u u

2
0

−
≥ ∀ >

Proof: u

u2−
⇔

−
≥

⇔ ≥ − >

⇔ − + ≥

⇔ − ≥

u

u
u

u u u

u u

u

2
1 2 0

2 1 0

1 0

2

2

2

( ) ( )

( )

as

which is true
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2.10  Chapter 2

Hence,

p

p
p

q

q
q

r

r
r

2

2

2

−
≥

−
≥

−
≥

Add all, 
p

p

q

q

r

r
p q r

2 2 2
1

−
+

−
+

−
≥ + + = .

2.4.1 Quadratic Inequality

If x ∈ , and Ax2 + Bx + C = 0, then B2 – 4AC ≥ 0
If 4AC – B2 ≥ 0 and x is real, then A(Ax2 + Bx + C) ≥ 0 for all real x. Converse also 

true.

Example 17 If a, b, c ∈ , such that a ≥ b ≥ c. Prove that 

a2 + ac + c2 ≥ 3b(a – b + c).

Solution: Rewrite as quadratic in b, as 

   3b2 – 3(a + c)b + a2 + ac + c2 ≥ 0 (1)

D = 9(a + c)2 – 12(a2 + ac + c2)

    = –3(a – c)2 ≤ 0 

⇒ Inequality (1) is true ∀ a, b, c ∈.

Build-up Your Understanding 2

 1. For every natural number n, prove that nn > 1 . 3 . 5…(2n – 1).

 2. In a triangle ABC, prove that 
3

2
2≤

+
+

+
+

+
<

a

b c

b

c a

c

a b
.

 3. If a, b, c be the length of the sides of a scalene triangle, prove that (a + b + c)3 > 
27 (a + b – c) (b + c – a) (c + a – b).

 4. If a, b, c are positive real numbers representing the sides of a scalene triangle, 

prove that ab + bc + ca < a2 + b2 + c2 < 2(ab + bc + ca) or 1 2
2 2 2

<
+ +
+ +

<
a b c

ab bc ca
,  

and hence prove that 3(ab + bc + ca) < (a + b + c)2 < 4(ab + bc + ca) or 

3 4
2

<
+ +
+ +

<
( )

.
a b c

ab bc ca

 5. If a, b, c are distinct real number, prove that 
a

b c

b

c a

c

a b−






 +

−






 +

−






 ≥

2 2 2

2.  
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Inequalities  2.11

 6. Let a, b, c ∈+, such that abc = 1, prove that 1
3 6

+
+ +

≥
+ +a b c ab bc ca

.

 7. Let x, y ∈+, prove that 
1

1

1

1

2

12 2( ) ( )
.

+
+

+
≥

+x y xy

 8. Let x, y ∈ (0, 1), prove that 
1

1

1

1

2

12 2−
+

−
≥

−x y xy
.

2.5 arIthMetIc Mean ≥ GeoMetrIc Mean ≥ harMonIc Mean

Given any n positive real numbers a1, a2, ..., an, the positive numbers A, G and H, defined 

by A
n

a a an= + + +
1

1 2( ),� G a a an
n= ( , , , ) /

1 2
1… and

1 1 1 1 1

1 2H n a a an

= + + +








� are 

called respectively the arithmetic mean (AM), geometric mean (GM) and harmonic 
mean (HM) of a1, a2, …, an.

Note: A, G and H all are lie between the least and the greatest of a1, a2, …, an.
Equality holds in A G H≥ ≥ ,  only when all the ai are equal.

2.5.1 Derived Inequalities from AM ≥ GM ≥ HM

The following inequalities derived from AM ≥ GM ≥ HM, will be very useful for 
problem solving:

 • x2 + y2 + xy ≥ 
3

4
 (x + y)2 (Sophie Inequality)

 • x2 + y2– xy ≥ xy

 • x3 + y3 ≥ xy(x + y)

 •
ab

a b

a b

+
≤

+
4

 •
a b

a b

a b a b c

a b c

a b c2 2 2 2 2

2 3

+
+

≥
+ + +

+ +
≥

+ +
; , etc.

 • xy
x y≤ +








2

2

Example 18 If a, b, c, d are any four positive real numbers, then prove that

a

b

b

c

c

d

d

a
+ + + ≥ 4.

Solution: We use AM–GM inequality for the four numbers
a

b

b

c

c

d

d

a
, , .and

     

a

b

b

c

c

d

d

a a

b

b

c

c

d

d

a

+ + +
≥ × × ×

4
4

or
a

b

b

c

c

d

d

a
+ + + ≥ × =4 1 4.
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2.12  Chapter 2

Example 19 If a, b, c, and d are four positive real numbers, such that abcd = 1, then 
prove that

(1 + a)(1 + b)(1 + c)(1 + d) ≥ 16.

Solution: We know that (1 + a)(1 + b)(1 + c)(l + d)

= 1  + (a + b + c + d) + (ab + ac + ad + bc + bd + cd) 
+ (abc + acd + abd + bcd) + abcd

= 1  + abcd + (a + bcd) + (b + acd) + (c + abd) + (d + abc) + (ab + cd) + (ac + bd) + 
(ad + bc)

= + + +





 + +






 + +






 + +








+ +



1 1
1 1 1 1

1

a
a

b
b

c
c

d
d

ab
ab



 + +






 + +






ac

ac
ad

ad

1 1

But, for all real k k
k

> + ≥0
1

2, .  Hence

( )( )( )( )1 1 1 1

2
1 1 1

+ + + +

= + +





 + +






 + +






 + +

a b c d

a
a

b
b

c
c

d
11

1 1 1

2 2 7 16

d

ab
ab

ac
ac

ad
ad









+ +





 + +






 + +








≥ + × =

Aliter: AM ≥ GM

1 2

1 2

1 2

1 2

1 1 1 1 16 16

+ ≥

+ ≥

+ ≥

+ ≥

⇒ + + + + ≥ =

a a

b b

c c

d d

a b c d abcd( )( )( )( ) .

Example 20 If b1, b2, …, bn is a permutation of the n positive numbers a1, a2, …, an, 

then, 
a

b

a

b

a

b
nn

n

1

1

2

2

+ + + ≥� .

Solution: Applying the AM–GM inequality on n numbers 
a

b

a

b

a

b
n

n

1

1

2

2

, , , ,…  we have

1
1 11

1

2

2

1

1

2

2n

a

b

a

b

a

b

a

b

a

b

a

b
n

n

n

n

n n+ + +








 ≥ × × × = =� �

∴ + + + ≥
a

b

a

b

a

b
nn

n

1

1

2

2

� .
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Example 21 If a1, a2,…, an are all positive, then

a a a a a a a a a a a a a a a a

a a

n n n n

n n

1 2 1 3 1 2 3 2 4 2 1 1 1 2

1

+ + + + + + + + + +

+ +

− −

−

� � �

� −− −+ ≤
−

+ + +1 1 1 2
1

2
a a

n
a a an n n( ).�

Solution: By AM–GM inequality,

a a
a a

1 2
1 2

2
≤

+

a a
a a

1 3
1 3

2
≤

+

…
…
…

a a
a a

n
n

1
1

2
≤ ⋅

…
…
…

a a
a a

i j
i j≤
+

2
 (Where i ≠ j, i, j = 1, 2, …, n)

…
…
…

a a
a a

n n
n n

−
−≤
+

1
1

2

There are 
n n( )−1

2
 inequalities. On the right-hand side, each ai occurs (n - 1) times.

Adding these inequalities, we get

a a a a a a a a n
a a a

i j n i n
n

1 2 1 3
1 21

2
+ + + + + ≤ −

+ + +
−� �

�
( )

( )

         = n
a a an

−
+ + +

1

2
1 2( ).�

Example 22 If a1 + a2 + a3 + … + an = 1, ai > 0 for all a, show that

1

1

2

a
n

ii

n

=
∑ ≥ .

Solution: (a - b)2 ≥ 0

⇒ a2 + b2 ≥ 2ab

⇒ a

b

b

a
+ ≥ 2

 a a a an1 2 3 1+ + + + =�  (1)
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2.14  Chapter 2

Dividing Eq. (1) by a1, a2, a3, …, an successively and adding, we get 

                          
1

12

1

3

1 1 1

+ + + + =
a

a

a

a

a

a a
n� ;

                          

a

a

a

a

a

a a
n1

2

3

2 1 1

1
1

+ + + + =� ;

a

a

a

a

a

a

a

a

a

a ar r

r

r

r

r

n

r r

1 2 1 11
1

+ + + + + + + =− +� � ;

 and  a

a

a

a

a

a

a

a an n n

n

n n

1 2 3 1 1
1

+ + + + + =−�

Adding 1 1 1 1
1

1 1

+ + + + + =
≤ ≤
≠

=
∑ ∑�� ��� ���

n

a

a a
i

ji j n
i j

ii

n

terms ,

In ⋅ ∑
a

a
i

j

,  there are n(n - 1) fractions a

a
i

j

 are all distinct. Pairing a

a
i

j

 and 
a

a
j

i

,  there are 

n n( )−1

2
 pairs of  fractions of the form 

a

a

a

a
i

j

j

i

+ .

But, each 
a

a

a

a
i

j

j

i

+ ≥ 2

∴ 
1 1

2
2

1 a
n

n n

ii

n

=
∑ ≥ +

−
×

( )

⇒ 
1 2

1

2

a
n n n n

ii

n

≥ + − =
=
∑

Equality holds when all ai, are equal, i.e., each is equal to
1

n
.

Aliter: By AM–HM inequality

a

n

n

a
n

n

a
a

n
i

i i

i

∑
∑ ∑

∑≥ ⇒ ≥ ⇒ ≥
1

1
1

1 2.

Example 23 A and B are the AM and GM between two positive numbers a and b; 

prove that, B
a b

A B
A<

−
−

<
( )

( )
.

2

8

Solution: Let A
a b

=
+
2

 and B ab= ;  

Now, A > B as 
a b

ab
a b ab a a+






 − =

+ −
=

−
≥

2

2

2 2
0

2( )

and as A, B are positive, we have shown A > B. 
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Also, 
( )

( )

a b

A B

−
−

2

8
 can be written as 

( ) ( )

( )

a b A B

A B

− +
−

2

2 28
  

i.e., 
( )

( )

( )a b

A B

a b A B

A B

−
−

=
− +

−






2 2

2 28 8

Now A B
a b ab

ab
a b2 2

2 2 22

4 4
− =

+ +







 − =

−( )

∴
−
−

=
−

×
+
−

× =
+( )

( )

( ) ( )

( )

a b

A B

a b A B

a b

A B2 2

28 8
4

2

As A > B, 

⇒ <
+

<

⇒ <
−
−

<

B
A B

A

B
a b

A B
A

2

8

2( )

( )
.

Example 24 Let a, b, c, d be distinct positive numbers in HP. Then prove that 
(i) a + d > b + c   (ii) ad > bc

Solution:

 (i) AM > HM ⇒ 
a c+

2
 > b ⇔ a + c> 2b (1)

  similarly, b + d > 2c (2)
  Adding Inequalities (1) and (2), we get

a + b + c + d > 2(b + c)
⇔ a + d > b + c.

 (ii) GM > HM ⇒ ac  > b and bd  > c

  Multiplying, ⇒ > ⇒ >abcd bc ad bc
  squaring, ⇒ ad > bc.

Example 25: If a, b, c are positive real numbers that satisfy a2 + b2 + c2 = 1, find the 
minimal value of

S
a b

c

b c

a

c a

b
= + +

2 2

2

2 2

2

2 2

2
.

Solution: 
a b

c

b c

a a b

c

b c

a
b

2 2

2

2 2

2 2 2

2

2 2

2

1

2
2

2

+
≥ ⋅








 =

Or            
1

2

2 2

2

2 2

2
2a b

c

b c

a
b+









 ≥  (1)

Similarly           
1

2

2 2

2

2 2

2
2b c

a

c a

b
c+









 ≥  (2)

and            
1

2

2 2

2

2 2

2
2c a

b

a b

c
a+









 ≥  (3)
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Adding Inequalities (1), (2) and (3), we get

a b

c

b c

a

c a

b
a b c

2 2

2

2 2

2

2 2

2
2 2 2 1+ + ≥ + + ≥

Equality holds when a b c2 2 2 1

3
= = = .

Example 26 Given that the equation x4 + px3 + qx2 + rx + s = 0 has four positive roots, 
prove that 

 (i) pr - 16s ≥ 0,

 (ii) q2 - 36s ≥ 0.

Solution: Let a, b, γ, δ be the four positive roots of the given polynomial. Then,

  α β γ δ+ + + = − p  (l)

 ab + aγ + aδ + bγ + bδ + γδ = q (2)

 abγ + abδ + aγδ + bγδ = -r (3)

 abγδ = s  (4)

 (i) Using AM-GM inequality in Eqs. (1) and (3), we get

α β γ δ αβγ αβδ αγδ βγδ

αβγδ α β γ δ αβγδ

+ + + + + +

≥ =

4 4
4 3 3 3 34

.

= s

 ⇒ 
− −






 ≥

p r
s

4 4
.

 ⇒ pr ≥ 16s or pr - 16s > 0.

 (ii) Applying AM-GM inequality in Eq. (2), we get

q
s

6
3 3 3 36≥ =α β γ δ

 ⇒ q2 ≥ 36s or q2 - 36s ≥ 0.

Example 27 a, b, c are real numbers, such that a + b + c = 0 and a2 + b2 + c2 = 1. Prove 

that, ⋅ ≤a b c2 2 2 1

54
.

Solution: If one of a, b, c is zero, the result is trivial.
Since a + b + c = 0, without loss of generality assume that a > 0, b > 0 and c < 0 (as a 
+ b + c = 0, two terms must have the same sign and one term the opposite sign)

∴ = − +c a b( )  (1)

Now, 1 22 2 2 2 2 2 2 2= + + = + + + = + +a b c a b a b a ab b( ) ( )  (2)

  ⇒ + + =a ab b2 2 1

2
 (3)

By AM–GM inequality, ( )a b ab ab2 2 3+ + ≥  (4)

  ∴ ≤ ⇒ ≤3
1

2

1

6
ab ab   (5)
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Equality holds only when a b= =
1

6
 (6)

Now,  c a b a b ab ab2 2 2 2 2
1

2

1

2

1

6

2

3
= + = + + = + ≤ + =( )  

⇒ = ⋅ ≤ 





 ⋅ =a b c ab c2 2 2 2 2

2
1

6

2

3

1

54
( )

i.e., ⋅ ≤a b c2 2 2 1

54
 as desired. 

Equality holds, iff a b c= = = −
1

6

2

6
 and  (as c = − (a + b))

If the sign restriction is removed, we have two of them are ±
1

6
and the third as 

∓
2

6
.

Example 28 If a, b, and c are positive real numbers, such that a + b + c = 1, then prove 
that (1 + a)(l + b)(l + d) ≥ 8(1 - a)(l - b)(l - c).

Solution: We know that a + b + c = 1

⇒           1 + a = 1 + l - (b + c) = (1 - b) + (1 - c)
Since, a + b + c = 1 where a, b, and c are positive real numbers, so 1 - b and 1 - c 

are positive.
Applying AM-GM inequality, we get

     1 1 1 2 1 1+ = − + − ≥ − −a b c b c( ) ( ) ( )( )  (1)

Similarly  1 1 1 2 1 1+ = − + − ≥ − −b a c a c( ) ( ) ( )( )  (2)

and         1 1 1 2 1 1+ = − − ≥ − −c b a b a( )( ) ( )( )  (3)

Multiplying Eqs. (1), (2), and (3), we get 

(1 + a)(l + b)(1 + c) ≥ 8(1 - a)(l - b)(l - c).

Example 29 Let a, b, c be real numbers with 0 < a, b, c < 1 and a + b + c = 2. Prove that

a

a

b

b

c

c1 1 1
8

−
⋅
−

⋅
−

≥ .

Solution: Here, we use AM ≥ GM

a
a b c a b c

a b c a b c=
+ − + − +

≥ + − − +
( ) ( )

( )( )
2

b
b a c b a c

b a c b a c=
+ − + − +

≥ + − − +
( ) ( )

( )( )
2

c
c a b c a b

c a b c a b=
+ − + − +

≥ + − − +
( ) ( )

( )( )
2

abc
a b c a b c b a c b a c

c a b c a b
≥

+ − − + + − − +
+ − − +

( )( )( )( )

( )( )

        = (a + b - c)(b + c - a)(c + a - b)
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i.e., a . b . c ≥ (a + b - c)(b + c - a)(c + a - b)

 = (2 - 2c) (2 - 2a)(2 - 2b) [as a + b + c = 2]

 = 8(1 - a)(1 - b)(1 - c) 

∴ 
a

a

b

b

c

c1 1 1
8

−
⋅
−

⋅
−

≥ .

Example 30 If 
1 1 1

1
x y z
+ + =  for x, y, z > 0, prove that (x − 1)(y − 1)(z − 1) ≥ 8.

Solution: 
1 1 1

1 0
x y z

x y z+ + = >; , ,

Let,  x
a

y
b

z
c

a b c= = = ⇒ + + =
1 1 1

1, ,

Also  ( )( )( )x y z
a b c

− − − ≥ ⇔ −





 −





 −





 ≥1 1 1 8

1
1

1
1

1
1 8

  
⇔ − − − ≥
⇔ + + + ≥

( )( )( )

( )( )( )

1 1 1 8

8

a b c abc

b c c a a b abc

Now    a b ab+ ≥ 2

Similarly   b c bc+ ≥ 2

and    c a ca+ ≥ 2
⇒ + + + ≥( )( )( ) .a b b c c a abc8

Example 31 Let a, b, c be positive real numbers, such that, 
1

1

1

1

1

1
1

+
+

+
+

+
≤

a b c
.  

Prove that, ( )( )( ) .1 1 1 1252 2 2+ + + ≥a b c  When does equality holds?

Solution: Now 

1

1

1

1

1

1
1

1

1

1

1
1

1

1 1+
+

+
+

+
≤ ⇒

+
+

+
≤ −

+
=

+a b c b c a

a

a
;

  ∴
+

≥
+

+
+

a

a b c1

1

1

1

1
 (1)

Similarly 
b

b c a1

1

1

1

1+
≥

+
+

+
 (2)

and 
c

c a b1

1

1

1

1+
≥

+
+

+
 (3)

Apply AM–GM for 
1

1

1

1+
+

+b c

                       ∴
+

+
+

≥
+ +

⇒
+

≥
+ +

1

1

1

1

2

1 1 1

2

1 1b c b c

a

a b c( )( ) ( )( )
 (4)

Similarly 
b

b c a1

2

1 1+
≥

+ +( )( )
 and 

c

c a b1

2

1 1+
≥

+ +( )( )
 (5)
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Multiply the results of Inequalities (4), (5) to get

      
a

a

b

b

c

c b c c1 1 1

2

1 1

2

1 1+






 +






 +






 ≥ + +









 +( )( ) ( )( ++









 + +









a a b) ( )( )

2

1 1
 (6)

⇒ abc ≥ 8 (7)
Expand F = (1 + a2)(1 + b2)(1 + c2) to get

F a b c a b b c c a a b c= + + + + + + +1 2 2 2 2 2 2 2 2 2 2 2 2( ) ( )

i.e., F a b c a b c a b c≥ + + +1 3 32 2 2
1

3 4 4 4
1

3 2 2 2( )( ) ( ) ( )

i.e., F ≥ + + +1 3 2 3 2 82 4 2( )( ) ( ) ( ) (as abc ≥ 8, from Inequality (7))
i.e., F ≥ 1 + 12 + 48 + 64 = 125.

Example 32 x and y are positive real numbers; prove that

4 4 5 1 124 3 2x y x y xy+ + + + ≥ .

Solution: Now, 4 1 44 2x x+ ≥  (AM–GM inequality)

and 4 43 2y y y+ ≥  (AM–GM inequality)

and hence,

4 4 5 1 4 4 5 9 44 3 2 2 2 2 2 2x y x y x y x i e x y+ + + + ≥ + + +, . .,

Again, taking AM–GM, 9 4 2 362 2 2 2x y x y+ ≥  = 12xy.

⇒ 4x4 + 4y3 + 5x2 + y + 1 ≥ 12xy.

Example 33 Prove that, for all x, y, z ≥ 0, x xy xyz xyz2 2 2 4 4+ + ≥ − .

Solution: x xy xyz xyz x xy xyz xyz2 2 2 2 2 24 4 4 4+ + ≥ − ⇔ + + + ≥

Now by AM–GM for x x x2 24 4 4and ; + ≥

AM–GM for 4 4 42 2x xy x xy xyand ; + ≥

AM–GM for 4 4 42 2xy xyz xy xyz xyzand ; + ≥

⇒ + + + ≥ ⇒ + + ≥ −x xy xyz xyz x xy xyz xyz2 2 2 2 2 24 4 4 4.

Example 34 Given real numbers a, b, c, d, e, all greater than unity, prove that, 

a

c

b

d

c

e

d

a

e

b

2 2 2 2 2

1 1 1 1 1
20

−
+

−
+

−
+

−
+

−
≥ .

Solution: We know that ( ) ,a i e a a− ≥ − + ≥2 0 4 4 02 2. ., 

i.e.,    a a2 4 1≥ −( )  (1)

Since, a > 1, we have 
a

a

2

1
4

−
≥  (2)

Similarly, 
b

b

c

c

d

d

e

e

2 2 2 2

1
4

1
4

1
4

1
4

−
≥

−
≥

−
≥

−
≥; ; ;  (3)

By applying AM–GM inequality, we get, 

a

c

b

d

c

c

d

b

e

b

a b c d e

a b c d

2 2 2 2 2 2 2 2 2 2

1 1 1 1 1
5

1 1 1−
+

−
+

−
+

−
+

−
≥

− − −( )( )( )( −− −

≥ ⋅ ⋅ ⋅ ⋅ = × =

1 1

5 4 4 4 4 4 5 4 20

5

5

)( )

.

e
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Example 35 If x, y, z are each greater than 1, prove that

x

y

y

z

z

x

4

2

4

2

4

21 1 1
48

( ) ( ) ( )−
+

−
+

−
≥

Solution: Put (x – 1) = a, so that x = a + 1; similarly y = b + 1; z = c + 1 (1)

Thus, 
x

y

y

z

z

z

a

b

b

c

c

a

4

2

4

2

4

2

4

2

4

2

4

21 1 1

1 1 1

( ) ( ) ( )

( ) ( ) ( )

−
+

−
+

−
=

+
+

+
+

+

Apply AM–GM to the quantities, 
( )

,
( )

,
( )

;
a

b

b

c

c

a

+ + +1 1 14

2

4

2

4

2  we get (2)

                    ∴
+

+
+

+
+

≥
+ + +







( ) ( ) ( ) ( ) ( ) ( )a

b

b

c

c

a

a b c

a b c

1 1 1
3

1 1 14

2

4

2

4

2

4 4 4

2 2 2 

1

3
 (3)

Also apply AM–GM for a + 1, b + 1, c + 1;

Thus, a a+ ≥1 2 , so that ( ) ( )a a+ ≥1 24 4  = 16a2

Similarly, ( )b b+ ≥1 164 2  and ( )c c+ ≥1 164 2  (4)

Thus the given expression ≥
⋅ ⋅ ⋅ ⋅ ⋅








3
16 16 162 2 2

2 2 2

1

3a b c

a b c
 = 3 × 16 = 48.

Example 36 Let a1, a2, …, an be positive real numbers, and let Sk be the sum of the 
products of a1, a2, …, an taken k at a time. Show that

S S
n

k
a a ak n k n− ≥










2

1 2 ...

For k = 1, 2, …, n - 1.

Solution: Sk = Sa1a2a3…ak

Note: Number of terms in Sk is 
n

k








  and also a1 is present in 

n

k

−
−











1

1
 terms. Similarly 

a2, a3, … each one present in 
n

k

−
−











1

1
 terms.

Apply AM ≥ GM 

a a a

n

k

a a a

S

k
n

n
k

k
n

k
n

k
n1 2

1 2

1

1
1

1
1

1
1�

�∑









≥ ⋅( )

⇒

−
−

−
−

−
−( ) ( ) ( ) ( )

kk n
n

k
a a a

k
n

k
n

≥









−
−( )
( )( )1 2

1
1

�

  =









n

k
a a an

k

n( )1 2 �  (1)

Similarly, S
n

n k
a a a

n

k
a a an k n

n k

n
n

n k

n−

− −

≥
−









 =








( ) ( )1 2 1 2� �  (2)
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Multiply Inequalities (1) and (2), we get

S S
n

k
a a a ak n k n⋅ ≥








−

2

1 2 3� .

Example 37 Let a, b, c be the lengths of the sides of a triangle. Prove that

a b c b c a c a b a b c+ − + + − + + − ≤ + + .

Solution: Let a = x + y, b = y + z, c = z + x; x, y, z > 0, inequality becomes 

2( )x y z x y y z z x+ + ≤ + + + + +

Now,
x y xy

x y x y xy x y

x y x y

+ ≥ ≥

⇒ + ≥ + + = +

⇒ + ≥ +

2

2 2

2

2

( )

( ) ( )

By AM GM

or   x y x y+ ≥ +
1

2
( )  (1)

Similarly  y z y z+ ≥ +
1

2
( )  (2)

and   z x z x+ ≥ +
1

2
( )  (3)

By adding Inequalities (1), (2) and (3), we get

x y y z z x x y z+ + + + + ≥ + +( )2 .

Example 38 Let a, b, c be positive real numbers. Prove that

1 1 1 2 1
3

+





 +





 +





 ≥ +

+ +









a

b

b

c

c

a

a b c

abc
.

Solution:

1 1 1 2 1

2

3
+






 +





 +





 ≥ +

+ +









⇔ / + +

a

b

b

c

c

a

a b c

abc

a

b

b

c
++ + + + ≥ / +

+ +









c

a

a

c

b

a

c

b

a b c

abc
2 2

3

Let us prove that, 
a

b

b

c

c

a

a b c

abc
+ + ≥

+ +
3

 (1)

and   
a

c

b

a

c

b

a b c

abc
+ + ≥

+ +
3

 (2)

For Inequality (1), 2 3 3
3

2
1

3
2

3

1

3
3

a

b

b

c

a

b

b

c

a

bc

a

abc
+ ≥ 






 ⋅













= =

( )

Similarly, 2
3 2 3

3 3

b

c

c

a

b

abc

c

a

a

b

c

abc
+ ≥ + ≥and

Add all three to get Inequality (1)
Similarly we can prove Inequality (2).
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Build-up Your Understanding 3

 1. If a1, a2, ..., an are n positive real numbers, show that. na a a a a an
n n

n
n

1 2 1 2… �≤ + + + .

 2. Prove that if a, b, c > 0 then a2(b + c) + b2(c + a) + c2(a + b) ≥ 6abc.

 3. If a > 0, prove that (a3 + a2 + a + 1)2 ≥ 16a3.

 4. If a, b, c are three distinct positive real numbers. Prove that
b c

a

c a

b

a b

c

+
+

+
+

+
> 6  

or, bc(b + c) + ca(c + a) + ab (a + b) > 6abc.

 5. If a, b, c are three distinct positive real numbers, prove that a2 (1 + b2) + b2 
(1 + c2) + c2 (1 + a2) > 6abc.

 6. If a, b, c, d are distinct positive real number, prove that
  a8(1 + b8) + b8 (1 + c8) + c8(1 + d8) + d8(1 + a8) > 8a3 b3 c3 d3.
 7. If x, y, z > 0 and x + y + z = 1, prove that 

  (a) x2 + y2 + z2 ≥ 
1

3

  (b) x2 yz ≤ 
1

64
 8. If x + y + z = 6 (x, y, z > 0). 
  (a) Find the maximum value of xyz.

  (b) Find the maximum value of x2yz.
 9. Show that, if a, b, c, d be four positive unequal quantities and s = a + b + c + d, 

then (s – a) (s – b) (s – c) (s – d) > 81abcd.
 10. If a, b, c, d are distinct positive real numbers, such that 3s = a + b + c + d, then 

prove that abcd > 81(s – a) (s – b) (s – c) (s – d).

 11. Prove that (a + 1)7  (b + 1)7 (c + 1)7> 77 a4 b4 c4, where a, b, c ∈ +.

 12. For every natural number greater than 1, prove that 2n – 1 ≥ . n
n

⋅
−

2
1

2 .

 13. Let a, b, c, d ∈ + such that a + b + c + d = 1. Prove that 

a

b c

b

c d

c

d a

3 3 3

+
+

+
+

+
+

+
≥

d

a b

3 1

8
.

2.6 WeIGhted Means

Given any n positive real numbers a1, a2, ..., an, with their positive weights, w1, w2, …, 
wn respectively the positive numbers A*, G* and H*, defined by:

A
a w a w a w

w w w

G a a a

n n

n

w w
n
w w wn

* ,

* ( )

=
+ + +
+ + +

= ⋅ + + +

1 1 2 2

1 2

1 2

1

1 2 1 2

�
�

� � ww n

n

n

n H
w w w
w

a

w

a

w

a

and * =
+ + +

+ + +

1 2

1

1

2

2

�

�

are known as weighted AM, weighted GM and weighted HM respectively and we have

A* ≥ G* ≥ H*

Equality holds in A* ≥ G* ≥ H*only when all the ai are equal.
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Example 39 Prove that 
a b

a b a b a b
a b

b a+





 > ⋅ ∈ ≠
+

+

2
, , ; .�

Solution: Let us consider a with weight b and b with weight a

Then WAM > WGM

⇒
+
+

> +
ab ab

a b
a bb a a b( )

1

⇒
+

> +
2 1ab

a b
a bb a a b( )

Now, 
a b ab

a b

+
>

+2

2
 (AM > HM) 

⇒
+






 > ⋅
+

a b
a b

a b
b a

2
.

Example 40 If a, b, a and b are positive real numbers, such that a + b = 1, then prove 
that aa + bb ≥ aa . bb . When does equality hold?

Solution: Consider a with weight a and b with weight b. Now by weighted AM ≥ 

weighted GM, we have 
a b

a b
α β
α β

α β α β+
+

≥ +( )
1

∴ aa + bb ≥ aa . bb.
Equlity holds when a = b

Build-up Your Understanding 4

 1. For every positive real number ⋅ ≠a 1 and for every positive integer n, prove that 

1

1

1+
+







 >
+

na

n
a

n
n .

 2. For a and b positive real, prove that 
a b

a b

3

4

27

256( )
.

+
≤

 3. Prove that a b

a b
a b

a b

a b
2 2+
+







 >
+

.

 4. Prove that 
x y z

x y z
x y z

x y z
x y z

x y z
x y z2 2 2

3

+ +
+ +









 > >

+ +







+ + + +

.

 5. By assigning weights 1 and n to the numbers 1 and 1+







x

n
 respectively, prove 

that if x > –n, then 1
1

1
1

+
+







 < +








+
x

n

x

n

n n

.

 6. If n is a positive integer, prove that {( )!} ( !) .n
n

n
nn n+ < +

+
+1 1

1

1

1

1

 7. If n is a positive integer, show that 1
1

1
1

1

1

−





 < −

+







+

n n

n n

.

 8. Let p, q ∈ +, 
1 1

1
p q
+ = . .Prove that 

x

p

y

q
xy

p q

+ ≥ for ∀ x, y ∈  +.
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2.7 PoWer Mean InequalIty

Let a1, a2, …, an be n positive real numbers with their positive weights w1, w2, …, wn 
respectively and let m be a non-zero real number, then

WPMm

m m
n n

m

n

mw a w a w a

w w w
=

+ + +
+ + +











1 1 2 2

1 2

1

�
�

.

Now weighted power mean increases with increase in ‘m’, i.e., for p > q, we have 
WPMp > WPMq

Equality holds when a1 = a2 = … = an.

Note: m = 1, then WPM1 = A∗ (weighted AM)

 m → 0, then WPM0 = G∗ (weighted GM)

 m = –1, then WPM–1 =H∗ (weighted HM)

 m = 2, then WPM2 = QM∗ (weighted quadratic mean).

 ⇒ A* ≤ G* ≤ H* ≤ QM*

Example 41 Prove that a4 + b4 + c4 ≥ abc(a + b + c), [a, b, c > 0].

Solution: Using PM4  ≥ PM1 inequality, we get

a b c a b c a b c a b c4 4 4
1

4
1

1 4 4 4 4

3 3 3 3

+ +







 ≥

+ +





 ⇒

+ +
≥

+ +







=
+ +








+ +







a b c a b c

3 3

3

≥
+ +








a b c
abc

3

1

3 3[( ) ]  (∵ AM ≥ GM)

or   
a b c a b c

abc
4 4 4

3 3

+ +
≥

+ +







∴ a4 + b4 + c4 ≥ abc(a + b + c). 

Example 42 a, b, c, d and e are positive real numbers, such that a + b + c + d + e = 8 
and a2 + b2 + c2 + d2 + e2 = 16, find the range of e.

Solution: Using PM1 ≤ PM2, we get

 a b c d a b c d+ + +





 ≤

+ + +
4 4

2 2 2 2 2
 (1)

But, a + b + c + d = 8 - e and a2 + b2 + c2 + d2 = 16 - e2.

So, Eq. (1) becomes

   

8

4

16

4

2 2−





 ≤

−e e

⇒ 4  − + ≤ −e
e e2 2

16
4

4

⇒ 5

16
0

2e
e− ≤
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⇒ e
e

16
5 16 0( )− ≤   

⇒ 5e - 16 ≤ 0, since e ≥ 0.

Thus,                     ⋅ < ≤0
16

5
e .

Example 43 Prove that 
s

s a

s

s b

s

s c−
+

−
+

−
≥

9

2
,  if s = a + b + c, [a, b, c > 0].

Solution: We have to prove that 
1 1 1 9

2b c c a a b a b c+
+

+
+

+
≥

+ +( )

Using PM1 ≥ PM–1 inequality for variables 
1 1 1

a b b c c a+ + +
, , , we get

( ) ( ) ( )a b b c c a a b b c c a+ + + + +
≥

+ + + + +





− − − −1 1 1 1

3 3

or, 
1 1 1 9

2b c c a a b a b c+
+

+
+

+
≥

+ +( )
.

Aliter: AM ≥ HM

⇒
+ + + + +

≥

+
+

+
+

+

( ) ( ) ( )a b b c c a

a b b c c a
3

3
1 1 1

⇒
+

+
+

+
+

≥
+ +

1 1 1 9

2a b b c c a a b c( )
.

Example 44 Find all non-zero real number triples (x, y, z) which satisfy

3 2 2 2( )x y z+ + = + + = + +1 2 2 2 2 2 2 3; ( ) .x y y z z x xyz x y z

Solution: Now, 
x y z x y z2 2 2 2

3 3

+ +
≥

+ +





 (Power mean inequality)

⇒ + + ≥ + +3 2 2 2 2( ) ( )x y z x y z

i.e., 1 12 2≥ + + + + ≤( ) ( )x y z x y zor

⇒ + + ≤ + +xyz x y z xyz x y z( ) ( )3  

(As xyz(x + y + z) is non-negative)

⇒ + + ≤ + +

⇒ − + − + − ≤

x y y z z x x yz y zx z xy

xy yz yz zx zx xy

2 2 2 2 2 2 2 2 2

2 2 2( ) ( ) ( ) 00

⇒ = =
⇒ = =

xy yz zx

x y z
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∴ Solution is given by ( , , ) , ,x y z = 







1

3

1

3

1

3
 and 

− − −







1

3

1

3

1

3
, , .

as x y z x x x2 2 2 2 21

3
3

1

3

1

9

1

3
+ + = ⇒ = ⇒ = ⇒ = ±








When x = y = z.

Build-up Your Understanding 5

 1. Let a, b, c ∈ + and a2 + b2 + c2 = 27. Prove that a3 + b3 + c3 ≥ 81.

 2. For a, b, c, ∈ +, prove that 8(a3 + b3 + c3)2 ≥ 9(a2 + bc)(b2 + ca)(c2 + ab).

2.8 rearranGeMent InequalIty

Consider the followings illustration: There are five boxes containing ̀  5, ̀ 10, ̀ 20, ̀ 50, 
`100 bills respectively. From each box you are allowed to take 2, 3, 4, 5 and 6 bills. 
How do you act to maximize the money you obtain?

Obviously you would take six `100 bills, five `50 bills, four `20 bills, three `10 
bills, and two `5 bills and you will get 6 × 100 + 5 × 50 + 4 × 20 + 3 × 10 + 2 × 5 = 
`970.

Suppose you want to minimize the amount. In this case, you will take least possible 
number of units of highest denominations and you will get minimum 

2 × 100 + 3 × 50 + 4 × 20 + 5 × 10 + 6 × 5 = `510.

In rearrangement inequality we are using the same Idea.
Let a1, a2, a3,…, an and b1, b, …, bn be sequences of real numbers in ascending 

order and bi1, bi2,…, bin is some permutation of b1, b2, b3, …, bn then
a1bn + a2bn–1 + … + anb1 ≤ a1bi1 + a2bi2 + … + anbin ≤ a1b1 + a2b2 + … + anbn.
Let us define a notation for sum of product of corresponding terms of two sequences 

as,

a a a a

b b b b
a b a b a bn

n
n n

1 2 3

1 2 3
1 1 2 2

�
�

�








 = + + + .

Example 45 Prove that a2 + b2 + c2 ≥ ab + bc + ca. 

Solution: Let a ≤ b ≤ c

Now,    
a b c

a b c

a b c

b c a









 ≥











⇒ a2 + b2 + c2 ≥ ab + bc + ca.

Example 46 Prove that a3 + b3 + c3 ≥ a2b + b2c + c2a for positive real numbers a, b, c.

Solution: Let 0 < a ≤ b ≤ c ⇒ a2 ≤ b2 ≤ c2

Now,   
a b c

a b c

a b c

b c a

2 2 2 2 2 2







 ≥











⇒ a3 + b3 + c3 ≥ a2b + b2c + c2a.
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Example 47 Prove that 
a

b c

b

c a

c

a b+
+

+
+

+
≥

3

2
 for a, b, c ∈ +.

Solution: Let 0 < a ≤ b ≤ c ⇒ 
1 1 1

b c c a a c+
≤

+
≤

+

Now       

a b c

b c c a a b

a b c

c a a b b c

1 1 1 1 1 1

+ + +
















≥

+ + +

















 (1)

also                             

a b c

b c c a a b

a b c

a b b c c a

1 1 1 1 1 1

+ + +
















≥

+ + +

















 (2)

Adding Inequalities (1) and (2), we get

2 3
a

b c

b

c a

c

a b+
+

+
+

+






 ≥

This is called Nesbitt’s inequality.

Example 48 Let a, b, c ∈ +, such that abc = 1. Prove that 
a

b

b

c

c

a
a b c+ + ≥ + + .  

Solution: Let ⋅ ≤ ≤
a

b

b

c

c

a

⇒
















































a

b

b

c

c

a

a

b

b

c

c

a

1

3

1

3

1

3

2

3

2

3
























≥
































2

3

1

3

1

3

1

3b

c

c

a

a

b

a

b








































2

3

2

3

2

3b

c

c

a

⇒ + + ≥ 





 + 






 + 








a

b

b

c

c

a
a

bc

b

ca

c

bc

2
1

3
1

3 2
1

3
 

= a + b + c. (using abc = 1)

2.9 cheBysheV’s InequalIty

Let xi, yi ∈  ∀ i = 1, 2, 3, …, n such that 

x1 ≤ x2 ≤ x3 ≤ … ≤ xn and  y1 ≤ y2 ≤  y3  ≤  … ≤ yn, then 

x y x y x y

n

x x x

n

y y y

n

x y

n n n n n1 2 1 1 1 2 1 2

1

+ + +
≤

+ + +







+ + +







≤

− � � �

11 2 2+ + +x y x y

n
n n�

If one of the sequences is increasing and the other decreasing, then the direction of the 
inequality changes.

Corollary: Taking ai = bi from right hand side inequality, we get

a a a

n

a a a

n
n n1 2

2
1
2

2
2 2+ + +






 ≤

+ + +� �
 which is known as QM inequality.

Pafnuty Lvovich Chebyshev

16 May 1821–8 Dec 1894 
Nationality: Russian
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Example 49 If a, b, c ∈ +, prove that 
a b c

a b c a b c

8 8 8

3 3 3

1 1 1+ +
⋅ ⋅

≥ + + .

Solution: Applying Chebyshev’s inequality, we get

3(a8 + b8 + c8) ≥ (a6 + b6 + c6)(a2 + b2 + c2)

≥ 3a2 b2 c2 (a2 + b2 + c2) (By AM–GM)

≥ 3a2b2c2 (ab + bc + ca) (Rearrangement)

⇒
+ +

≥
+ +

= + +
a b c

a b c

ab bc ca

abc a b c

8 8 8

3 3 3

1 1 1
.

Example 50 If a, b, and c are positive real number, prove the inequality 

ab

a b

bc

b c

ca

c a

ab bc ca

a b c+
+

+
+

+
≤

+ +
+ +

3

2

( )

( )

Solution: Let a ≤ b ≤ c 
⇒ a + b ≤ a + c ≤ b + c (1)

also we have 
1 1 1

c b a
≤ ≤ ⋅

⇒ + ≤ + ≤ +

⇒
+

≤
+

≤
+

1 1 1 1 1 1

1
1 1

1
1 1

1
1 1

b c c a b a

b a c a b c

or 
ab

a b

ac

a c

bc

b c+
≤

+
≤

+
 (2)

Using (1) and (2) and by applying Chebyshev’s Inequality we get

3 ( ) ( ) ( )

(( ) ( ) (

a b
ab

a b
a c

ac

a c
b c

bc

b c

a b a c b c

+ ⋅
+

+ +
+

+ +
+









≥ + + + + + )))

( )

( )

ab

a b

ac

a c

bc

b c

ab bc ca

a b c

ab

a b

bc

b c

+
+

+
+

+








⇒
+ +
+ +

≥
+

+
+

3

2
++

+
ca

c a

Build-up Your Understanding 6

 1. Find the minimum of 
sin

cos

cos

sin
, , .

3 3

0
2

x

x

x

x
x+ ∈








π

 2. a, b, c ∈+, prove that a4 + b4 + c4 ≥ a2bc + b2ca + c2ab

 3. a, b, c ∈ +, such that a + b + c =3. Prove that 
a

b c

b

c a

c

a b

a b c2 2 2 2 2 2

2+
+

+
+

+
≥

+ +
.

 4. a, b, c ∈ +, prove that 
a b

c

b c

a

c a

b
a b c

2 2 2 2 2 2

2 2 2

+
+

+
+

+
≥ + + .
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 5. a, b, c ∈ +, prove that 
a

bc

b

ca

c

ab

a b

c

b c

a

c a

b

3 3 3 2 2 2 2 2 2

2 2 2
+ + ≥

+
+

+
+

+
.

 6. a, b, c ∈ +, prove that (a2 + b2 + c2)(a3 + b3 + c3) ≤ 3(a5 + b5 + c5).

 7. If a, b, and c are the lengths of the sides of a triangle, s its semiperimeter, and

n ≥ 1 an integer, prove that 
a

b c

b

c a

c

a b
s

n n n n
n

+
+

+
+

+
≥ 





 ⋅
−

−2

3

2
1.

2.10 cauchy–schWarZ InequalIty 

If a1, a2, …, an and b1, b2, …, bn are 2n real numbers, then 
(a1b1 + a2b2 +…+ an bn)

2 ≤ (a1
2 + a2

2 +…+ an
2) (b1

2 + b2
2 +…+ b2

n) with the equal-

ity holding if and only if, 
a

b

a

b

a

b
n

n

1

1

2

2

= = =� .

Proof: Let a1, a2, …, an and b1, b2, …, bn be real numbers. For every real x, we have

f(x) = (a1x – b1)
2 + (a2x – b2)

2 + … + (anx – bn)
2 ≥ 0 

       = (∑a1
2)x2 – 2(∑a1b1)x + ∑b1

2 ≥ 0 ∀ x ∈ 

⇒ D ≤ 0

⇒ 4(∑a1b1)
2 – 4 ∑ a1

2 ∑ b1
2 ≤ 0

⇒ (a1
2 + a2

2 + … + an
2)(b1

2 + b2
2 + … + bn

2) ≥ (a1 b1 + a2 b2 + …+ an bn)
2

Also equality holds, when x =
b

a

b

a

b

a
n

n

1

1

2

2

= = =� .

Corollary: An alternate form of Cauchy–Schwarz inequality usually known as Titu’s 
inequality, is as follows: 

For x1, x2, x3,…, xn ∈  and a 1, a 2,…,a n ∈ +, we have 

x x x x x xn

n

n

n

1
2

1

2
2

2

2
1 2

2

1 2α α α α α α
+ + + ≥

+ + +
+ + +

�
�
�

( )

Equality holds when 
x x xn

n

1

1

2

2α α α
= = =� .

Proof: Take a
x

i
i

i

=
α

and bi i= α and apply Cauchy–Schwarz inequality.

Example 51 If a, b, and c are positive real numbers, prove that

a

b

b

c

c

a

a b c

ab bc ca
+ + ≥

+ +
+ +

( )
.

2

Solution:

a

b

b

c

c

a

a

ab

b

bc

c

ca

a b c

ab bc ca
+ + = + + ≥

+ +
+ +

2 2 2 2( )
(By Titu’s inqualitty).  

Augustin-Louis Cauchy

21 Aug 1789–23 May 1857 
Nationality: French

Karl Hermann
Amandus Schwarz

25 Jan 1843–30 Nov 1921 
Nationality: Prussian

Titu Andreescu

12 Sep 1956 (age 60)
Nationality: Romania

Presently in USA
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Example 52 If p1, p2,…, p2014 be an arbitrary rearrangement of 1, 2, 3, …, 2014, 
prove the inequality:

1 1 1 1 2013

20161 2 2 3 3 4 2013 2014p p p p p p p p+
+

+
+

+
+ +

+
>� .

Solution: By Cauchy–Schwarz inequality,

                         

( ) ( ) ( )p p p p p p

p p p p p p

1 2 2 3 2013 2014

1 2 2 3 2013 2

1 1 1

+ + + + + +{ }

+
+

+
+ +

+

�

�
0014

22013







≥ ( )  (1)

∴
+

+
+

+ +
+

≥
+ + + − −

1 1 1 2013

21 2 2 3 2013 2014

2

1 2 2014 1p p p p p p p p p p p
�

�
( )

( ) 22014

=
− −

≥
− −

≥

( )

( )( )

( )

( )( )

2013

2014 2015

2013

2014 2015 1 2

2013

2

1 2014

2

p p

(( )( )2014 2015 2014 2015 1+ − −

=
− +

=

=

( )

( )( )

( )

( )( )

.

2013

2014 1 2015 1

2013

2013 2016

2013

2016

2 2

Example 53 Find all positive real numbers x, y, z, such that

2 2
1 1

2016
2 2

1 1

2016
2 2

1 1

2016
x y

z
y z

x
z x

y
− + = − + = − + =; ; .

Solution: Now, 2 2 1
2016

xz yz
z

− + =  (1)

and 2 2 1
2016

yx zx
x

− + =  (2)

and 2 2 1
2016

zy xy
y

− + =  (3)

Adding Eqs. (1), (2) and (3), we get 

3
2016

=
+ +z x y

i.e., x + y + z = 3(2016) (4)
Similarly by adding given expressions, we get 

 
1 1 1 3

2016x y z
+ + =  (5)

Now by Cauchy–Schwarz inequality, ( ) ( )x y z
x y z

+ + + +








 ≥

1 1 1
3 2

i.e., 3 2016
1 1 1

9
1 1 1 93

3 2016

3

2016
( )

x y z x y z
+ +









 ≥ ⇒ + + ≥

⋅
≥  
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But, 
1 1 1 3

2016x y z
+ + =  (From Eq. (5)) 

Hence, equality should hold ⇒ = =x y z  

As, x + y + z = 3(2013) ⇒ x = 2016; y = 2016; z = 2016.

Example 54 If a, b, c are positive real numbers, prove the inequality:

ab bc ca abc a b c3 3 3+ + ≥ + +( )

Solution: Now, 
ab

abc

bc

abc

ca

abc
a b c

3 3 3

+ + ≥ + +( )

i.e.,  
b

c

c

a

a

b
a b c

2 2 2

+ + ≥ + +( )

Now, LHS = + + ≥
+ +
+ +

b

c

c

a

a

b

b c a

c a b

2 2 2 2( )
 (Titu’s inequality)

= + + =( )a b c RHS.

Example 55 If a, b, c, and d are positive, then prove that 

  (a3b + b3c + c3d + d3a)(ab3 + bc3 + cd3 + da3) ≥ 16(abcd)2.

Solution: Applying the Cauchy–Schwarz inequality

a b a b c a c d a d a a3
1
2 3

2
2 3

3
2 3

4
2= = = =, , ,

and ab b bc b cd b da b3
1
2 3

2
2 3

3
2 3

4
2= = = =, , , ,

we get, a1b1 = a2b2, a2b2 = b2c2, a3b3 = c2d2, a4b4 = d2a2.

⇒ (a3b + b3c + c3d + d3a)(ab3 + bc3 + cd3 + da3) ≥ (a2b2 + b2c2 + c2d2 + d2a2)2

Now, applying AM–GM inequality and taking square, we get

(a2b2 + b2c2 + c2d2 + d2a2)2 ≥ ( )4 4 4 4 44 2a b c d

= 16 a2b2c2d2.

Hence, (a3b + b3c + c3d + d3a)(ab3 + bc3 + cd3 + da3) ≥ 16(abcd)2.

Example 56 Given that x2 + y2 + z2 = 8, prove that

x y z3 3 3 16
2

3
+ + ≥  .

Solution: Applying Cauchy–Schwarz inequality with x3/2, y3/2, z3/2 and x1/2, y1/2, z1/2, 
we have

(x2 + y2 + z2)2 ≤ (x3 + y3 + z3)(x + y + z)

Again,     x + y + z = x × 1 + y × 1 + z × 1

So,           (x + y + z)2 ≤ (x2 + y2 + z2)(l2 + l2 + l2)

               
( )x y z

x y z
+ + ≤ × ⇒

+ +
≥3 8

1 1

2 6

M02_Inequalities_C02.indd   31 8/11/2017   3:46:38 PM



2.32  Chapter 2

Hence, 

    
( )

( )

( )
x y z

x y z

x y z
3 3 3

2 2 2 2 64

2 6
+ + ≥

+ +
+ +

=

⇒ + + ≥x y z3 3 3 16
2

3
.

Example 57 If w3 + x3 + y3 + z3 = 10, show that w4 + x4 + y4 + z4 ≥ 25003

Solution: Applying the Cauchy–Schwarz inequality for w2, x2, y2, z2 and w, x, y, z, we 
get

(w3 + x3 + y3 + z3)2 ≤ (w4 + x4 + y4 + z4)(w2 + x2 + y2 + z2)  (1) 

Again, by applying the Cauchy–Schwarz inequality with w2, x2, y2, z2 and 1, 1, 1, 1, 
we get

(w2 + x2 + y2 + z2)2 ≤ (w4 + x4 + y4 + z4)4

⇒ (w2 + x2 + y2 + z2) ≤ (w4 + x4 + y4 + z4)2 (2)

∴ + + + ≥
+ + +
+ + +

( )
( )

( )
( . ( ))w x y z

w x y z

w x y z
4 4 4 4

3 3 3 3

2 2 2 2
1by Eq

≥
+ + +
+ + +

( )

( ) /

w x y z

w x y z

3 3 3 3 2

4 4 4 4 1 22
(by Eq.(2))

⇒ (w4 + x4 + y4 + z4)3/2 ≥ 
100

2
50=

⇒ + + + ≥w x y z4 4 4 4 2 3 350 2500/ .or

Build-up Your Understanding 7

 1. (a)  If xi > 0,  (i = 1, 2, ..., n), then prove that 

(x1 + x2 + ... + xn) 
1 1 1

1 2x x xn

+ + +







�  ≥ n2.

  (b)  If a1, a2,..., an are n non-zero real numbers, prove that

( )a an1
2 2− −+ + ≥�

n

a an

2

1
2 2+ +�

.

 2. If ai< 0 for all i = 1, 2, ..., n, prove that 

  (a) a a a
a a a

nn
n

1 2
1 2

21 1 1
+ + +( ) + + +









 >� � .

  (b)  (1 – a1 + a1
2 )( 1 – a2 + a2

2 ) … (1 – an + an
2) > 3n(a1 a2 … an) (where n is 

even).

 3. If none of b1, b2,…, bn is zero, prove that

  
a

b

a

b
a a b bn

n
n n

1

1

2

1
2 2

1
2 2+ +









 ≤ + + + +− −� � �( )( ).
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 4. If 3x + 4y = 1 for some x, y ∈ . Prove that x2 + y2 ≥ 
1

25
.

 5. For a, b, c ∈ , prove that:
a b c a b c2 2 2 2

2 3 6 2 3 6
+ + ≥ + +






 .

 6. For a, b, c ∈ +, prove that:

  
1

1

1

1

1

1 3+
+

+
+

+
≥

+ + +a b c

a

a b c
.

 7. a, b, c, d ∈ +, prove that ( )( ) .a b c d ac bd+ + ≥ +( )
 8. x, y, z, ∈ +, prove that 

2 2 2 9

x y y z z x x y z+
+

+
+

+
≥

+ +
.

 9. a, b, c, ∈ +, prove that 
a b

a b

b c

b c

c a

c a
a b c

2 2 2 2 2 2+
+

+
+
+

+
+
+

≥ + + .

2.11 hölders InequalIty

( ) ( ) ( ),a a a b b b a b a b a bp p
n
p p q q

n
q q

n n1 2

1

1 2

1

1 2 2 2+ + + + + + ≥ + + +� � �  where 
1 1

1
p q
+ = , 

p, q > 0; and ai, bi are non-negative real numbers.

This can be generalized to k set of variables:

( ) ( ) ( )a a a a a a a a an n k k kn
k

11 12 1 21 22 2 1 2
1 2+ + + + + + + + +� � � �λ λ λ

≥ + + +a a a a a a a a a a ak k n n
k k

11 21 31 1 12 22 32 2 1 2
1 2 3 1 2 3 1 2λ λ λ λ λ λ λ λ λ λ� � � 33

3

n kna kλ λ�( )  

where, aij > 0, λi > 0 and Sλi = 1

Another form of Hölder:

( )a a a n11 12 1+ + +� ( )a a a n21 22 2+ + +� � �( )a a ak k kn1 2+ + +

≥ + + +( )a a a a a a a a ak
k

k
k

n n kn
k

k

11 21 1 12 22 2 1 2… � � �

Example 58 Let a, b, c ∈ +, prove that 

a

a b

b

b c

c

c a

a b c3

2

3

2

3

2 4( ) ( ) ( )
.

+
+

+
+

+
=

+ +

Solution: Applying Hölder’s inequality, we get

( ) ( ) ( ) ( ) ( ) (c a)
( ) ( )

a b b c c a a b b c
a

a b

b

b c

c
+ + + + +[ ] + + + + +[ ]

+
+

+
+

3

2

3

2

3

(( )c a+








2

≥ +
+

+ +
+

+ +
+













( )
( )

( )
( )

( )
( )

a b
a

a b
b c

b

b c
c a

c

c a
2

3

2
3 2

3

2
3 2

3

2
3

3

= (a + b + c)3

⇒ 
a

a b

b

b c

c

c a

a b c3

2

3

2

3

2 4( ) ( ) ( )
.

+
+

+
+

+
≥

+ +
(dividing by 4(a + b+ c)2)

Otto Ludwig Hölder

22 Dec 1859–29 Aug 1937 
Nationality: German
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Example 59 Let a, b, c ∈ +, prove that 

a

b

b

c

c

a a b c

2

3

2

3

2

3

1 1 1
+ + ≥ + + .

Solution: Applying Hölder’s inequality, we get 

1 1 1 1 1 1 2

3

2

3

2

3a b c a b c

a

b

b

c

c

a
+ +






 + +





 + +








 ≥ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅













1 1 1 1 1 12

3
3

2

3
3

2

3
3

3

a a

a

b b b

b

c c c

c

a

= + +







1 1 1
3

b c a

⇒ + + ≥ + +







a

b

b

c

c

a a b c

2

3

2

3

2

3

1 1 1
. dividing by

1 1 1
2

a b c
+ +




















Example 60 For a, b, c ∈ + and a + b + c =1, prove that 1
1

1
1

1
1

64+





 +





 +





 ≥a b c

.

Solution: Applying Hölder’s inequality, we get 

1
1

1
1

1
1

1 1 1
1 1 1

13 3

3

+





 +





 +





 ≥ ⋅ ⋅ + ⋅ ⋅









 =

a b c a b c
++

















1
1

3

3

( )abc

Now it is sufficient to prove 1
1

64
1

3

3

+















≥

( )abc

or abc ≤ 
1

27

By AM ≥ GM, 
a b c

abc
+ +

≥
3

1

3( )

⇒ ≤ ⇒ ≤( ) .abc abc
1

3
1

3

1

27

Build-up Your Understanding 8

 1. a, b, c ∈+, prove that (1 + a3)(1 + b3)(1 + c3) ≥ (1 + abc)3.

 2. a, b, c, d ∈+, prove that (1 + a4)(1 + b4)(1 + c4)(1 + d4) ≥ (1 + abcd)4.

 3. For a, b, c ∈+
0, prove that

  (a2 + ab + b2)(b2 + bc + c2)(c2 + ca + a2) ≥ (ab + bc + ca)2

 4. For a, b, c ∈+, prove that 3 2 2 2 2 2 2 3( )( ) ( ) .a b b c c a ab bc ca ab bc ca+ + + + ≥ + +

 5. 
9 24

1
a b
+ = ,  a, b, ∈+, prove that a b2 2 3 39 4 9+ ≥ +( ) .  
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2.12 soMe GeoMetrIcal InequalItIes

2.12.1 Ptolemy’s Inequality

For any four points A, B, C, D we have, AB · CD + AD · BC ≥ AC · BD.
Equality occurs if and only if, ABCD is cyclic.

2.12.2 The Parallelogram Inequality

For any four points A, B, C, D not necessarily coplaner, we have, AB2 + BC2 + CD2 + 
DA2 ≥ AC2 + BD2.

Equality occurs if and only if, ABCD is a parallelogram.

2.12.3 Torricelli’s (or Fermat’s) Point

For a given triangle ABC, the point P (In the plane of the triangle) for which AP + BP 
+ CP is minimal, is called Torricelli’s (or Fermat) point. When all angles of ∆ABC are 
less than 120° then at this point P all sides of the triangle subtends 120° angle. When 
any angle of the triangle is more than or equal to 120° then P is at that vertex

2.12.4 The Erodos–Mordell Inequality

Let P be a point in the interior of ∆ABC and L, M, N projections of P onto BC, CA, AB 
respectively. Then PA + PB + PC ≥ 2(PL + PM + PN).

Equality holds iff, ∆ABC is equilateral and P is its centroid.
A

N
M

P

B
L C

Proof:
Let the sides of ΔABC be a opposite A, b opposite B and c opposite C; also let PA = p, 
PB = q, PC = r, dist (P; BC) = x, dist (P; CA) = y, dist (P; AB) = z.
Claim: cr ≥ ax + by.

⇔
+

≥
+ +c r z ax by cz( )

.
2 2

The right side is the area of triangle ABC, but on the left side, r + z is at least the height 
of the triangle; consequently, the left side cannot be smaller than the right side.

Now reflect P on the angle bisector at C.
We find that cr ≥ ay + bx for P’s reflection.
Similarly, bq ≥ az + cx and ap ≥ bz + cy.
⇒ r ≥ (a/c)y + (b/c) x, (1)
and q ≥ (a/b) z + (c/b) x, (2)
and p ≥ (b/a)z + (c/a)y. (3)
Adding (1), (2) and (3), we get

p q r
b

c

c

b
x

a

c

c

a
y

a

b

b

a
z x y z+ + ≥ +






 + +






 + +






 ≥ + +2( )

Claudius Ptolemy

C. AD 100–C. AD 170
Nationality: Greek

Evangelista Torricelli

15 Oct 1608–25 Oct 1647 
Nationality: Italian

Paul Erdös

26 Mar 1913–20 Sep 1996 
Nationality: Hungarian

Louis Joel Mordell

28 Jan 1888–12 Mar 1972 
Nationality: British
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(As the sum of a positive number and its reciprocal is at least 2 by AM–GM inequality)
Equality holds only for the equilateral triangle, where P is its centroid.

2.12.5 Leibniz’s Theorem

Let P be any point in the plane of the ΔABC and G be centroid of the ΔABC. Then 

AP BP CP AB BC CA PG2 2 2 2 2 2 21

3
3+ + = + + +( )

The point P for which AP2 + BP2 + CP2 is minimal is the centroid of the triangle.

2.13 Jensen’s InequalIty

Let f  be a real valued function, f defined on an interval I ⊂ , is called convex if for 
all x1, x2 ∈ I and for λ ∈ [0, 1], we have 

f (λx1 + (1 – λ) x2) ≤ λf (x1) + (1 – λ) f (x2)

If f is convex over I and x1, x2, x3, …, xn ∈ I, then

f
w x w x w x

w w w
n n

n

1 1 2 2

1 2

+ + +
+ + +









 ≤

�
�

w f x w f x w f x

w w w
n n

n

1 1 2 2

1 2

( ) ( ) ( )
,

+ + +
+ + +

�
�

 where wi ∈ +

Equality holds for x1 = x2 = … = xn.
In case of f concave, direction of inequality will change.

Note: For double differentiable functions, convex (or concave) ⇔ f ″(x) ≥ 0 (or ≤ 0).

Example 61 Let a, b, c ∈ +, prove that 
a

b c

b

c a

c

a b+
+

+
+

+
≥

3

2
.  

Solution: Let us normalize, the inequality with a + b + c = 1

⇒
−

+
−

+
−

≥
a

a

b

b

c

c1 1 1

3

2

Consider, f x
x

x
x( ) , ( , )=

−
∈

1
0 1

⇒ ′ =
−

⇒ ′′ =
−

≥ ⇒f x
x

f x
x

f( )
( )

( )
( )

1

1

2

1
0

2 2  is convex

By Jensen’s inequality,

f
a b c f a f b f c+ +






 ≤

+ +
3 3

( ) ( ) ( )

⇒
−

≤
−

+
−

+
−









⇒
−

+
−

+
−

≥

1

3

1
1

3

1

3 1 1 1

1 1 1

3

2

a

a

b

b

c

c

a

a

b

b

c

c
.

Gottfried Wilhelm
Leibniz

1 July 1646–14 Nov 1716 
Nationality: German

Johan Ludwig William 
Valdemar Jensen

8 May 1859–5 Mar 1925 
Nationality: Denmark
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Build-up Your Understanding 9

If A, B and C are the angles of a triangle, prove the following:

 1. sin sin sin .
A B C

2 2 2

1

8






















 ≤

 2. cos cos cos .
A B C

2 2 2

3 3

8






















 ≤

 3. cos A + cos B + cos C ⋅≤
3

2
.

 4. tan tan tan .2 2 2

2 2 2
1

A B C





 +







 +







 ≥

 5. sin sin sin .A B C+ + ≤
3 3

2
 

 6. In acute angle ∆ABC, prove that 
sin sin sin

.
A

A

A

B

C

C
+ + ≤

9 3

2π
 

 7. Let a, b, c denote the measures of the sides of a triangle. Prove that 
a2(-a + b + c) + b2(a - b + c) + c2(a + b - c) ≥ 3abc

 8. a, b, c ∈+, prove that 
a

a bc

b

b ca

c

c ab2 2 28 8 8
1

+
+

+
+

+
≥ .  [IMO, 2001]

 9. a, b, c ∈+, prove that a
a

b
b

c
c

+





 + +






 + +






 ≥1 1 1 10

3

10 10 10

9

10

.  

 10. ai ∈+, prove that 
a a a

n
a a an

n
n1 2

1 2

1+ + +
≥

�
�( ) .  

Solved Problems

Problem 1 If a, b, c, d, e, f > 0, prove that

ab

a b

cd

c d

ef

e f

a c e b d f

a b c d e f+
+

+
+

+
≤

+ + + +
+ + + + +

( )( )
.

Solution: Claim: 
ab

a b

cd

c d

a c b d

a b c d+
+

+
≤

+ +
+ + +

( )( )

Proof: Our claim is equivalent to,

[ ( ) ( )]( ) ( )( )( )( )

( )(

ab c d cd a b a b c d a c a b b d c d

cd ab a

+ + + + + + ≤ + + + +

⇔ + + bb c d ab c d cd a b ab cd ad bc a b c d

ab c d

)( ) ( ) ( ) ( )( )( )

( )

+ + + + + ≤ + + + + +

⇔ +

2 2

22 2+ + ≤ + + +
⇔ + + − + + +

cd a b ad bc a b c d

a c d d a b b c d c a b

( ) ( )( )( )

( )[ ( ) ( )] ( )[[ ( ) ( )]

( )( ) ( )( )

( )[

b c d d a b

a c d ad bc c a b bc ad

ad bc a

+ − + ≥
⇔ + − + + − ≥
⇔ −

0

0

cc ad ac bc

ad bc

+ − − ≥

⇔ − ≥

]

( ) (

0

02  which is true)
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Now,
ab

a b

cd

c d

ef

e f

a c b d

a b c d

ef

e f

a c e b d f

a+
+

+
+

+
≤

+ +
+ + +

+
+

≤
+ + + +
+

( )( ) ( )( )

bb c d e f+ + + +

Problem 2 In an acute angle ΔABC, it is given that, S tan A tan B = 9. Find the size 
of ∠A.

Solution: Let us first prove that cot A + cot B + cot C ≥ √3 (1)
Now, (cot A + cot B + cot C)2 = cot2 A + cot2 B + cot2 C + 2(cot A cot B + cot B cot C 
+ cot C cot A) (2)

i.e., (cot A + cot B + cot C)2 = (cot2 A + cot2 B + cot2 C – cot A cot B – cot B cot 
C – cot C cot A) + 3(cot A cot B + cot B cot C + cot C cot A) (3)

But, S cot A cot B = 1, if A + B + C = π, (why?) (4)

⇒ + + = − + − + −(cot cot cot ) [(cot cot ) (cot cot ) (cot cotA B C A B B C C A2 2 21

2
)) ]2 3+

 (5)

⇒ + + ≥cot cot cotA B C 3  (6)

Dividing throughout by cot A cot B cot C,

cot

cot cot cot

cot

cot cot cot

cot

cot cot cot
tan

A

A B C

B

A B C

C

A B C
A+ + ≥ ( )3 ttan tanB C  (7)

i.e., tan tan tan tan tan tan tan tan tanB C C A A B A B C+ + ≥ ( )3  (8)

But, Stan A tan B = 9 (given)

⇒ ≤tan tan tanA B C 3 3  (9)

But tan tan tan tan tan tan ,A B C A B C= + + ≥ 3 3  (why?) (10)

From Eqs. (9) and (10) we conclude that all inequalities are equalities.

Thus, A B C A= = ⇒ ∠ = °60 .

Problem 3 Find all real numbers in x, such that

x

x
x

x

x

x

x x

x

x

2

2 2

2

1
1

1 1 1

1 1−
+ − +

−
=

−
+

−
+

−

Solution: Let 
x

x
a x b

x

x
c

2

21
1

1

−
= − =

−
=; ;

Now 
x

x
x

x

x
abc

2

21
1

1
1 1

−
× − ×

−
= ⇒ =  (1)

∴ The given equation becomes,

a b c
a b c

+ + = + +
1 1 1

i.e., a b c
ab bc ca

abc
a b c ab bc ca abc+ + =

+ +
+ + = + + =or as ( ) ( )( )1  (2)

We have, 1 - (a + b + c) + (ab + bc + ca) - abc = 0 (3)
i.e., (1 - a) (1 - b) (1 - c) = 0 ⇒ a = 1 or b = 1 or c = 1 (4)
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Thus, 
x

x
x x

2
2

1
1 1 0

−
= ⇒ − + = ⇒  no real root possible (5)

x x x− = ⇒ − = ⇒ =1 1 1 1 2,  which satisfies the parent equation (6)

x

x
x x x x x x

−
= ⇒ − = ⇒ − = ⇒ − + = ⇒

1
1 1 1 1 0

2
2 4 4  no real root possible

 (7)
Thus the only solution to the above equation is x = 2.

Problem 4 Prove that, for all a, b, c > 0,

a b c

abc

abc

a b b c c a

+ +
+

+ + +
≥

3

8
4

( )( )( )
.

Solution: Let α α
α

=
+ +

=
+ +

⇒ =
+ +

a b c

abc

a b c

abc

abc

a b c3
3

3

3 3

1
;

( )

( )
then  (1)

Also, ( )( )( )
( ) ( ) ( )

a b b c c a
a b b c c d

+ + + ≤
+ + + + +






3

3

 (by AM-GM)

i.e., ( )( )( )a b b c c a+ + + ≤
8

27
3






 + +( )a b c

             ⇒
+ + +

≥
+ +

=
+ +





8 8 27

8
27

3 3

abc

a b b c c a

abc

a b c

abc

a b c( )( )( )

( )( )( )

( ) ( )





 =

27
3α

 (2)

Thus we have to prove that, α
α

+ ≥
27

4
3

.

Consider, AM–GM for the positive numbers, 
α α α

α3 3 3

27
3

, , ,

Then, α
α

α α α
α

+ ≥ × × × × = =
27

4
3 3 3

27
4

3 3
RHS.

Problem 5 a, b, c, d are all positive reals. Also, its true that,

1

1

1

1

1

1

1

1
1

4 4 4 4+
+

+
+

+
+

+
=

a b c d
.  Prove that, abcd ≥ 3.

Solution: Put x
a

y
b

z
c

f
d

=
+

=
+

=
+

=
+

1

1

1

1

1

1

1

14 4 4 4
; , ;  (1)

Then, it is given that x + y + z + f = 1 (2)

Now, 
1

1

1

1

1 1
1

1
4

4
4

+
= ⇒

+
= ⇒ = − =

−
a

x
a

x
a

x

x

x

Similarly, b
y

y
c

z

y
d

f

f
4 4 41 1 1
=

−
=

−
=

−
; ;

∴ We need to prove that, a b c d
x

x

y

y

z

z

f

f
4 4 4 4 1 1 1 1

81=
−








−









−







−







 ≥
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⇔
+ +








+ +









+ +







+ +







 ≥

y z f

x

x z f

y

x y f

z

x y z

f
81

Apply AM-GM for these four terms on LHS individually,

LHS ≥
































( )( )
( )

( )
( )

( )
(

3
3 3

1

3

1

3

1

3yzf

x

xzf

z

xyf

y
33 81

1

3
)

( )xyz

f
















=

⇒ ≥abcd 3.

Problem 6 If a, b, c, d, and e are real numbers, prove that the roots of x5 + ax4 + bx3 
+ cx2 + dx + e = 0 cannot all be real if  2a2 < 5b.

Solution: Let a1, a2, a3, a4 and a5 are the all real roots of the given equation.
Then, ∑ai = -a

            α αi j
i j

b
<
∑ =  (1)

(∑ai)
2 = a2

⇒∑ + =
<
∑α α αi i j
i j

a2 22

or                                               ∑ = −αi a b2 2 2  (from Eq. (1))

By the power mean inequality, we have

( )∑ ≤ ∑α αi i
2 25

⇒ a2 ≤ 5(a2 - 2b) = 5a2 - 10b

or,                                        4a2 ≥ 10b  or  2a2 ≥ 5b

But, it is a contradiction because it is given that 2a2 < 5b. Hence, all the roots can-
not be real.

Problem 7 If x and y are real, solve the inequality log2x + logx2 + 2 cos y ≤ 0.

Solution: Here, x > 0 and x ≠ 1
Let, log2 x = p as x ≠ 1, p ≠ 0.

The given inequality becomes p
p

y+ + ≤
1

2 0cos

That is, 
p p y

p

2 1 2
0

+ +
≤

cos
.

Case 1: When p > 0
p2 + 1 + 2p cos y ≤ 0

  ⇒ (p - 1)2 + 2p(1 + cos y) ≤ 0 (1)

Since p > 0, 1 + cos y ≥ 0, and (p - 1)2 ≥ 0
The only way Inequation (1) will be satisfied, when

(p - 1)2 = 0 and 2p(1 + cos y) = 0,

∴  p = 1 and cos y = -1
∴ y = (2n + 1)π
Solution set is x = 2 and y = (2n + 1)π
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Case 2: When p < 0,
p2 + 1 + 2p cos y ≥ 0

       (p + 1)2 - 2p(1 - cos y) ≥ 0

Which is true for all p < 0 as 1 - cosy ≥ 0
⇒ Log2x < 0 ⇒ 0 < x < 20  ⇒ 0 < x < 1 and y ∈.

Problem 8 The positive number a, b and c satisfy a ≥ b ≥ c and a + b + c ≤ 1. Prove 
that a2 + 3b2 + 5c2 ≤ 1.

Solution: As, a + b + c ≤ 1

⇒ (a + b + c)2 ≤ 12 = 1
or 1 ≥ (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
or 1 ≥ a2 + b2 + c2 + 2b2 + 2c2 + 2c2 (Since, a ≥ b ≥ c > 0)
 = a2 + 3b2 + 5c2 
or a2 + 3b2 + 5c2 ≤ 1.

Problem 9 If a, b, c, and d are four non-negative real numbers and a + b + c + d = 1, 

show that ab bc cd+ + ≤
1

4
.

Solution: (a + b + c + d)2 - 4(ab + bc + cd)

 =  a2 + b2 + c2 + d2 - 2ab - 2bc - 2cd + 2ac + 2ad + 2bd

 =  a2 - 2ab + b2 + c2 + d2 - 2cd - 2bc + 2ac + 2ad + 2bd

 = (a - b)2 + (c - d)2 + 2(a - b)(c - d) + 4ad

 = [(a - b) + (c - d)]2 + 4ad ≥ 0 ( ∴ a, b, c, d, ≥ 0)

⇒ 1 - 4(ab + bc + cd) ≥ 0

⇒ 4(ab + bc + cd) ≤ 1

⇒ ab bc cd+ + ≤
1

4

Aliter: The above problem can be solved by using AM–GM inequality, 
(a + c) + (b + d) = 1

⇒ + + ≤ + + +2 ( )( ) ( ) ( )a c b d a c b d

⇒ + + ≤2 1( )( )a c b d

 ⇒ 4(a + c)(b + d) ≤ 1

⇒ + + + ≤ab ad bc cd
1

4

⇒ + + ≤ −ab bc cd ad
1

4

⇒ + + ≤ ≥ab bc cd a d
1

4
0( , )∵  

Equality holds for a c b d a+ = = = =
1

2
0 0and or , c b d= + =

1

2
.

Problem 10 For n ∈ , n > 1, show that

1 1

1

1

2

1
1

2n n n n
+

+
+

+
+ + >� .
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Solution: We have, 
1 1

1

1

2

1 1 1 1 1 1
2

2

2 2 2n n n n
n n

n n n n n
+

+
+

+
+ +

−

> + + + + +�
� ���� ����

�

( ) terms

22

2









−( )n n terms
� ����� �����

⇒ +
+

+
+

+ + > +
−

= + − =
1 1

1

1

2

1 1 1
1

1
1

2

2

2n n n n n

n n

n n n
�

( )
.

Problem 11 What is the greatest integer n, for which there exists a simultaneous solu-
tion x to the inequalities k < xk < k + 1, k = 1, 2, 3, …, n.

Solution: If   k = 1; 1 < x < 2 (1)

 k = 2; 2 < x2 < 3 (2)

 k = 3; 3 < x3 < 4 (3)
 k = 4; 4 < x4 < 5 (4)
 k = 5; 5 < x5 < 6. (5)

…
…

Consider the inequality 2 < x2 < 3, then x should lie between 2  and 3

i.e., 2 3< <x

Now, 1 2 3 4 2< < < < =x  and hence, satisfies Eqs. (1) and (2) of the inequalities

 2 3< <x

⇒ ( ) ( )2 33 3 3< <x

⇒ 2 2 3 33< <x

as  2 2 3 4 3 3< <and

Common solution of (1), (2), (3) are solution of (3)

From (3), 3 43< <x  

⇒ 3 43 3< <x

⇒ 34 < x12 < 44

From Inequality (4), 43 < x12 < 53

Hence common solution of Inequalities (1), (2), (3), (4), is

34 < x12 < 53

⇒ 3 53 4< <x

⇒ 
3 55 15 154< <x

But from 5th inequality we get 53 < x15 < 63.
As 63 = 216 < 243 = 35, common solution of (1), (2), (3), (4) has no solution com-

mon with (5), hence, the greatest n for which the rows of the given inequalities holds 

is 4 and for any x, such that 3 53 4< <x will satisfy these inequalities.

Problem 12 Determine the largest number in the infinite sequence; 1 2, ,

3 43 4, ,..., .nn
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Solution: By checking the first four values, we find 31/3 to be the largest number. We 

will prove that ( ),/n nn1 3≥  is a decreasing sequence.

 n nn n1 1 11/ > + +( ) /( )

⇔ n nn n+ > +1 1( )

⇔    n
n

n

> +





1

1

Now, 1
1

1
1 1

2

1 1 2

6

1

1 1
1

2 3
+






 = + +

−
× +

− −
⋅ +

= + +

n
n

n

n n

n

n n n

n

n
( ) ( )( )

�

22
1

1 1

6
1

1
1

2
1 1

1

2

1

4

1

8
3−






 + −






 −





 + < + + + + + <

n n n
� �

or 3 1
1

> +





n

n

∴ If n n nn n≥ > + +3 1
1 1

1, ( )

i.e., ( )n n1/ is decreasing for n ≥ 3. 

But, 31/3 is also greater than 1 and 21/2. 
Hence, 31/3 is the largest number.

Problem 13 If a, b, and c are positive real numbers, such that abc = 1, then. prove that

ab

a b ab

bc

b c bc

ca

c a ca5 5 5 5 5 5
1

+ +
+

+ +
+

+ +
≤ .

When does equality hold?

Solution:

   a5 + b5 = (a + b)(a4 - a3b + a2b2 - ab3 + b4)

 = (a + b)(a4 + a2b2 + b4 - ab(a2 + b2)) 

 =  (a + b)[(a2 + ab + b2)(a2 - ab + b2) - ab(a2 + ab + b2) + a2b2] 

 = (a + b) [(a2 + ab + b2)(a2 - 2ab + b2) + a2b2]

 = (a + b) [(a2 + ab + b2)(a - b)2 + a2b2] 

 ≥ (a + b) × a2b2 [ ∴(a - b)2(a2 + ab + b2) ≥ 0]
i.e., a5 + b5 ≥ a2b2(a + b)

and equality holds, if a = b.

Thus, 
ab

a b ab

ab

a b a b ab5 5 2 2+ +
≤

+ +( )

=
+ +
1

1ab a b( )

=
+ +

1

ab a b abc( )
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=
+ +
1

ab a b c( )

=
+ +

c

a b c( )

Similarly, 
bc

b c bc

a

a b c5 5+ +
≤

+ +

and 
ca

c a ca

b

a b c5 5+ +
≤

+ +

∴
+ +

+
+ +

+
+ +

≤
+ +

+
+ +

+
+ +

ab

a b ab

bc

b c bc

ca

c a ca

c

a b c

a

a b c

b

a b c5 5 5 5 5 5

 
=

+ +
+ +

=
a b c

a b c
1

and the equality holds, if a = b = c and since, a . b . c = 1, a = b = c = 1 implies equality.

Problem 14 If a1 ≥ a2 ≥ … ≥ an be real numbers, such that a a ak k
n
k

1 2+ + +�  ≥ 0 for all 
integers k > 0 and p = max [|a1|, |a2|,…, |an|], prove that p = |a1| = a1 and that
(x - a1)(x - a2)… (x - an) ≤ xn - a1

n.

Solution: Taking k = 1, since

a a ak k
n
k

1 2 0+ + + ≥� ,

and for k = 1, we have

  a1 + a2 + … + an ≥ 0 (1)

and since, a1 ≥ a2 ≥ a3 ≥ … ≥ an, a1 ≥ 0 (2)
and, if all ai, i = 1, 2,…, n are positive, a1 is the maximum of all ai’s

∴ p = |a1| = a1

Suppose that some of the ai’s are negative and p ≠ a1, then an < 0.
Hence,

p = |an|

Let, r be an index, such that

an = an−1 = … = ar +1 < ar ≤ ar−1 ≤ … ≤  a1

Then, a a a a ak k k
r
k

n
k

r
1 2 1
+ + + + + +

−
� �

=








 +









 + +









 +









 +−a

a

a

a

a

a

a

a

a
nn

k

n

k

n

k
r

n

k
r

n

k
1 2 1� ( −−












r)

= ak 
n X

where the value of the second bracket is taken as X.

Since, 
a

a

a

a

a

an n

r

n

1 2, ,..., are all less than 1, so their kth powers are all less than 

these fractions and by taking k sufficiently large, which would make X > 0 and Xak 
n < 0 

for k odd, a contradiction and hence p = a1.
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Let, x > a1, then by AM-GM inequality, 

(x - a2)(x - a3)(x - a4) … (x - an) ≤

−

−

















=

−

∑ ( )x a

n

j
j

n n

2

1

1

≤
− +
−








−

( )n x a

n

n
1

1
1

1
 ∵ ai

i

b

=
∑ ≥











1

0

= +
−








−

x
a

n

n
1

1

1

≤ + ⋅ + + +− − − −x x a x a an n n n1 2
1

2
1
2

1
1� Here we have used

n

r
n rr−







 ≤ − ≥











1
1 1( ) , .

Multiplying both sides by (x - a1), we get

(x - a1)(x - a2)(x - a3) … (x - an) ≤ (x - a1)(x
n−1 + xn−2a1 + … + a1

n−1) = xn - an
1.

Problem 15 Let, a > 2 be given and define recursively a0 = 1, a1 = a, an+1 = a

a
an

n
n

2

1
2

2
−
−









 .

Show that for all k ∈ , we have

1 1 1 1 1

2
2 4

0 1 2

2

a a a a
a a

k

+ + + + < + − −� ( ).

Solution: a0 = 1 and a1 = a > 2, so a can be written as b
b

b

b
+ =

+1 12

 for some real 

number b > 1 and a b
b

2 2
2

2
1

− = +

Now, a
a

a
a

a
a a a2

1
2

0
2 1

2
22

1
2 2= −









 = −









 = −( )

 = +





 +





 =

+ +
b

b
b

b

b b

b
2

2

2 4

3

1 1 1 1( )( )

Similarly, a
a

a
a b

b
a3

2

1

2

2
2

2

2

22
1

2=








 −













= +





 −













 
= +






 −













+





 +





b

b
b

b
b

b
2

2

2
2

2

1
2

1 1

 
= +





 +





 +





b

b
b

b
b

b
4

4
2

2

1 1 1

 
= +





 +





 +





b

b
b

b
b

b
2

2
2

2
2

2

2

2

1

1

0

0

1 1 1
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and proceeding in this manner, we get

a b
b

b
b

b
b

n
n

n

n

n= +





 +





 +








−

−

−

−
2

2
2

2

1

1

2

2

1 1 1
...

Hence,

LHS =
=
∑ 1

0 aii

n

= +
+

+
+ +

+
+ + +

+ +
+

−

1
1 1 1 1 1 1

1

2

3

2 4

7

4 4 8

2 1

2

b

b

b

b b

b

b b b

b

b

n

( )( ) ( )( )( )

( )
�

(( ) ( )b b
n4 21 1+ +�

The right-hand side of the inequality is

1

2
2 4

1

2

1
2

1 1
12( )a a b

b
b

b b
+ − − = + + − −
















 = +








Now, 

LHS = + +
+ +




 + +

+ +





1

1 1 1 1

2

2

4

2 4

2

2 2b
b

b

b

b

b b

b

b b

n

n

( )( ) ( ) ... ( )
�

         
= +

+
+ +

+ +








1

1

1 1 1

2

2

2

2 2b

b

b

b

b b

n

n�
( ) ... ( )

and, clearly 
b

b

b

b b

b

b b

n

n

2

2

4

2 4

2

2 21 1 1 1 1+
+

+ +
+ +

+ +( )( ) ( ) ... ( )
�

=
+ +

= −
+ +=

∑ b

b b b b

i

i n

i

n 2

2 2
1

2 21 1
1

1

1 1( ) ... ( ) ( ) ... ( )

Here we used, 
a

a a a a
j

j nj

n

( )...( ) ( )...( )1 1
1

1

1 11 11 + +
= −

+ +=
∑

[This result is obtained by using partial fractions]

So, the LHS = = +
+ +











= =
∑ ∑1

1
1

1 10

2

2 2
1a b

b

b bii

n

i

n

i

( ) ( )�

= + −
+ +









1

1
1

1

1 12 2b b b
n

( ) ( )�

= + −
+ + +

< +1
1 1

1 1 1
1

1
2 4 2b b b b b b

n

( )( ) ... ( )

= RHS

And hence, is the result.

Problem 16 A  sequence of numbers an, n = 1, 2, …, is defined as follows: a1
1

2
= and for 

each n ≥ 2, a
n

n
an n=

−





 −

2 3

2
1

Prove that ak
k

n

<
=
∑ 1

1

 for all n ≥ 1.
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Solution: Given: a n1
1

2
2= ≥for

So, a
k

k
a kk k=

−
≥−

2 3

2
21 for

or  2kak = (2k - 3)ak–1

⇒ 2kak - (2k - 3)ak–1 = 0

⇒ 2kak - 2(k - 1)ak–1 + ak–1 = 0

⇒ 2kak - 2(k - 1)ak–1 = -ak-1 (1)

Now, adding up Eq. (1) from k = 2 to k = (n + 1), we have

4 2

6 4

8 6

2 1 1

3 2 2

4 3 3

a a a

a a a

a a a

− = −
− = −
− = −

� � �
2nan - 2(n - 1)an–1 = -an-1

2(n + 1)an+1 - 2nan = -an.

Summing we get, 2 1 21 1( )n a a an k
k

n

+ − = −+
=
∑

1

⇒ a a n a n ak
k

n

n n
=

+ +∑ = − + = − +
1

1 1 12 2 1 1 2 1( ) ( )

Now a
n

an n= −





 −1

3

2
1 ⇒ an is positive as 1

3

2
−






n

 is positive for all n ≥ 2, and a1 

is positive.

Hence, a n ak
k

n

n= − +
=

+∑ 1 2 1
1

1( ) < 1. [ ∴ 2(n + 1)an+1 > 0]

Check Your Understanding 

 1. Show that the real number ‘r’ where r =
+

+

3 5

3 5
satisfy the inequality 2 < <r 2.

 2. If abcd = 1 and a, b, c, d ∈+, prove the inequality 
(1 + a) (1 + b) (1 + c) (1 + d) ≥ 16.

 3. Find the smallest value of the expression
4 8 13

6 1

2x x

x

+ +
+( )

for x ≥ 0.

 4. If x, y, z are positive reals such that x3y2z = 7, prove that 2x + 5y + 3z ≥ 9(525/27)1/9.

 5. If x, y, z are positive real numbers, such that x < y < z, show that 

x

z

2

<
x y z

x y z

z

x

2 2 2 2+ +
+ +

< .

 6. By considering the sequence 1, a2, a4, ..., a2n, ..., where 0 < a < 1, prove that 

  (a) 1 – a2n > nan–1(1 – a2)

  (b) 1 – a2n < n(1 – a2).
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 7. If a, b, c, are positive real numbers, prove that 

6abc ≤ Sa2 (b + c) ≤ 2 (a3 + b3 + c3).

 8. Let x1 x2 be the roots of the equation x px
p

2
2

1

2
0+ − =  where x is unknown and 

p is a real parameter. Prove that x x1
4

2
4 2 2+ +≥ .

 9. Prove that n
n

nn
n+






 >

1

2

2
3( !) .

 10. Show that 1 2
1

2
1 3 2+ + + <

+
< +� n n

n
n( ) ./

 11. If n5 < 5n for a fixed positive integer n ≥ 6, show that (n + 1)5 < 5n+1.

 12. Show that for any real number x, x2sin x + x cosx + x2 + 
1

2
>  0.

 13. a, b, c ∈ � (i.e., a, b, c are real numbers), such that a2 + b2 + c2 = 1, then prove 

that − ≤ + + ≤
1

2
1ab bc ca .

 14. Show that if the real numbers a1, b1, c1, and a2, b2, c2 satisfy

  a1c2 - 2b1b2 + c1a2 = 0 and a1c1 - b2 
1 > 0, then a2c2 - b2 

2 ≤ 0.

 15. If a, b, c, d are four real numbers, such that, a + 2b + 3c + 4d ≥ 30, prove that 

a b c d2 2 2 2 30+ + + ≥ .

 16. Let a, b, c, d be positive real numbers. Prove that 
1 1 4 16 64

a b c d a b c d
+ + + ≥

+ + +
.

 17. If a, b, c are all greater than zero and distinct, then prove that 
a4 + b4 + c4 > abc(a + b + c).

 18. If a, b, c, d are positive real numbers, prove that 
1 1 1 1
3 3 3 3a b c d
+ + + ≥ + + +

1 1 1 1

abc bcd cda dab
.

 19. Given that x, y, z are positive reals, satisfying the conditions that, xyz = 32, find 
the minimum value of the expression x2 + 4xy + 4y2 + 2z2, as an integer.

 20. Prove that 0 ≤ yz + zx + xy - 2xyz ≤ 
7

27
,  where, x, y, z are non-negative real num-

bers and x + y + z = 1.  

 21. Prove, in a triangle the following inequality holds:

  
a A b B c C

a B b C c A

cos cos

sin sin sin

+ +
+ +

≤
cos a b c

R

+ +
9

.

 22. Prove that the following inequality holds:
  In any acute angled triangle ∆ABC, cot2 A + cot2 B+ cot2 C ≥ 1.

 23. In an acute angled triangle ABC, show that, tan2 A + tan2 B + tan2 C ≥ 9. When 
does the equality occur?

 24. If x, y, z are real numbers such that, x + y + z = 4, x y z2 2 2 6+ + = ,  then show that, 

each of x, y, z lies in the closed interval
2

3
2, .







Can ‘x’ take the extreme values? 

Justify.
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 25. Prove that 
1

2 1

1 3 5 2 1

2 4 6 2

1

2 1n

n

n

n

n+
>

⋅ ⋅ −
⋅ ⋅

>
+
+

�
�
( )

, n ∈ .

 26. Show that 1

3

8

7 1

3 5

6

3

2
+ + +

+ +
<

+
�

n

n n

n n( )
.

 27. If a, b, c, are real numbers, such that
  (a) a + b + c > 0
  (b) ab + bc + ca > 0
  (c) abc > 0
  Prove that a, b, c all are positive.
 28. Suppose that 0 ≤ xi ≤ 1 for i = 1, 2, …, n, prove that
  2n−1(l + x1x2 … xn) ≥ (1 + x1) (1 + x2) … (1 + xn) with equality, if and only if, (n - 1) 

of the xi’s are equal to 1.

 29. x, y, z are positive numbers, such that, x
y

y
y

z

z
=

+
=

+
2

1

2

1
, and z

x

x
=

+
2

1
. Prove 

that x = y = z.
 30. Let a, b, c, d be real numbers, such that a < b < c < d. Prove the inequality; 

(a + b + c + d)2 > 8(ac + bd).

 31. Prove the following inequalities:

  (a) 5 < + +5 5 53 4

  (b) 8 > + +8 8 83 4

  (c)  n n n n> + +3 4 ,  specifying conditions, if any, to be fulfilled.

 32. Prove that, without using tables or calculators, 1993 > 1399.

 33. Let a, b, c, d be positive real numbers, such that a + b + c + d = 1. Prove the in-

equality: a

a b

b

b c

c

c d

d

d a

2 2 2 2 1

2+
+

+
+

+
+

+
≥ .  When does the equality hold?

 34. Find all pairs (x, y) of real numbers, such that 16 16 1
2 2x y y x+ ++ = .

 35. If a, b, c be non-negative reals and 
1

1

1

1+
+

+a b
+

+
=

1

1
1

c
,  prove that abc ≥ 8.

 36. If a, b, c are positive real numbers, such that, a + b > c, prove;
a

a

b

b

c

c1 1 1+
+

+
≥

+
.

Challenge Your Understanding 

 1. Prove that, for a, b, c and d ∈ , (1 + ab)2 + (1 + cd)2 + a2b2 + c2d 2 ≥ 1.
 2. Let P be an interior point in ∆ABC. Let x, y, z be the perpendicular distance of P 

from BC, CA, AB, respectively. Prove that

  x y z
a b c

+ + ≤
+ +2 2 2

2R
.

 3. With the same notation as in the previous problem, find the point P, such that 
a

x

b

y

c

z
+ +  is least.
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 4. Prove that 
4

2

2 4

3 1

n n

n

n

n n
n≤









 ≤

+
∀ ∈�.  

 5. If a, b, c, d are positive real numbers such that a + b + c + d = 1, prove that

  4 1 4 1 4 1 4 1 6a b c d+ + + + + + + < ; when does the equality hold?

 6. In ∆ ABC, prove in the usual notation that a2 + b2 + c2 > 4 3∆, where ∆ is the area 
of ∆ ABC. When does the equality hold? (Weitzenböck’s Inequality).

 7. If a > 0, b > 0, prove that 4 20 33
2

2

2

2

a

b

b

a

a

b

b

a
+









 − +






 + ≤ 0 implies a = 2b or 

b = 2a.

 8. Let x, y, z be three positive real numbers, each less than 4. Prove that at least one 

of the numbers 
1 1

4

1 1

4

1 1

4x y y z z x
+

−
+

−
+ +

−
,  is greater than or equal to units.

 9. Let ∆ABC be an acute angled triangle and let H be its orthocentre. Let hmax denote 
the largest altitude of ∆ABC. Prove the inequality; AH + BH + CH < 2 hmax.

 10. Suppose a and b are real numbers, such that, the roots of the cubic equation 
ax3 – x2 + bx - 1 = 0 are all positive real numbers, prove the following:

  (a) 0 < 3ab ≤1

  (b) b ≥ 3

 11. Let a, b, c, be the lengths of the sides of a triangle and r its inradius; then show 
that 3r (a + b + c) < a2 + b2 + c2.

 12. If a, b, c, are sides of a triangle and a, b, c, are integers, prove the inequality

  1 1 1 1+
−






 +

−





 +

−





 <⋅ ⋅

b c

a

c a

b

a b

c

a b c

.

 13. If a, b, c are sides of triangle, prove that 
a

c a b+ −
+

+ −
+

+ −
≥

b

a b c

c

b c a
3.

 14. If a, b, c are three positive real numbers, prove the inequality
a

b c

b

c a

c

a b

2 2 21 1 1+
+

+
+
+

+
+
+

> 3.

 15. Given positive real numbers a, b, c such that, a + b + c = 1; prove that
  aabbcc + abbcca + acbacb ≤ 1.

 16. For positive real numbers a, b, c and d, show that,

  a . d b-c + b . d c-a + c . da-b ≥ a + b + c.

 17. If a, b, c are sides of a triangle and p, q, r are positive real numbers, prove the 
following inequality:

  a p q p r b q r q p c r p r q2 2 2 0( )( ) ( )( ) ( )( ) .− − + − − + − − ≥

 18. Let b, c be the legs of a right angled triangle, satisfying the following inequality:

  b b c c2 26 2 19 4 3 16 3− + + − + ≤ .

  Find its hypotenuse as well as its area.

 19. Show that 
xyz

x y xyz

xyz

y z xyz

xyz

z x xyz3 3 3 3 3 3+ +
+

+ +
+

+ +
≤ 1, where x, y, z are pos-

itive real numbers.
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 20. For arbitrary positive numbers a, b, c, prove that,

  
a

b c

b

c a

c

a b+
+

+
+

+
≥

2 2 2
1.

 21. x1, x2, x3, …, xn (n ≥ 2) are real numbers satisfying

  
1

2011

1

2011

1

20111 2 3x x x+
+

+
+

+
+ +

+
=�

1

2011

1

2011xn

.

  Prove that, 
x x x x

n
n

n
1 2 3

1
2011

⋅ ⋅
−

≥
�

.

 22. a, b, γ, δ are positive angles, each being less than ⋅

π
2

.  Also it is given that, a + b 

+ γ + δ = 180°. Prove the inequality:

  2(tan tan tan tan )α β γ δ+ + + ≥ + + +sec sec sec sec .α β γ δ

 23. The positive real numbers a, b, c with (a + b + c) = 1 are given. Prove the inequality:

  
1

1

1

1

1

1
2

+
−

+
+
−

+
+
−

≤ + +







a

a

b

b

c

c

b

a

c

b

a

c
.

 24. Prove the inequality:

  3 2 2 2 2 2 2 2 2( )( ) ( ))( ) (x y xy y z yz z x zx x y z xy yz zx+ + + + + + ≥ + + + +

 25. Let a, b, c, x, y, z be positive real numbers, such that, a + b + c = x + y + z and 
abc = xyz. Further, suppose, a ≤ x ≤ y ≤ z ≤ c and a < b < c. Prove that a = x; b = 
y; c = z.

 26. Prove that, if a, b, c, are positive real numbers, then, the expression

1

2
( )a b c

bc

b c

ca

c a

ab

b a
+ + −

+
−

+
−

+








 is always non-negative. Find also the con-

dition that  this expression is void.

 27. Find all positive real numbers a, b, c, d satisfying the following conditions: 
  (a) a + b + c + d =12
  (b) abcd = 27 + ab + ac + ad + bc + bd + cd

 28. If x, y, z are all positive and x + y + z = 6, prove that

  x
y

y
z

z
x

+








 + +






 + +






 ≥

1 1 1 75

4

2 2 2

.

 29. If a, b, c, d are positive real numbers, prove that

  a b c

a b c

b c d

b c d

c d a

c d a

d a b

d a b
a

2 2 2 2 2 2 2 2 2 2 2 2+ +
+ +

+
+ +
+ +

+
+ +
+ +

+
+ +
+ +

≥ + bb c d+ + .

 30. Let a, b, c, d, be positive real numbers. Show that,

  
ab bc ca

a b c

ab bd da

a b d

ac cd da

a b c

bc cd d+ +
+ +

+
+ +
+ +

+
+ +
+ +

+
+ +

3 3 3 3 3 3 3 3 3

bb

b c d3 3 3+ +

  ≤
+

+
+ +

+
+ +

min

( ) ( )

,

( ) ( )

,

(

a b

ab

c d

cd

a c

ac

b d

bd

a d2 2

3

2

2 2

3

2

2 2

3

2

2 2

3

2

2 2

aad

b c

bc) ( )

.
3

2

2 2

3

2

+
+
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 31. Determine all possible values of the expression

  S
a

d a b

b

a b c

c

b c d

d

c d a
=

+ +
+

+ +
+

+ +
+

+ +
,

  for arbitrary positive reals, a, b, c, d.

 32. a, b, c are real numbers, such that, abc + a + c = b and ac ≠ 1. Find the greatest 

value of the expression: 
2

1

2

1

3

12 2 2a b c+
−

+
+

+






 .

 33. Let a, b, c be positive real numbers, such that, abc =1; prove the inequality

   1 1 1 3

23 3 3a b c b c a c a b( ) ( ) ( )
.

+
+

+
+

+
≥

 34. Given that a, b, c are positive real numbers, show that

  
a

b c

b

c a

c

a b a b c2 2 2 2 2 2

9
+ + ≥

+ +
,  if a2 + b2 + c2 = 3abc.

 35. Let, x nn
n= + + +2 3 4432 � ; prove that x x

n
nn n+ − < =1

1
2 3

!
, , , ....
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3.1 introduction

The process of deducing particular results from a general result is called deduction. The 
process of establishing a valid general result from particular results is called induction. 
The word induction means the method of reasoning about a general statement from the 
conclusion of particular cases. Inductions starts with observations. It may be true but 
then it must be so proved by the process of reasoning. Else it may be false but then it 
must be shown by finding a counter example where the conjecture fails.

In mathematics there are some results or statements that are formulated in terms of 
n, where n ∈ . To prove such statements we use a well suited method, based on the 
specific technique, which in known as principle of mathematical induction. 

3.1.1 Proposition

A statement which is either true or false is called a proposition or statement. P n( )  
denotes a proposition whose truth value depends on natural variable ‘n’.

For example, 1 2 3
1 2 1

6
2 2 2 2+ + + + =

+ +
� n

n n n( ) ( )
 is a proposition whose truth 

value depends on natural number n.

We write, P n n
n n n( ) + + + + =

+ +
:

( ) ( )
,1 2 3

1 2 1

6
2 2 2 2�

where P(5) means 1 2 3 4 5
5 5 1 10 1

6
2 2 2 2 2+ + + + =

+ +( ) ( )
.

To prove the truth of proposition P(n) depending on natural variable n, we use 
mathematical induction. 

Consider the statement:
P(n): ‘n(n + 1) is even’. We wish to show that this statement is true for all n ∈ .

Giuseppe Peano

27 Aug 1858–20 Apr 1932 
Nationality: Italian

3
Chapter

Mathematical Induction
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3.2  Chapter 3

For n = 1, P(1) = 1 × 2 = 2 (even)
For n = 2, P(2) = 2 × 3 = 6 (even) and so on.
 Alternatively, we can prove by stating that for n even, n(n + 1) is even and for n odd, 
n + 1 is even and thus n(n + 1) is even. But all statement may not be that simple, e.g., 
P(n): ‘3n > n’.
For n = 1, P(1) : 3 > 1 is true.
If we assume that the result is true for n = r, then P(r) : 3r > r is true.
For n = r + 1, P(r + 1): 3r +1 = 3r × 3 > 3r > r + 1  for r ∈ .
Hence, P(r + 1) is true.
So what we got here? Nothing more than whenever P(r) is true P(r + 1) is true! But 

if we combined it with P(1) is true, we see the domino effect!! As P(1) true ⇒ P(2) 
true!! Now P(2) true ⇒ P(3) true and so on. We can go on up to any length so result is 
true for all n. This process is called induction. There are two kind of Inductions. 

3.2 First (or Weak) PrinciPle oF MatheMatical induction 

The statement P n( )  is true for all n∈�,  if 

 1. P(1) is true.
 2. P(m) is true  ⇒  P m( )+1  is true.

The above statement can be generalized as P n( )  is true for all n∈�  and n k≥ ,  if 

 1. P k( )  is true.

 2. P m( )  is true ( )m k≥   ⇒  P m( )+1  is true.

3.2.1 Working Rule

To prove any statement P n( )  to be true for all n k≥  with the help of first principle of 
mathematical induction we follow the following procedure:

Step 1 (verification): Check if the statement is true or false for n = k.
Step 2 (assumption): Assume the statement be true for n = m, m ≥ k.
Step 3 (Induction):  Prove the statement is true for n m= +1  using the 

 assumption.
We proceed to illustrate the use of the above principle by means of a few examples.

3.2.2 Problems of the Divisibility Type

If f (n) is  divisible by a number x and it is to be proved that f (n + 1) is divisible by x, 
some times it is easier to show that f (n +1)  – f (n) is divisible by x.

Example 1 Show that 72n + (23n-3) (3n-1) is divisible by 25 for all natural numbers n.

Solution: Let P(n) = 72n + (23n-3) (3n-1)

 (a) P(1) = 72 + (23-3) (31-1) = 49 + 1 ⋅ 1 = 50, which is divisible by 25.
 (b) Let P(k) be true, i.e., 72k + (23k-3) (3k-1) is divisible by 25.
 (c) We have to prove that P(k + 1) is true, i.e.,

  P(k + 1) = 72(k+1) + (23(k+1)-3) (3k+1-1) = 72K . 72 + (23k-3 . 23) (3k-1 . 3) 
  = 49 . 72k + 24(23k-3) (3k-1) = (25 + 24)72k + 24(23k-3) (3k-1)
  = 24 (72k + 23k-3 3k-1) + 25 . 72k = 24 P(k) + 25 . 72k

But we know that P(k) is divisible by 25. Also, 25 . 72k is clearly divisible be 25. Hence, 
P(k + 1) is divisible by 25. Hence, by mathematical induction, the result is true for all n.
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Mathematical Induction  3.3

Example 2 Show that 11n+2 + 122n+1 is divisible by 133 for every natural number n.

Solution: Let P(n) = 11n+2 + 122n+1

P(1) = 113 + 123 = 3059 = 133 × 23, which is divisible by 133.
Let P(k) = 11k+2 + 122k+1 be divisible by 133.

 P(k + 1) = 11k+3 + 122k+3

 = 11k+2 . 11 + 122k+1 144
 = 11 . 11k+2 + (133 + 11) 122k+1

 = 11[11k+2 + 122k+1] + 133 . 122k+1 = 11 . P(k) + 133 . 122k+1

P(k) is divisible by 133 and so is 133 . 122k+1. Hence, P(k + 1) is also divisible by 133.
Hence, by mathematical induction, the result is true for all n.

Example 3 Show that 102n-1 + 1 is divisible by 11 for all natural numbers n.

Solution: Let P(n) = 102n – 1 + 1.
P(1) = 101 + 1 = 11 which is clearly divisible by 11.

Let P(k) = 102k-1 + 1 be divisible by 11.

 P(k + 1) = 102k+1 + 1 = 102k-1 . 102 + 1 = [102k-1 + 1] + 99 . 102k-1

  = 1 . P(k) + 99 . 102k-1

which is divisible by 11. Hence P(k + 1) is divisible by 11.
Hence, by mathematical induction, the result is true for all n.

Build-up Your Understanding 1

 1. Use mathematical induction to prove the following ∀ ∈n �:
  (a) 7 3n n−  is divisible by 4.

  (b) 2 7 3 5 5⋅ + ⋅ −n n  is divisible by 24.

  (c) 32n – 1 is divisible by 8.

  (d) 10n + 3 . 4n+2 + 5 is divisible by 9.

  (e) 5 2n+1 + 2n+4 + 2n+1 is divisible by 23.
  (f) 72n – 1 is divisible by 8.
  (g) 3 8 92 2n n+ − −  is divisible by 8.

  (h) 41 14n n−  is a multiple of 27.

  (i) 15 12 1n− +  is a multiple of 16.

  (j) 52n+1 + 3n+2 . 2n–1 is divisible by 19.

  (k) 10 3 4 52n n+ ⋅ ++  is divisible by 9.

  (l) 9 8 1n n− −  is divisible by 64.

 2. Use mathematical induction to prove the following∀ ∈n �:

  (a) n n n3 23 5 3+ + +  is divisible by 3.
  (b) n3 + (n + 1)3 + (n + 2)3 is divisible by 9.

  (c) n n n( ) ( )+ +1 5  is a multiple of 3.

  (d) ( ) ( ) ( ) ( ) ( )n n n n n+ + + + +1 2 3 4 5  is divisible by 120.

  (e) n(n + 1)(n + 2) is a multiple of 6.
  (f) n(n + 1)(2n + 1) is divisible by 6.
  (g) n n5 −  is a multiple of 5.
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 3. Use mathematical induction to prove the following ∀ ∈n �:
  (a) xn – yn = is divisible by (x – y), where x – y ≠ 0.
  (b) x2n - 1 + y2n - 1 is divisible by x + y, where x + y ≠ 0.
  (c) (1 + x)n - nx - 1 is divisible by x2, where x ≠ 0.

 4. Use mathematical induction to prove that ∀ ∈n �,
n n n5 3

5 3

7

15
+ +  is a positive 

integer.
 5. Use mathematical induction to prove the following:

  (a) For n ∈ odd positive integers, n n( )2 1−  is divisible by 24,

  (b) For n ∈ even positive integers, n n( )2 20+  is divisible by 48.

 6. Show that 2 12n +  or 2 12n −  is divisible by 5 according as n is odd or even posi-
tive integer.

 7. Prove that 5 12n +  is divisible by 13 if n is odd. Hence, deduce that 599  leaves a 
remainder 8 when divided by 13.

 8. Show that 4 6 5 1⋅ + +n n  leaves remainder 9 when divided by 20.

 9. Show that 3 8n n+  is not divisible by 5 for n ∈�.

 10. Prove by induction that the last digit of P(n) = 22n

+ 1 is 7 ∀ (n > 1).

3.2.3 Problems Based on Summation of Series

Example 4 Prove that S k
n n

n
k

n

= =
+

=
∑

1

1

2

( )
.

Solution:  S1
1 2

2
1=

×
= is true.

Let, S t
k k

k
t

k

= =
+

=
∑

1

1

2

( )

S t t k

k k
k

k k

k
t

k

t

k

+
=

+

=
= =









 + +

=
+

+ +

=
+ +

∑ ∑1
1

1

1

1

1

2
1

1 2

2

( )
( )

( )( )

Hence, the identity is true for all n by induction. 

Example 5 Use mathematical induction to show that 1 + 3 + 5 + … + (2n - 1) = n2 is 
true for all natural numbers n.

Solution: Let P(n) = 1 + 3 + 5 +…+ (2n - 1) = n2

P(1) = 1 = 1, which is true.
Assume that P(k) holds good.

 ⇒ P(k) = 1 + 3 + 5 +…+ (2k - 1) = k2.

 P(k + 1) = [1 + 3 + 5 + … + (2k - 1)] + (2k + 1)

 = P(k) + 2k + 1 = k2 + 2k + 1 = (k + 1)2

Hence, P(k + 1) is true.
Hence, by mathematical induction, the result is true for all n.
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Example 6 Show that

1

2 1a d

a

a d a d

a

a n d a nd

n

a nd+
+

+ +
+ +

+ − +
=

+( )( ) [ ( ) ]( )
.�

Solution: Let P n
a d

a

a d a d

a

a n d a nd

n

a nd
( ) :

( )( ) ( ( ) )( )

1

2 1+
+

+ +
+ +

+ − +
=

+
�

for n = 1, LHS = 
1

a d+
;  RHS = 

1

a d+

⇒ P(1) is true

Assume that

P k
a d

a

a d a d

a

a k d a kd

k

a kd
( ):

( )( ) [ ( ) ]( ) ( )

1

2 1+
+

+ +
+ +

+ − +
=

+
�

P k
a d

a

a d a d

a

a k d a kd

a

a kd a
( ):

( )( ) [ ( ) ] ( ) ( ) [ (
+

+
+

+ +
+ +

+ − ⋅ +
+

+ ⋅ +
1

1

2 1
�

kk d+1) ]

=
+

+
+ + +

k

a kd

a

a kd a k d( )[ ( ) ]1

=
+ + +

+ + +
k a k d a

a kd a k d

[ ( ) ]

( )[ ( ) ]

1

1

=
+ + +

+ + +
a k k k d

a kd a k d

( ) ( )

( )[ ( ) )]

1 1

1

=
+ +

+ + +
( )( )

( )[ ( ) ]

k a kd

a kd a k d

1

1

=
+

+ +
( )

( )

k

a k d

1

1

Thus, P(1) holds, P(k) ⇒ P(k + 1), hence P(n) holds for all n ∈ , by the principle 
of mathematics induction.

Example 7 Prove, using mathematical induction, that

1

1 2 3

1

2 3 4

1

1 2

3

4 1 2. . . . ( )( )

( )

( )( )
.+ + +

+ +
=

+
+ +

∀ ∈� �
n n n

n n

n n
n

Solution: We have to prove that p(k) + tk+1 = p(k + 1)
or p(k + 1) – p(k) = tk+1

P k P k
k k

k k

k k

k k
( ) ( )

( )( )

( )( )

( )

( )( )
+ − =

+ +
+ +

−
+

+ +
1

1 4

4 2 3

3

4 1 2

=
+

+ +
+

−
+
+







1

4 2

1 4

3

3

1( )

( )( ) ( )

k

k k

k

k k

k
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=
+( )

+ +( ) +( ) − + +( )
+( ) +( )













1

4 2

5 4 1 6 9

1 3

2 2

k

k k k k k k

k k

=
+( ) +( ) +( )

+ + + + + − − − 
1

4 2 1 3
5 4 5 4 6 93 2 2 3 2

k k k
k k k k k k k k

=
+( ) +( ) +( )

= +
1

2 1 3
1

k k k
tk

⇒ p(k + 1) is true.

Example 8 Show by using principle of mathematical induction that 

1 3 2 3 3 3 3
2 1 3 3

4
2 3

1

⋅ + ⋅ + ⋅ + + ⋅ =
− ++

� n
nn

n( )
.

Solution: Let P n n
nn

n

( ) ⋅ + ⋅ + ⋅ + + ⋅ =
− ++

:
( )

1 3 2 3 3 3 3
2 1 3 3

4
2 3

1

�

When n = 1, LHS = 1 . 3 = 3 

and RHS = 
( ) ( )2 1 3 3

4

2 1 1 3 3

4

1 2n n− +
=

⋅ − ++
 = 

12

4
3=

Hence, P(1) is true.
Let P m( )  be true

⇒ ⋅ + ⋅ + ⋅ + + ⋅ =
− ++

1 3 2 3 3 3 3
2 1 3 3

4
2 3

1

� m
mm

m( )
 (1)

To prove P m( )+1  is true, i.e., 

1 3 2 3 3 1 3
2 1 3 3

4
2 1

2

⋅ + ⋅ + + ⋅ + + ⋅ =
+ ++

+
� m m

mm m
m

( )
( )

Adding  m m+( ) +1 3 1.  to both sides of Eq. (1), we get

1 3 2 3 3 1 32 1⋅ + ⋅ + + ⋅ + + ⋅ +� m mm m( ) =
− +

+ + ⋅
+

+( )
( )

2 1 3 3

4
1 3

1
1m

m
m

m

=
− + + ⋅ +

=
+ +

+

+

{ ( )}

( )

2 1 4 1 3 3

4

2 1 3 3

4

1

2

m m

m

m

m

Hence, P m( )+1  is true whenever P m( )  is true.

It follows that P n( )  is true for all natural numbers n.

Example 9 Prove the following theorem of Nicomachus by induction:

13 = 1, 23 = 3 + 5, 33 = 7 + 9 + 11, 43 = 13 + 15 + 17 + 19, etc. 

Solution: From the given pattern 13 = 1, 23 = 3 + 5, 33 = 7 + 9 + 11, 43 = 13 + 15 + 17 
+ 19, … note that the first term on the RHS are 1st, 2nd, 4th, 7th, … odd numbers. So 

the RHS of the nth identity to be proved has ( )n n−
+





1

2
1 st odd number as first term. 

Which is
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2
1

2
1 1 1 1

n n
n n

( )
( )

−
+






 − = − +

Hence, the nth identity to be proved is

n n n n n n3 1 1 1 3= − + + − + +( ( ) ) ( ( ) ) �  odd terms.

i.e., n n n n n n n

n

3 2 2 21 3 1= − + + − + + + + −( ) ( ) ( )�� ��������� ���������
terms

Assume this is true for n.
Then, RHS of (n + l)th identity

= + + + + + + + + + +
+

( ) ( ) ( )n n n n n n n

n

2 2 2

1

1 3 2 1�� ���������� �������
terms

����

= − + + − + + + + − +( ) ( ) ( )n n n n n n n

n

2 2 2 21 3 1 2�� ��������� ���������
terms

++ + + +

= + + + + = + + +

= +

( )

( )

n n n

n n n n n n n

n

2

3 2 2 3 2

3

2 1

2 3 1 3 3 1

1

Note: Now adding both the sides of n rows, we get

l3 + 23 + 33 + … + n3 = 1 + 3 + 5 + … + (2n - 1) + … + (n2 + n - 1).

Thus, on the right side there are

( ) ( )n n n n2 1 1

2

1

2

+ − +
=

+

 
odd numbers are starting from 1.

So,
( )

( )

( )

1 2 3
1

2

1

2
1 1

1

2

3 3 3 3 2

2

+ + + + =
+






 + + −

=
+








� n
n n

n n

n n

Also observe sum of the first n odd numbers = n2.

Example 10 Using mathematical induction, show that r C nn
r

r

n
n

=

−∑ = ⋅
0

12 .

Solution: Let P(n) = 1 . nC1 + 2 . nC2 + … + n . nCn = n . 2n – 1

P(1) = 1 . 1C1 = 1 = 1 . 21–1 = 1.

Hence P(1) holds true.
Assume that P(k) is true

⇒ 1.kC1 + 2kC2 + … + kkCk = k2k – 1

To prove that P(k + 1) is true, we write

r C C C k Ck
r

k k k
k

r

k
+ + + +

+
=

+
= ⋅ + ⋅ + + +∑ 1 1

1
1

2
1

1
0

1

1 2 1� ( )
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= + +( ) = +  + +( )+

= =
−∑ ∑r C k r C C kk

r
r

k

r

k
k

r
k

r
1

0 0
11 1

= + + +( ) = ( ) + + +( )
=

−
=

−
=

∑ ∑ ∑r C r C k P k r C kk
r

r

k
k

r
r

k
k

r
r

k

0
1

0
1

0

1 1

= P(k) + r C k Ck
r

k
k

r

k

−
=

+ +( )∑ 1
1

1

Changing r – 1 to r, we get 

 P(k + 1) = P(k) + r C k C
k

r
r

k
k

k+( ) + +( )
=

−

∑ 1 1
0

1

 = k . 2k – 1 + r C k r C Ck
r

k

r

k
k

r
r

k
k

r
r

k

+( ) = + +−

= = =
∑ ∑ ∑1 2 1

0 0 0

. . .

 = k . 2k – 1 + P(k) + 2k = 2k . 2k – 1 + 2k = k . 2k + 2k = 2k(k + 1).

Hence, the result is true for P(k + 1).
Hence, by mathematical induction, the result is true for all n.

Example 11 Using mathematical induction, show that

1
1

2
1

1

3
1

1

1

2

2 22 2 2
−






 −





 −

+








 =

+
+

   �
( )

.
n

n

n

Solution: Let P(n) ≡ 1
1

2
1

1

3
1

1

1

2

2 22 2 2
−






 −





 −

+








 =

+
+

   �
( )n

n

n
 

LHS of RHSP( )1 1
1

2

3

42
= −





 = =

Hence, P(1) is true.
Assume that P(k) is true,

⇒ 1
1

2
1

1

3
1

1

1

2

2 22 2 2
−






 −





 −

+








 =

+
+

   �
( )k

k

k

For P(k + 1), the LHS becomes

1
1

2
1

1

3
1

1

1
1

1

22 2 22

−





 −





 −

+








 −

+








  �

( ) ( )k k

= −
+









 =

+
+

+ +
+











=
+
+

P k
k

k

k

k k

k

k

k

k

( )
( ) ( )

(

1
1

2

2

2 2

4 3

2

2

2 2

2

2

2
 

++ +
+

=
+ + +

+ +

=
+
+ +

⇒

1 3

2

2 1 3

2 1 2

3

2 1 2

2 2

)( )

( )

( )( )( )

( )( )

( )

(

k

k

k k k

k k

k

k

P kk +1) is true

Hence, by mathematical induction, the result is true for all n.
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Build-up Your Understanding 2

 1. Use mathematical induction to prove the following∀ ∈n �:

  (a) 1 + 4 + 7 + … + (3n – 2) = 
n n( )

.
3 1

2

−

  (b) 12 + 22 + 32 + … + n2 = 
n n n( )( )

.
+ +1 2 1

6

  (c) 1 3 5 2 1
2 1 2 1

3
2 2 2 2+ + + + − =

− +
� ( )

( ) ( )
.n

n n n

  (d) 12 - 32 + 52 - 72 + … + (4n - 3)2 - (4n - 1)2 = -8n2.

  (e) 1 2
1

2
3 3 3

2

+ + + =
+( )







� n

n n
.

  (f) 3 ⋅ 6 + 6 ⋅ 9 + 9 ⋅ 12 + … + 3n(3n + 3) = 3n(n + 1) (n + 2).

  (g) r r n n n
r

n

( ) ( )( ).2 1
1

6
1 4 5

1

+ = + +
=
∑

  (h) 1 ⋅ 2 ⋅ 3 + 2 ⋅ 3 ⋅ 4 + 3 ⋅ 4 ⋅ 5 + … + n(n + 1)(n + 2) = 
n n n n( )( )( )

.
+ + +1 2 3

4

  (i) a + (a + d) + (a + 2d) + … + [a + (n – 1)d] = 
n

2
[2a + (n – 1)d].

  (j) a ar ar ar
a r

r
n

n

+ + + + =
−
−

−2 1 1

1
�

( )
 for r ≠ 1.

  (k) 
1

1 2

1

2 3

1

3 4

1

1 1⋅
+

⋅
+

⋅
+ +

+
=

+
...

( )
.

n n

n

n

  (l) 
1

1 4

1

4 7

1

7 10

1

3 2 3 1 3 1⋅
+

⋅
+

⋅
+ +

− +
=

+
�

( ) ( ) ( )
.

n n

n

n

  (m) 7 77 777 777 7
7

81
10 9 101+ + + + = − −+� ���... ( ).

n

n n
digits

  (n) 1
1

1 2

1

1 2 3

1

1 2 3

2

1
+

+
+

+ +
+ +

+ + + +
=

+( ) ( ) ( ) ( )
.�

� n

n

n

 2. Use mathematical induction to prove that

  (a) tan tan tan cot cot .α α α α α+ + + = −2 2 2 2 2 22 2 �n terms n n

  (b) sin sin sin sin sin sin .x x x nx
n

x
nx x

+ + + + =
+






2 3

1

2 2 2
� cosec

3.2.4 Problems Involving Inequations

Example 12 Prove by induction that if n ≥ 10, then 2n > n3.

Solution: For n = 10, we have 210 = 1024 > 103 = 1000.
So the statement is true for n = 10.
Supposing that this statement is true for n = k ≥ 10, i.e., 2k > k3.
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3.10  Chapter 3

For n = k + 1, 2k+1 > 2 × k3.
Now, 2k3 - (k3 + 3k2 + 3k + 1) = k3 - 3k2 - 3k - 1

 = (k - l)3 - 6k.

Let k = 10 + a, where a ≥ 0. 
Then (k - l)3 - 6k = (10 + a - 1)3 - 6 (10 + a)

 = (9 + a)3 - 60 - 6a

 = 729 + 243a + 27a2 + a3 - 60 - 60a

 = 669 + 183a + 27a2 + a3 ≥ 0 [ \

 a ≥ 0]

⇒ 2k3 > (k + l)3

⇒ 2k+1 > (k + 1)3.

Hence, the inequality is true for all n ≥ 10.

Example 13 Using mathematical induction show that tan na > n tan a

where 0 < a < 
π

4 1( )n−
∀  natural numbers, n > 1.

Solution: Since n > 1 we start with n = 2.

⇒ =
−

>tan
tan

tan
tan ,2

2

1
2

2
α

α
α

α  since 1 – tan2a < 1.

Hence, the result holds for n = 2.
Suppose it holds for n = k 
⇒ tan ka > k tan a.
 For n = k + 1,

 tan( )
tan tan

tan tan
k

k

k
+ =

+
−

1
1

α
α α
α α

                   since >
+

−
> +

k

k
k

tan tan

tan tan
( ) tan ,

α α
α α

α
1

1 1−− <tan tan .kα α 1

 Hence, the result holds for n = k + 1.
 Hence, by mathematical induction, the result is true for all n.

3.2.4.1 Use of Transitive Property

Sppose it is given F(n) > G(n) or 
F n

G n

( )

( )
>1 (Where G(n) > 0)

We have to prove that,

F(n + 1) > G(n + 1) or 
F n

G n

( )

( )

+
+

>
1

1
1

If possible, we may aim to prove,

   
F n

G n

( )

( )

+
+

>
1

1

F n

G n

( )

( )
>1

or   
F n

F n

( )

( )

+1 G n

G n

( )

( )
.

+
>

1
1
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Example 14 n! < 
n

n+







1

2
,  n > 1. 

Solution: Let P(n) = 
n

n
n+






 >

1

2
!

For n = 2, LHS = 
3

2

9

4

2






 = , RHS = 2! = 2

9

4
2> ,  Hence P(2) is true. 

Here, F(n) = 
n

G n n
n+






 =

1

2
( ) !

F(n +1) = 
n

n+






+

2

2

1

 G(n + 1) = (n + 1)!

Let P(n) is true, i.e., F(n) > G(n)

⇒
+F n

F n

( )

( )

1 G n

G n

( )

( )+1
 = 

1

2

2

1 1

1
n

n

n

n

n

n

+( )
+( ) +( )

+

.
!

!

= 
1

2

2

1

1
n

n

n+
+








+

= 
1

2
1

1

1

1

+
+








+

n

n

 > 
2

2
1=  1

1
2+






 >











m

m

⇒ 
F n

G n

( )

( )

+
+

>
1

1

F n

G n

( )

( )
>1

⇒ F(n + 1) > G(n + 1) ⇒ p(n + 1) is true . 

Example 15 Show, using mathematical induction, that

1

1

1

2

1

3 1n n n+
+

+
+ +

+
� > 1 for all natural numbers n.

Solution: Let us test for n = 1.

⇒ + + =
+ +

= >
1

2

1

3

1

4

6 4 3

12

13

12
1.

Hence, the result is true for n = 1.
Let us assume that the result holds for n = k.

That is 
1

1

1

2

1

3 1
1

k k k+
+

+
+ +

+
>�

For n = k + 1,

1

2

1

3

1

3 1

1

3 2

1

3 3

1

3 4k k k k k k+
+

+
+ +

+
+

+
+

+
+

+
�
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=
+

+
+

+
+

+ +
+






+ +

+
+

+
−

+
1

1

1

2

1

3

1

3 1

1

3 3

1

3 4

1

1k k k k k k k
�

1

3k+2

> +
+

+
+

−
+

1
1

3 2

1

3 4

2

3 3k k k

Now, if 1
1

3 2

1

3 4

2

3 3
1+

+
+

+
−

+
>

k k k
.

then we are throught. Or if  
1

3 2

1

3 4

2

3 3
0

k k k+
+

+
−

+
> ,

LHS = 
( ) ( ) ( ) ( ) [( ) ( )]

( ) ( )

3 4 3 3 3 2 3 3 2 3 2 3 4

3 2 3 4

k k k k k k

k k

+ + + + + − + +
+ +

   

  (( )3 3k +

= 
3 4 3 2

3 2 3 4 3 3

k k

k k k

+ − −
+( ) +( ) +( )

which is positive. Hence, the result is true for n = k + 1.
Hence, by mathematical induction, the result is true for all n.

Example 16 Using mathematical induction, show that

1
1

4

1
2

1
2

+ + + < −�
n n

, for all natural numbers n greater than 1.

Solution: For n = 2,

LHS   and RHS  

 

= + = = − =

<

1
1

4

5

4
2

1

2

3

2
5

4

3

2
.

Hence it holds for n = 2

Assume the result to hold for n k
k k

= ⇒ + + + + < −  1
1

4

1

9

1
2

1
2

�

For n k
k k k k

= + + + + +





 + +

< − +
+

1 1
1

4

1

9

1 1

1
2

1 1

12 2 2
,

( ) ( )
  �

Now, if we show that

2
1 1

1
2

1

1

1 1

1

1

12 2
− +

+
< −

+
−

+
>

+k k k k k k( ) ( ) ( ) ( )
or then we are through.

⇒ −
+

−
+

>

⇒
+ − − +

+

=
+ + − −

   

 

1 1

1

1

1
0

1 1

1

2 1

2

2

2

2 2

k k k

k k k k

k k

k k k k

( )

( ) ( )

( )

−−
+

=
+

>
k

k k k k( ) ( )
.

1

1

1
0

2 2
 

Hence, the result is true for n = k + 1.
Hence, by mathematical induction, the result is true for all n.
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Build-up Your Understanding 3

 1. Use mathematical induction to prove the following∀ ∈n �:

  (a) ( ) ( ) .2 7 3 2n n+ < +

  (b) 2n n> .

  (c) 1 2 3
1

8
2 1 2+ + + + < +� n n( ) .

  (d) 1 2
3

2 2 2
3

+ + + >� n
n

.

 2. Prove the following inequalities by mathematical induction:
  (a) 2n > n2 for n ≥ 5, n∈�.

  (b) 
( )!

( !)
, .

2 4

1
1

2

n

n n
n n

n

>
+

> ∈for �

  (c) n n n nn < ≥ ∈( !) , , .2 3 �

  (d) 
1

1

1

2

1

2

13

24n n n+
+

+
+ + >�  for n > 1, n∈�,

 3. Prove by the principle of mathematical induction that ( ) , ,1 1 1+ > + >x nx nn  
n∈�  and x x> − ≠1 0, .

3.3 second (or strong) PrinciPle oF MatheMatical induction

The set of statements,

{P(n): n ∈ }

is true for each natural number n ≥ 1 provided that:

 1. P(1) is true.
 2. P(n) is true for n ≤ m (where m ≥ 1) ⇒ P(n) is true for n = m + 1.

The above statement can be generalized as P n( )  is true for all n∈�  and n k≥ ,  if 

 1. P k( )  is true.

 2. P n( )  is true for ⋅ ≤n m  (where m ≥ k) ⇒ P m( )+1  is true.

This is also called extended principle of Mathematical Induction.

3.3.1 Working Rule

Step 1: Verify that P(n) is true for n = k, n = k + 1.
Step 2: Assume that P(n) is true for n ≤ m (where m ≥ k).
Step 3: Prove that P(n) is true for n = m + 1.

Once Step 3 is completed after Steps 1 and 2, we are through. That is, P(n) is true for 
all natural numbers n ≥ k.

(This method is to be used when P(n) can be expressed as a combination of P(n - 1) 
and P(n - 2). In case P(n) turns out to be a combination of P(n - 1), P(n - 2), and 
P(n – 3), we verify for n = k + 2 also in Step 1).
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Example 17 In a sequence 1, 4, 10, …, t1 = 1, t2 = 4, and tn = 2tn-1+ 2tn-2 for n ≥ 3.
Show by mathematical induction that

t for all nn
n n= + + − ∈

1

2
1 3 1 3[( ) ( ) ] .�

Solution: Let us assume that the result is true for tk for all k < n.

t1
1 11

2
1 3 1 3

1

2
1 3 1 3

1

2
2 1

= + + −

= + + −

= × =

[( ) ( ) ]

( )

is true

t2
2 24

1

2
1 3 1 3

1

2
8 4= = + + − = =[( ) ( ) ] ( )  is also true.

Now, we have to prove that

tn
n n= + + −

1

2
1 3 1 3[( ) ( ) ]

Since,

t t tn n n

n n n

= +

= + + −


+ + + −

− −

− − −

2

2
1

2
1 3 1 3

1

2
1 3 1 3

1 2

1 1 2

[ ]

{( ) ( ) } {( ) ( )) }n− 


2

= + + + + − + −

= + + + −

− − − −

−

[( ) ( ) ( ) ( ) ]

[( ) ( ) (

1 3 1 3 1 3 1 3

1 3 2 3 1 3

1 2 1 2

2

n n n n

n )) ( )]

( )
( )

( )
( )

[(

n

n n

−

− −

−

= +
+

+ −
−











= +

2

2
2

2
2

2 3

1 3
1 3

2
1 3

1 3

2

1

2
1 33 1 3

1

2
1 3 1 3

) ( ) ]

[( ) ( ) ]

n n

n
n nt

+ −

= + + −Thus,

So, by the second principle of mathematical induction, the formula is true for all 
natural numbers.

Example 18 It is given that u1 = 1, u2 = 1, un+2 = un+1 + un   for n ≥ 1.

Use mathematical induction to prove that un = 
1

5

1 5

2

1 5

2

+







 −

−























n n

.

Solution: For n = 1, and 2, we have

u

u

1

2

2 2

1 5

2

1 5

2
1

1

5

1 5

2

1 5

2

=
1

5

+
−

−










=

=
+







 −

−






















=1

⇒ The result is true for n = 1, 2.

M03_Mathematics Induction_C03.indd   14 8/11/2017   1:53:10 PM



Mathematical Induction  3.15

Assume the result to be true for n ≤ k.

Then   uk

k k

=
+







 −

−























1

5

1 5

2

1 5

2

From the given relation

u u u

u

k k k

k

k k

+ −

+

= +

⇒ =
+







 −

−






















+

1 1

1
1

5

1 5

2

1 5

2

1

5

11 5

2

1 5

2

1 1
+







 −

−























− −k k

=
+



















+
+












−

−













− −
1 5

2

1

5

1 5

2
1

1 5

2

1

5

1 1k k







−
+













=
+



















+










−

−
−

1 5

2
1

1 5

2

1

5

3 5

2

1
1k

55

2

1

5

3 5

2

1




















−











−k

=
+



















+






















−

−









−
1 5

2

1

5

1 5

2

1 5

2

1 2k kk−










−























1 2
1

5

1 5

2

=
+







 −

−























+ +
1

5

1 5

2

1 5

2

1 1k k

Hence, the result is true for n = k + 1.
Hence, by mathematical induction, the result is true for all n.

Example 19 If x + y = a + b, x2 + y2 = a2 + b2,

prove by mathematical induction that xn + yn = an + bn for all natural numbers n.

Solution: Let P(n) ≡ xn + yn = an + bn

 P(1) ≡ x + y = a + b (1)

 P(2) ≡ x2 + y2 = a2 + b2 (2)

Hence, P(1) and P(2) are true. Assume the result to be true for n ≤ k.

⇒ x k - 1 + yk - 1 = ak - 1 + bk - 1 and xk + yk = ak + bk

In order to prove that P(k + 1) is true, we write

 xk + 1 + yk + 1 = x(ak + bk - yk) + y(ak + bk - xk)

 = (ak + bk) (x + y) - xy (xk - 1 + yk - 1)
 = (ak + bk) (a + b) - xy (ak - 1 + bk - 1)

Now from Eqs. (1) and (2) xy = ab

⇒ xk +1 + yk + 1 = ak + 1 + bk + 1

which is the desired RHS for P(k + 1).
Hence, by mathematical induction, the result is true for all n.
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Example 20 For x3 = x + 1, an = an–1 + bn–1, bn = an–1 + bn–1 + cn–1, cn = an–1 + cn–1, 
prove that x3n = anx + bn + cnx

-1 ∀ n ∈ �  and ao = 0, bo = 1, co = 0.

Solution: We prove the result for n = 1, first. Accordingly, we should have

 x3(1) = a1 x + b1 + c1 x
-1. Also a1 = ao + bo = 0 + 1 = 1

 b1 = ao + bo + co = 0 + 1 + 0 = 1;
 c1 = ao + co = 0 + 0 = 0. 
 ⇒ x3 = 1x + 1 = x + 1, which is true.

Assume the result to be true for n = k

⇒ x3k = akx + bk + ck . x
-1

For n = k + 1, x3(k + 1) = x3k ⋅ x3

 = (akx + bk + ck x
-1)(x3) = (akx + bk + ck x

-1)(1 + x).  (since x3 = 1 + x)

 = akx + akx
2 + bk + bkx + ckx

-1 + ck

 = x [ak + bk] + ak x
-1 x3 + bk + ck x

-1 + ck

 = x [ak + bk] + ak x
-1 (1 + x) + bk + ck x

-1 + ck  (since x3 = 1 + x)

 = x [ak + bk] + ak x
-1 + ak + bk + ck x

-1 + ck

 = x [ak + bk] + ak+ bk + ck + x-1 [ak + ck]

 = ak+1 x + bk+1 + ck+1 x
-1

Hence, the result is true for n = k + 1.
Hence, by mathematical induction, the result is true for all n.

Example 21 Prove that, for all natural numbers n n, ( )3 5+  + −( )3 5 n is divisible 

by 2n.

Solution: Let Tn be the statement that ( ) ( )3 5 3 5+ + −n n  is divisible by 2n.

T1 3 5 3 5 6: ( ) ( )+ + − = is divisible by 21 is true.

T2
2 23 5 3 5 28: ( ) ( )+ + − =

 
is divisible by 22 is true. Let us take that Tk is true for 

all k < n for some n.

To prove Tn
n n: ( ) ( )3 5 3 5+ + − is divisible by 2n.

Now, for n - 1 < n,

( ) ( )3 5 3 51 1+ + −− −n n is divisible by 2n - 1.

( ) ( )

[( ) ( ) ]( )

[( )( )

3 5 3 5

3 5 3 5 3 5 3 5

3 5 3 5

1 1

1

+ + −

= + + − + + −

− + − +

− −

−

n n

n n

n (( )( ) ]

[( ) ( ) ] [ ( ) ( ) ]

3 5 3 5

6 3 5 3 5 4 3 5 4 3 5

1

1 1 2 2

− +

= + + − − − + +

−

− − − −

n

n n n n

== × + + − − + + −− − − −3 2 3 5 3 5 4 3 5 3 51 1 2 2[( ) ( ) ] [( ) ( ) ]n n n n

Here, 2 3 5 3 51 1[( ) ( ) ]+ + −− −n n  is divisible by 2 × 2n - 1 = 2n, and 4 3 5 2[( )+ +−n

( ) ]3 5 2− −n is divisible by 4 × 2n - 2 = 2n.
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Thus, ( ) ( )3 5 3 5+ + −n n is divisible by 2n, i.e., Tn is true if Tn-1 and Tn-2 are true. 
As, T1 and T2 are true, by the second principle of mathematical induction, Tn is true 
for all n ∈ N.

Build-up Your Understanding 4

 1. If  and show thata b u
a b

n

n n

=
+

=
−

=
−1 5

2

1 5

2 5
, , u u un n n= +− −1 2 .

  Hence show that un is a positive integer for all n ∈ .
 2. If u1 = u2 = 1 and un = un-1 + un-2 for n > 2, prove that

  (a) u2n+2 = u1 + u3 + … + u2n+1.

  (b) un 
2 - un+1 . un-1 = (-1)n+1.

  (c) u2n+1 = 1 + u2 + u4 + … + u2n.
  (d) un+p-1 = un-1 . up-1 + un . up.

  (e) u u n kn nk ∀ ∈, .�

Solved Problems 

Problem 1 If n is a positive integer, prove that

1 1

1

1

2 1
1

1

2

1

3

1

4

1

2 1n n n n
+

+
+ +

−
= − + − + +

−
� � .

Solution: Let U
n n n

n = +
+

+ +
−

1 1

1

1

2 1
� ,

and V
n

n = − + − + +
−

1
1

2

1

3

1

4

1

2 1
� .

Now, we should prove that Un = Vn for all n ∈ N .

 1. For n = 1, U1
1

1
1= =  and Vn = 1 and hence, the statement is true for n = 1.

 2. Let the statement be true for n = k.

Now,

U U
k k k k k k

k

k k+ − =
+

+
+

+ +
+







 − +

+
+ +

−








= +

1
1

1

1

2

1

2 1

1 1

1

1

2 1

1

2

� �

11

2 1

1 1

2 1

1

2k k k k+
− =

+
− ,

and

V V
k k

k

k k+ − = − + − +
+







 − − + − +

−








= − +

1 1
1

2

1

3

1

2 1
1

1

2

1

3

1

2 1

1

2

1

� �

22 1

1

2 1

1

2k k k+
=

+
− ,

and so, Uk +1 - Uk = Vk +1 - Vk .
But Vk = Uk by assumption and so Uk +1 = Vk +1.
Thus, by the principle of mathematical induction, the statement is true for all n ∈ .
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Problem 2 Prove that

1

15

1 3 5 7 99

2 4 6 8 100

1

10
<

⋅ ⋅ ⋅
⋅ ⋅ ⋅

<
�
�

.

Solution: Let P
n n

n n
=

⋅ ⋅ ⋅ − ⋅ −
⋅ ⋅ − ⋅

1 3 5 7 2 3 2 1

2 4 6 2 2 2

�
�
( ) ( )

( )

Here we will prove that the product Pn is actually lesser than 
1

3 1n+
 for n > 1 and 

greater than 
1

4 1n+
.

P2
1 3

2 4

3

8
=

⋅
⋅

=

As
1

4 2 1

1

3

3

8

1

7

1

3 2 1
2

× +
= < < =

× +
⇒ P is true.

Now let P
n

n
n
2

2 2 2 2

2 2 2 2

1 3 5 2 1

2 4 6 2
=

⋅ ⋅ −
⋅ ⋅

�
�
( )

( )
.

We use mathematical induction to prove our assertion. 

1

4 1

1

3 1n
P

n
n

+
< <

+
 or equivalently 

1

4 1
2

n
Pn+

< <
+

1

3 1n

Let us assume that this result is true for n = m.

i.e., 1

4 1

1

3 1
2

m
P

m
m+

< <
+

i.e., 1

4 1

1 3 2 1

2 4 2

1

3 1

2 2 2

2 2 2m

m

m m+
<

⋅ −
⋅

<
+

�
�
( )

( )

P
m m

m m

P P

m

mm

+ =
⋅ − ⋅ +
⋅ ⋅ +

= ⋅+

1
2

2 2 2 2

2 2 2 2

2 2

1 3 2 1 2 1

2 4 2 2 2

2
1

�
�
( ) ( )

( ) ( )

( mm

m

m

m

m
P

m

m

mm

+
+

⇒
+

+
+

< <
+

⋅
+
++

1

2 2

1

4 1

2 1

2 2

1

3 1

2 1

2 2

2

2

2

2 1
2

2

)

( )

( )

( )

( )

( ))2

Now 
1

3 1

2 1

2 1

4 4 1

4 3 1 2 1

4 4 1

1

2

2 2

2

2

2

( )

( )

( ) ( )( )m

m

m

m m

m m m

m m

+
×

+
+

=
+ +

+ + +

=
+ +

22 28 20 4

4 4 1

12 28 19 43 2

2

3 2m m m

m m

m m m
m

+ + +
<

+ +
+ + +

,

(

where is positive

=
44 4 1

4 4 1 3 4

1

3 4

1

3 1 1

2

2

m m

m m m m m

+ +
+ + +

=
+

=
+ +

)

( )( ) ( )
.
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Also 1

4 1

2 1

2 2

2

2m

m

m+
×

+
+

( )

( )

       

=
+ +

+ + +

=
+ +

+ + +

=
+

4 4 1

4 1 4 8 4

4 4 1

16 36 24 4

4 4

2

2

2

3 2

2

m m

m m m

m m

m m m

m

( )( )

( )

( mm

m m m

m m

m m m m

+
+ + + −

>
+ +

+ + +
=

+
=

1

4 4 1 4 5 1

4 4 1

4 4 1 4 5

1

4 5

1

4

2

2

2

)

( )( )

( )( ) (mm + +1 1)

Thus, 
1

4 1 1

1

3 1 11
2

( ) ( )m
P

mm+ +
< <

+ ++  

As P2 is true and the truth of Pm implies the truth of Pm+1, so Pn is true for all n ≥ 2.

∴
+

< <
+

∀ ≥
1

4 1

1

3 1
22

n
P

n
nn

or
1

4 1

1

3 1
2

n
P

n
nn

+
< <

+
∀ ≥

In the problem, we have n = 50.

So 
1 3 2 50 1

2 4 2 50

1

150 1

1

151

1

100

1

10

⋅ × −
⋅ ×

<
+

= < =
�

�
( )

( )
.

Also, 1 3 5 99

2 4 6 100

1

4 50 1

1

201

1

225

1

15

⋅ ⋅
⋅ ⋅

>
⋅ +

= > =
�
�

.

Problem 3 Prove the rule of exponents ( )ab a bn n n=  by using principle of math-
ematical induction for every natural number.

Solution: Let P n( )  be the given statement, i.e., P n ab a bn n n( ): ( ) =

We note that P n( )  is true for n = 1 since ( )ab a b1 1 1=

Let P k( )  be true, i.e., ( )ab a bk k k=  (1)

We shall now prove that P k( )+1  is true whenever P k( )  is true.

Now, we have ( ) ( ) ( )ab ab abk k+ =1  

 = ( ) ( )a b abk k  [by Eq. (1)]

 = ( ) ( )a a b b a bk k k k⋅ ⋅ = ⋅+ +1 1 1 1

Therefore, P k( )+1  is also true whenever P k( )  is true.
Hence, by principle of mathematical induction, P n( )  is true for all n∈�.

Problem 4 Prove that 7 2 32 3 3 1n n n+ ⋅− −( )  is divisible by 25, for n ∈ .

Solution: Let P(n) be the statement that ‘ 7 2 32 3 3 1n n n+ ⋅− −( )  is divisible by 25’.

For n = 1, 7 2 32 3 3 1n n n+ ⋅− −( )  = 7 1 1 502 + ⋅ =( ) ,  which is divisible by 25. 
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Let P(r) be true for n = r, i.e., 

7 2 32 3 3 1r r r+ ⋅− −( )  (is divisible by 25) = 25k, k ∈ . (1)

For n = r + 1, P r r r r( ) : ( )( )+ + ⋅+ + − + −1 7 2 32 2 3 1 3 1 1

= ⋅ + ⋅49 7 2 32 3r r r( ) = ⋅ + ⋅ ⋅ ⋅− −49 7 8 2 3 32 3 3 1r r r( )

= ⋅ + + = ⋅ + ⋅− −25 7 24 7 2 3 25 7 24 252 2 3 3 1 2r r r r r k[ ( ) ]  (using Eq. (1))

= +25 7 242[ ].r k  Hence, P(r + 1) is also true.

Hence by mathematical induction, the result is true for all n ∈ .

Problem 5 Given n n4 10<  for a fixed positive integer n ≥ 2, prove that ( ) .n n+ < +1 104 1

Solution: The given statement is 

P(n): n n4 10< ,  n ≥ 2. For n = 2, this is obviously true. Now 

( )n n n n n n+ − = − + + + +1 10 9 4 6 4 14 4 4 3 2

 = − − + − + − + −





n n n n n n n3 2 2 32 4
3

2
4 4

9

2
1( ) ( ) ( )  (1)

For n ≥ 2, each term on the RHS of (i) is ≤ 0.

Hence, ( ) ,n n n+ − < ≥1 10 0 24 4  ⇒ ( )n n n+ < < ⋅1 10 10 104 4  (given)

Hence, ( ) .n nn+ < ≥+1 10 24 1 for

Hence, by mathematical induction, the result is true for all n ≥ 2.

Peoblem 6 Show that 
1

1 3

2

3 5 2 1 2 1

1

2 2 1

2 2 2

⋅
+

⋅
+ +

− +
=

+
+

�
n

n n

n n

n( )( )

( )

( )
 for n ≥ 1.

Solution: Let P(n) ≡ 
1

1 3

2

3 5 2 1 2 1

1

2 2 1

2 2 2

⋅
+

⋅
+ +

− +
=

+
+

�
n

n n

n n

n( )( )

( )

( )
 

For n = 1, LHS is 
1

1 3
RHS is 

1(2)

2(3)

2

⋅
= = ⋅

1

3

1

3
;

⇒ The result is true for n = 1.

Let us assume it to be true for n = k. i.e.,

1

1 3

2

3 5 2 1 2 1

1

2 2 1

2 2 2

⋅
+

⋅
+ +

− +
=

+
+

�
k

k k

k k

k( )( )

( )

( )
,

Let us examine P(k + 1). Then

1

1 3

2

3 5 2 1 2 1

1

2 1 2 3

1

2 2 2 2

⋅
+

⋅
+ +

− +
+

+
+ +

= +
+

�
k

k k

k

k k

P k
k

( )( )

( )

( )( )

( )
( )22 2

2 1 2 3

1

2 2 1

1

2 1 2 3

1

2 1 2

( )( )

( )

( )

( )

( )( )k k

k k

k

k

k k

k

k

k

+ +
=

+
+

+
+

+ +

=
+
+

+
kk

k

k

k

k k k

k

+
+






=

+
+

+ + +
+











1

2 3

1

2 1

2 3 2 2

2 2 3

2( )

( ) ( )
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=
+
+

+ +
+









 =

+
+

+ + +( )

( ) ( )

( )

( ) (

k

k

k k

k

k

k

k k k1

2 1

2 5 2

2 2 3

1

2 1

2 4 2

2 2

2 2

kk

k

k

k k k

k

k

+










=
+
+

+ + +
+









 =

+

3

1

2 1

2 2 1 2

2 2 3

2 1

)

( )

( )

( ) ( )

( )

( )(kk k

k k

k k

k

P k

+ +
+ +

=
+ +

+

⇒ +( )

1 2

2 2 3 2 1

1 2

2 2 3

1

)( )

( )( )

( )( )

( )

. is true

Hence, by mathematical induction, the result is true for all n.

Problem 7 Show that H1 + H2 + … + Hn = (n + 1) Hn – n.

where H
n

nn = + + + + ∀ ∈   1
1

2

1

3

1
� �.

Solution: Let P(n) ≡ H1 + H2 +…+ Hn = (n + 1)Hn - n
For n = 1, we have H1 = LHS = 1

RHS is 2H1 - 1 = 2 - 1 = 1. Hence P(1) is true.
Assume that P(k) is true. Thus, H1 + H2 + … + Hk = (k + 1) Hk - k.
For n = k + 1, 
P(k + 1) ≡ H1 + H2 + … + Hk + Hk+1 = (k + 1)Hk + Hk+1 - k.

              = + −
+






+ − = + + − −+ + +( ) [ ]k H

k
H k H k kk k k1

1

1
1 1 11 1 1

              = (k + 2) Hk+1 - (k + 1)

which is the desired RHS. Hence, we are through.

Hence, by mathematical induction, the result is true for all n.

Problem 8 Show that 2nCn < 4n ∀ n ∈ .

Solution: Let P(n) ≡ 2nCn < 4n

For n = 1, LHS = 2C1 = 2, RHS = 41 = 4.

2 < 4, Hence, P(1) is true. Assume that P(k) is true.

⇒ 2kCk < 4k

For n = k + 1, 2k+2Ck+1=
( )( )

( )( )

2 2 2 1

1 1
2k k

k k
Ck

k
+ +
+ +

⋅ <
+ +
+ +

( )( )

( )( )

2 2 2 1

1 1
4

k k

k k
k

 If we show that we are thro
( )( )

( )( )
,

2 2 2 1

1 1
4 4 1k k

k k
k k+ +

+ +
≤ + uugh.

Hence, we prove that 
2 2 1

1
4

( )k

k

+
+

≤

That is, 2k + 1 ≤ 2k + 2 or 1 ≤ 2, which is correct. Hence, P(k + 1) is shown to be true.
Hence, by mathematical induction, the result is true for all n.

Problem 9. Show that 1 + 2x + 3x2 +…+ nxn-1 = 
1 1

1

1

2

− + +
−

+( )

( )

n x nx

x

n n

 for all n ∈ .

Solution: We write P(n) = 1 + 2x + 3x2 +…+ nxn-1.

Let us start with P(1), LHS = 1.
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RHS

  is true

Assume that 

=
− +
−

=
−
−

=

⇒

1 2

1

1

1
1

1

2

2

2

2

x x

x

x

x

P

( )

( )

( )

( )

PP k

x x kx
k x kx

x
k

k k

( )

( )

( )

 is true.

 

Let 

⇒ + + + + =
− + +

−
−

+
1 2 3

1 1

1
2 1

1

2
�

uus examine  P k i e

x x kx k x P k kk k

( ), . .,

( ) ( ) (-

+

+ + + + + + = + +

1

1 2 3 12 1� 11

1 1

1

1

1

1 1 1

1

2

1

)

( )

( )

( )

( ) ( )

x

k x kx

x

k x

k x kx k

k

k k k

k k

=
− + +

−
+

+

=
− + + + +

+

+ xx x x

x

k [ ]

( )

1 2

1

2

2

+ −
−

=
− + + + + + + − + +

−

=
+

+ + +1 1 1 1 2 1 0

1

1

1 2 1

2

( ) ( ) ( ) ( )

( )

(

k x kx k x k x k x

x

k

k k k k k

−− − + +
−

=
− + + +

−

+ + + +2 2 1

1

1 2 1

1

1 2

2

1 2

2

k x k x

x

k x k x

x

k k k k) ( )

( )

( ) ( )

( )

whicch is the RHS of P k( ).+1

⇒ P(k + 1) is true.

Hence, by mathematical induction, the result is true for all n.

Problem 10 Show that cos a cos 2a cos 4a … cos(2n-1 a) = 
sin

sin

2

2

n

n

a

a
 ∀ n ∈ .

Solution: Let P(n) = cos a cos 2a cos 4a … cos(2n-1a)

For P(1), LHS is cos a

RHS is 
 

Hence  is true.

sin

sin

sin cos

sin
cos

( )

2

2

2

2
1

a

a

a a

a
a

P

= =

Assume the result to be true for  

 cos  

P k

i e a a

( ),

. ., cos cos2 44 2
2

2
1a a

a

a
k

k

k
… cos( )

sin

sin
− =

Now 

   

P k

a a a a a P kk k

( )

cos cos cos cos( ) cos( ) ( ) cos(

+

= = ⋅−

1

2 4 2 2 21… kk

k k

k

k

k

a

a a

a

a

a
P k

)

sin cos

sin

sin

sin
.= = ⇒ +( )

+

+

2 2

2

2

2
1

1

1

 
 is true

Hence, by mathematical induction, the result is true for all n.

Problem 11 Show that 

tan tan tan
( )

− − −

+ ⋅ ⋅






 + + ⋅ ⋅







 + +

+ +
1

2
1

2
1

1 1 2 1 2 3 1 1

x

x

x

x

x

n n
�

xx

n x x n

2

1 11











= + − ∀ ∈− −tan ( ) tan .�
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Solution: Let P(n) =

P n
x

x

x

x

x

n
( ) tan tan tan=

+ ⋅ ⋅






 + + ⋅ ⋅







 + +

+
− − −1

2
1

2
1

1 1 2 1 2 3 1
�

(( )n x+










1 2

For n = 1, 

tan tan tan

tan

− − −

−

+






 = = −

=
−

+

1
2

1 1

1

1 2
2

2

1 2

x

x
x x

x x

LHS and RHS  

xx x

x

x⋅





=

+
−tan 1

21 2

⇒ =

⇒
+ ⋅




−

 LHS RHS

Let us assume that  is true. P k

x

x

( )

tan 1
21 1 2


 + + ⋅







 + +

+ +










=

− −

−

tan tan
( )

tan (

1
2

1
2

1

1 2 3 1 1

x

x

x

k k x

k

�

++ − −1 1) tanx x

Now, P(k + 1) 

=
+ ⋅







 + + ⋅







 + +

+ +( )
− − −tan tan tan1

2
1

2
1

1 1 2 1 2 3 1 1

x

x

x

x

x

k k x
�

22

1
21 1 2













+
+ +( ) +( )













−tan
n

k k x

= +
+ + +

= + +
+ + +

−

− −

P k
x

k k x

k x
x

k k x

( ) tan
( )( )

tan ( ) tan
( )( )

1
2

1 1

1 1 2

1
1 1 2 22

1− −tan x

=
+ + + + +

+ +








 −

=

− −

−

tan
( ) ( ) ( )

( ) ( )
tan

tan

1
2 3

2 2
11 1 2

1 1

k x k k x x

k x
x

11
2 3

2 2
12 1 2

1 1

( ) ( ) ( )

( ) ( )
tan

k x k k x

k x
x

+ + + +
+ +









 − −

=
+ + +

+ +








 − = +− − −tan

( ) [ ( ) ]

( )
tan tan ( )1

2 2

2 2
1 12 1 1

1 1
2

k x k x

k x
x k xx x− −tan 1

⇒ P(k + 1) is true.
Hence, by mathematical induction, the result is true for all n.

Problem 12 Prove, using Mathematical induction, that

2 2 2 2
2 1

+ + + =
+

�� ���� ����
n

n
times

cos
π

 ∀ n ∈ .

Solution: Let P(n) = 2 2 2+ + +�� ���� ����
n times
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For n = 1.

LHS  and RHS

LHS RHS  hence 

= = 





 = = =

=

2 2
2

2
4

2

2
2

1

2
cos cos .

, (

π π

P ))

( )

 is true.

Assume that  is true.

times

P k

k

⇒ + + +2 2 2�� ���� ����� =
+









+

2
2 1

1

cos

, ( )

π
k

P kNow

= + + + = + + + +( )

= +

+

2 2 2 2 2 2 2

2

1

�� ���� ���� �� ���� ����
k k

P k

times times

( )) cos= +
+







2 2

2 1

π
k

= + 





 =

=

+ +

+

2 1
2

2 2
2

2
2

1
2

2

2

cos cos

cos

π π

π

k k

k

⇒ P(k + 1) is true.
Hence, by mathematical induction, the result is true for all n.

Problem 13 Use mathematical induction to prove that 

cos cos cos cos sin .x x nx
n

x
nx x

+ + + =
+

⋅2
1

2 2 2
� cosec

Solution: For n = 1, RHS = cos sin cosx
x x

x
2 2

cosec LHS= =

Hence, the result is true for n = 1. Let the result be true for n = r, i.e., 

cosx + cos2x +…+ cosrx = cos sin
r

x
rx x+1

2 2 2
cosec  (1)

For n = r + 1, 

LHS = cosx + cos2x +…+ cosrx + cos(r + 1)x = cos sin cos( )
r

x
rx x

r x
+

+ +
1

2 2 2
1cosec

=
+

+ +





cosec
x r

x
rx

r x
x

2

1

2 2
1

2
cos sin cos( ) sin

=
+

− +
+

−
+





1

2 2

2 1

2 2

2 3

2

2 1

2
cosec

x r
x

x r
x

r
xsin sin sin sin

=
+

−




= ⋅

+ +1

2 2

2 3

2 2 2

1

2

2

2
cosec cosec

x r
x

x x r
x

r
xsin sin sin cos ,  so that the result 

is true for n = r + 1.
Hence, by mathematical induction, the result is true for all n ≥ 1.
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Problem 14 Let 0 < Ai < p for i = 1, 2, ..., n. Use mathematical induction to prove that

sinA1 + sinA2 +…+  sinAn ≤ n sin
A A A

n
n1 2+ + +








�

where n ≥ 1 is a natural number.
{You may use the fact that p sin x + (1 - p) sin y ≤ sin[px + (1 - p)y]
where 0 ≤ p ≤ 1 and 0 ≤ x, y ≤ p}.

Problem 15 Using mathematical induction, prove that for every integer n ≥ 1, ( )3 12n −
is divisible by 2n + 2 but not by 2n + 3.

Solution: Let P(n) = 3 12n −

P(1) = 321

 - 1 = 8 = 1 ⋅ 8 is divisible by 23 but not by 24

P(2) = 322

 - 1 = 80 = 5 ⋅ 24 is divisible by 24 but not by 25

⇒ P(1) and P(2) are true.

Assume that P(k) = 32k

 - 1 is divisible by 2k+2 but not by 2k + 3

⇒ 32k

 - 1 = A . 2k+2 where A is an odd integer.

Now, P(k + 1) = 32 1k+

 - 1

 = ( )32 2k  - 1

 = (A . 2k + 2 + 1)2 - 1

 = A2 22k + 4 + 2.A . 2k + 2

 = 2k + 3(A2 . 2k + 1 + A)

 = 2k + 3 . an odd integer = 2k + 3 . B

⇒ P(k + 1) is divisible by 2k + 3 but not by 2k + 4 because B is an odd integer.
⇒ P(k + 1) is true. 
Hence, by mathematical induction, the result is true for all n.

Problem 16 Let p be a prime and m a positive integer. By mathematical induction on 
m, prove that whenever r is an integer such that p does not divide r, p divides mpCr.

Solution: For m = 1, pCr = 
p p p p r

r

( )( ) ( )− − − +
⋅ ⋅

1 2 1

1 2 3

�
�

 where 1 ≤ r ≤ p – 1.

Since p is a prime number it cannot be divisible by any of the numbers 2, 3, …,  r.
Bring a positive integer pCr is divisible by p. Hence, the statement is true for m = 1.
Let the statement be true for m = n, i.e., npCr is divisible by p. 

Now, (1 + x)(n + 1)p = (1 + x)p (1 + x)np

Coefficient of xr on LHS = Coefficient of xr on RHS 

⇒ (n + 1)pCr = pC0 ⋅ 
npCr + pC1 

npCr - 1 + pC2 
. npCr-2 +…+ pCr 

npC0.

All the terms on RHS are divisible by p as npCr, 
pC1, 

pC2 ..., 
pCr are divisible by p.

⇒ (n + 1)pCr is divisible by p. 
Hence, by the principle of mathematical induction the statement is true for all m.

Problem 17 Prove by using mathematical induction or otherwise,

n n n n7 5 3

7 5

2

3 105
+ + −  is an integer.
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Solution: 
Using induction: Let M(n) be the statement that 15n7 + 21n5 + 70n3 - n is divisible 
by 105 for n = 1.

M(l) = 15 × l7 + 21 × l5 + 70 × l3 - 1 = 105 is divisible by 105.
So, M(l) is true.
Assume that M(k) is true, i.e.,

M(k) = 15k7 + 21k5 + 70k3- k = 105s.
Now, 

M(k + 1) = 15(k + l)7 + 21(k + l)5 + 70(k + l)3 - (k + 1) 

= (15k7 + 21k5 + 70k3 - k)

+ 15{(k + l)7 - k7} + 21{(k + l)5 - k5}  
+ 70{(k + l)3 - k3)} - {(k + 1) - k}

= + ( ) + + + ( ) + ( )( )
+ ( ) + ( ) + + (

105 15

21

1
7 6

2
7 5

6
7

7
7

1
5 4

2
5 3

4
5

s k k k

k k

( ) �

� )) + ( )( )
+ + + −

k

k k

5
5

270 3 3 1 1{ }

= 105s + 15 × 7p + 15 + 21 × 5q + 21 + 70 × 3r + 70 - 1

where 1
7 6

2
7 3

6
7( ) + ( ) + + ( )k k k�  is a multiple of 7 and hence, taken as 7p,

1
5 4

2
5 3

4
5( ) + ( ) + + ( )k k k�  is a multiple of 5 and hence, written as 5q and clearly 

3k2 + 3k is a multiple of 3 and hence is, 3r. 
So, 

M(k + 1) = 105s + 105p + 105q + 105 × 2r + 15 + 21 + 70 - 1 
= 105(s + p + q + 2r) + 105
= 105(s + p + q + 2r + 1) is divisible by 105.

So, M(k) implies M(k + 1)

∵  M (l) is true, hence, the statement 15n7 + 21n5 + 70n3 - n is divisible by 105 for 
all n ∈ .

So,
( )15 21 70

105

7 5 3n n n n+ + −  is an integer.

Aliter: 
1

105
15 21 707 5 3[ ].n n n n+ + −

Let, f (n) = 15n7+ 21n5+ 70n 3- n.

We will show that 

f (n) = 15n7 + 21n5 + 70n3 - n is divisible by 105. 

105 = 7 × 5 × 3.

We will prove that f (n) is divisible by 3, 5, 7 for all n and hence, by 105.

Consider 7:

            n7 ≡ n (mod 7) [by F.L.T.]
\ 15n7 ≡ 15n (mod 7) ≡ n (mod 7) 
 \ f (n) ≡ (n + 0 + 0 - n) mod 7 = 0 (mod 7) 

for all n.

\ 7 | f (n).
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Consider 5:

5 | (15n7 + 70n3)

n5 ≡ n (mod 5) [by FLT]

\ f (n) ≡ (0 + 21n + 0 - n) (mod 5) ≡ 0 (mod 5) 

\ 5 | f (n).

Consider 3:
 n3 ≡ n (mod 3) [by FLT]

 f (n) = (0 + 0 + 70n - n) (mod 3) = 0 (mod 3) 

\ 3 | f (n) 

Hence, 105 | f (x).
Hence, the given expression is an integer.

Problem 18 Show that 32n+5 + 160n2 - 56n - 243 is divisible by 512. 

Solution: Here we use mathematical induction. Let M(n) be the statement that
M(n) = 32n+5 + 160n2 - 56n - 243 is divisible by 512.
M(1) = 37 + 160 - 56 - 243 = 2048 = 512 × 4 and hence, M(1) is true.
Let us assume that M(k) is true

 M(k + 1) = 32(k+1)+5 + 160(k + l)2 - 56(k + 1) - 243 

 = 32k+7 + 160k2 + 264k - 139 

 = 32(32k+5 + 160k2- 56k - 243) - 8 × 160k2 + 768k + 2048

 = 32(32k+5 + 160k2- 56k - 243) - 256(5k2 - 3k - 8)

 = 32(32k+5 + 160k2 - 56k - 243) - 256(5k - 8) (k + 1).

By M(k), 32k+5 + 160k2 - 56k - 243 is divisible by 512.

Also (5k - 8) (k + 1) is even for all k. Since if k is even, (5k - 8) is even, if k is odd, 
(k + 1) is even and so, -256(5k - 8)(k + 1) is divisible by 256 × 2 = 512.

So 32(32k+5 + 160k2 - 56k - 243) - 256(5k - 8)(k + 1) is divisible by 512, which 
implies that M(k + l) is true. Thus, M(1) is true, M(k) implies M(k + 1).

\ M(n) is true for all n ∈  and hence, the result.

Aliter: ⋅
+ = ⋅ = +

= + + − + +

= −

3 3 3 243 1 8

243 1 8 1 32 8

243 1

2 5 5 2

3
3

n n n

nn n n

( )

( ( ) ( ) )

[

�

224 32 5122n n+ + λ]

⇒ + − −

= × + × −
= × +

+3 160 56 243

243 512 32 248 5888

243 512 256

2 5 2

2

n n n

n n

n

λ
λ (( )

( )

31 23

512 3 160 56 2432 5 2

n

n nn

−

⇒ + − −+

even
� �� ��
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Problem 19 a1, a2, a3, … are natural numbers such that a1 = 6, a2 = 9 and such that

an = 3an-1 + 18an-2  for n > 2. Show that an
n n= × − −

1

2
6 3( )  for all n ≥ 1.

Solution: Here we use the second principle of mathematical induction. That is, we 
have to verify if the statement is true for n = 1, i.e., M(1) is true.

Then, we should prove that, if the statement is true for all n ≤ k, a fixed natural 
number (say), then the statement is true for (k + 1). Then, the statement is true for all n.

a

a

n
n n= × − −

⇒ = × − − = − − =

1

2
6 3

1

2
6 3 3 3 61

1 1

( )

( ) ( ) .

So, M(l) is true.

a2
21

2
36 3 18 9 9= × − − = − =( ) .

M(2) is also true.
Let the statement be true for 2, 3, …, k.

So, ak
k k= × − −

1

2
6 3( )  is true.

Since a a an n n= +− −3 181 2 , we have ak+1 = 3ak + 18ak-1.

But since the formula is true for all n ≤ k, we have

ak
k k k k

k

+
− −= × − −







+ × − −








= × − −

1
1 13

1

2
6 3 18

1

2
6 3

3

2
6 3 3

( ) ( )

( )) ( )

( ) ( )

k k k

k k k k

+ × × − × −

= × + − + × − −

= ×

− −

+ +

3

2
6 6 2 3 3

3

2
6 3

3

2
6 2 3

3 6

1 2 1

1 1

kk k− − +( )3 1

 

= × × − −

= × − −

+

+ +

1

2
6 6 3

1

2
6 3

1

1 1

k k

k k

( )

( ) .

Thus, the formula is true for ak+1, whenever it is true for all n ≤ k.
It is true for n = 1, n = 2.
Thus, this formula is true for all n ∈ .

Problem 20 There must be something wrong with the following proof: What is it?

Theorem: Let a be a positive number. For all positive integers n, we have an–1 = 1.

Proof: If n = 1, an–1 = a1–1 = a0 = 1.
Assume that this statement is true for n ≤ k, i.e., an-1 = 1 for all n ≤ k.
If k ≥ 1 now for n = k + 1, we have

a a
a a

a
k k

k k

k
( ) .+ −

− −

−
= =

×
=

×
=1 1

1 1

2

1 1

1
1
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Mathematical Induction  3.29

So the theorem is true for n = k + 1 whenever the theorem is true for n ≤ k and hence, 
by the second principle of mathematical induction, the theorem is true for all natural 
numbers, n.

Solution: 

Fallacy, for this explanation: When we have written a
a a

a
k

k k

k
( ) ,+ −

− −

−

×1 1
1 1

2
as we have 

assumed that the theorem is true for n ≤ k and we have verified that it is true for n = 

1. For example, taking k = 1; the denominator becomes a1–2 = –a–1 but we have not 
proved that a–1 = 1; neither it can be proved. Therefore the proof has a loophole here.

Check Your Understanding

 1. Prove the following by mathematical induction:

  (a) 
1

2 2

1

2 2

1

2 2

1

2 22 2
tan tan tan cot cot , .

x x x x
x n

n n n n
+ + + = − ∀ ∈� � 

  (b) tan tan tan tan ,− − − −+ + +
+ +

=
+

1 1 1
2

11

3

1

7

1

1 2
�

n n

n

n
 ∀ n ∈ .

  (c) cot cot cot ( )

tan tan tan

− − −

− − −

+ + + +

= + + +
+

−

1 1 1

1 1 1

3 5 2 1

2
3

2

1

4

�

�

n

n

n

nπ
     ∀ ∈n �.

  (d) 5 55 55 5
5

81
10 9 101+ + + = − − ∀ ∈+� � �... ( ) .

n

n n n
times

 2. Show by mathematical induction that (cosq + i sinq)n = cos nq + i sin nq, n ∈ .
 3. If q1, q2, ..., qn are real numbers, use the principal of mathematical induction to 

show the following:
(cosq1 + cosq2 +…+ cosqn)

2 + (sinq1 + sinq2 +…+ sinqn)
2 ≤ n2 for all n ∈ .

 4. Show that k
k

n
2

0=
∑  nCk = n(n + 1)2n-2 for n ≥ 1.

 5. Prove by the method of induction, that In
n n n= − + − −10 5 17 5 17( ) ( )  is di-

visible by 2n+1 for all n > 1.
 6. Using mathematical induction to show that pn + 1 + (p + 1)2n – 1 is divisible by  

p2 + p + 1 for all n ∈ .
 7. Prove by induction that the integer next to greater than ( )3 5+ n  is divisible by 

2n for all n ∈ .
 8. Prove the following inequalities by mathematical induction:

  (a) 
( )!

( !)

2

4

1

2
1

2

n

n n
for n

n
> >   (b) 1

1

2

1
1+ + + > >�

n
n for n  

 9. If a, b > 0, show that (a + b)n < 2n(an + bn) for all n ∈ .
 10. Show for any n, 1(1!) + 2(2!) + … + n(n!) = (n + 1)! -1.

 11. Show that ( ) ( )m p m pn n+ + − is an integer for all n ∈ , where p is a prime 

number and m is an integer.
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3.30  Chapter 3

 12. Prove that 3
2 4n n n> ∀ ∈( !) .�

 13. Prove that 
1

2

1

3

1 7

12

1

1
1

2 2 2
+ + + ≥ −

+
∀ ∈� �

n n
n \{ }.

 14. Let a be some real number such that α
α

+ ∈
1

�, prove that α
α

n
n

n+ ∈ ∀ ∈
1

� �.

 15. Prove that 
1 1

1 0
1

1









 =









 ∀ ∈+

−

n
n n

n n

F F

F F
n �, where F0 = 0, F1 = 1,

  Fn+2 = Fn+1 + Fn, n ≥ 0, n∈�0 .  You may use

a a

a a

b b

b b
11 12

21 22

11 12

21 22


















 =

a b a b a b a b

a b a b a b a b
11 11 12 21 11 12 12 22

21 11 22 21 21 21 22 22

+ +
+ +











Challenge Your Understanding

 1. If -1 < ai < 0 for all i, prove that

(1 + a1)(1 + a2) … (1 + an) ≥ 1 + a1 + a2+…+ an.

  Hence show that if xi are arbitrary positive numbers satisfying

x x xn1 2+ + +� ⋅≤
1

2
,

  then ( )( )...( )1 1 1
1

2
1 2− − − ≥ ∀ ∈x x x nn  .�

 2. Using mathematical induction, show that

  ( )
( )!

!

( )!

!
n m

r m

m

r k

k

n

r

k

rm

k

−
+

=
+ +

+
−

+








=
∑ 1

1 20

  where n, m, r and k are non-negative integers.
 3. If p ≥ 3 be an integer and a, b be the roots of x2 - (p + 1) x + 1 = 0, using math-

ematical induction show that an + bn is
  (a) an integer.  (b) is not divisible by p.
 4. If u1 = 0, u2 = 1 and un = (n - 1)(un-1 + un-2) prove that

  u n
n

n

n

= − + − +
−







!

! ! !

( )

!

1

2

1

3

1

4

1
�  ∀ n ∈ .

 5. Prove that sequence {an}, where an =
1 3 5 2 1

2 4 6 2
2 1

. . ( )

. .

…
…

n

n
n

−
+  is a monotonic de-

creasing sequence. 

 6. If a a
A

a
a a

A

a
a a

A

a
n n

n
1 0

0
2 1

1
1

1

2

1

2

1

2
= +









 = +









 = +







+,   and 


 for n ≥ 2 where 

ai > o, A > o, prove by mathematical induction that 
a A

a A

a A

a A
n

n

n

−

+
=

−

+











−

1

1

2 1

.

 7. Define a sequence (an), n ≥ 1 by a1 = 1, a2 = 2 and an+2 = 2an+1 – an+2, for n ≥ 1. 

Prove that, for any m, amam+1 is also a term in the sequence. [INMO, 1996]
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 8. Prove that
n k

k
n

k

n

k
n+







 = ∀ ∈

=
∑

0

1

2
2 �.

 9. Prove that ( ) ( )( ) ( ) , , .1 1 1 1 0
7

12
1 2 2+ > + + + ∀ ∈ ∈ 





+ +a a a a n an n n n� � where

 10. Let a a a an1 2 3, , , , ,… �∈ + prove that 
a a a

n
a a a nn

n
n1 2

1 2

1+ + +
≥ ∀ ∈

�
� �( ) .

 11. Let a and b be positive integer with (a, b) = 1 and a, b having different parities. 
Let the set S have the following properties:

   (i) a, b ∈S
  (ii) If x, y, z ∈S then, x + y + z ∈S.
  Prove that all integers greater than 2ab are in S. [China MO, 2008]
 12. There are n students standing in a circle, one behind the other. The students have 

heights h1 < h2 < … < hn. If a student with height hk is standing directly behind a 
student with height hk-2 or less, the two students are permitted to switch places. 

Prove that it is not possible to make more than 
n

3








  such switches before reaching 

a position in which no further switches are possible.
 [USA MO, 2010]

 13. Prove that ( )2 1 1− = − − ∀ ∈n m m n � for a certain suitable positive  
integer m. 

 [Polish MO, 1953]
 14. The area of union of several circles equals 1. Prove that it is possible to choose 

several of them that do not intersect each other and whose total area is greater 

than 
1

9
.  [Moscow MO, 1979]

 15. Consider a square of size 2n × 2n. It is sub-divided in unit squares of sizes 1 × 
1. Prove that we can tile it with L-shaped triominos (as shown in the figure) 
provided one unit square is removed.

L-shaped Friominos
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4.1 Introduction

A recurrence relation is an equation that recursively defines a sequence whose next 
term is a function of the previous terms.

In general, a f a a a n mn n n n m= ≥ +− − −( , , , ) ; ,1 2 1… is called recurrence relation for 
sequence {an}, n ≥ 1.

For example, consider the sequence,
1, 1, 2, 3, 5, 8, …
This sequence is known as Fibonacci sequence. Its each term governed by the rela-

tion a a a n a an n n+ += + ∀ ∈ = =2 1 1 21 1� ; , . Later in this chapter we will prove that 

an

n n

=
+







 −

−























1

5

1 5

2

1 5

2

We can observe the immediate advantage of recurrence over explicit formula for an, 
the former is easy to apply/remember. There are only few types of recurrence relation 
which can be solved in closed form, i.e., any term in the sequence can be evaluated 
by plugging numbers into an equation (an = f (n)) instead of having to calculate entire 
sequence.

4.2 Classification

Let us classify the recurrence relation: These relations are classified by the ways in 
which terms are combined, the nature of coefficients involved, and the number and the 
nature of previous terms used.

4
Chapter

Recurrence Relation 

Leonardo Fibonacci

C. 1175–C. 1240–50
Nationality: Italian

Fibonacci discovered his famous sequence while looking at how generations
of rabbit breed
At the start, there is just one pair. 1 Pair Month 0

 Month 1

 Month 2

 Month 3

 Month 4

 Month 5

1 Pair

2 Pair

3 Pair

After the first month, the initial pair mates, but have no young.

After the second month, the initial pair give birth to a pair of bables.

After the third month, the initial pair give birth to second pair,
Month 3 and their first-boms mate but have not yet given
birth to any young.

5 Pair

8 Pair

After the fourth month, the initial pair give birth to another pair
and  their first-born pair also produces a pair of their own.

After the fifth month, the initial pair give birth to another pair,
their first born pair produces another pair, and the second-born
pair produce a pair of their own

The process continues...
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, etc
...the Fibonacci Sequence
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4.2  Chapter 4

Let us observe the following table:

Order
Linear Or 
Non-linear

Homogeneous Or 
Non-homogeneous

Coefficient (Variable 
or Constant) Example

First order Linear Homogeneous Constant a an n+ =−3 01

First order Linear Homogeneous Variable a nan n+ =−1 0  

First order Linear Non-homogeneous Constant a an n− =−2 11  

First order Linear Non-homogeneous Variable a nan n
n− = −−1 1( )

First order Non-linear Homogeneous Constant a a an n n− + =1 0

First order Non-linear Non-homogeneous Constant a a an n n− + =1 1

Second order Linear Homogeneous Constant a a an n n− − =− −1 2 0

Second order Linear Non-homogeneous Constant a a an n n− − =− −1 2 5  

In general consider the following:

f n a f n a f n a g nn n r n r0 1 1( ) ( ) ( ) ( )+ + + =− −�

Where, fi(n) and g(n) are some arbitrary known functions of ‘n’.
If fr ≠ 0 and f0 ≠ 0, then it is called rth order recurrence relation.
If g = 0, it is called linear homogeneous recurrence relation.
If g = 0, fi = constant, it is called linear homogeneous recurrence relation with con-

stant coefficient, which are specially nice to handle.

Example 1 Classify the following recurrence relations:

 (a) a a an n n+ − =− −3 2 01 2

 (b) a a nn n+ =−4 2 !

 (c) a na nn n
n+ =−1

 (d) a a nn n+ =


2

2

 (e) a a na na a f n f nn n n n n+ − + = ≠− − − −3 2 2 01 2 2 3 ( ); ( )

 (f) a a na na an n n n n+ − + =− − − −3 2 2 01 2 2 3

 (g) a a a an n n n
2

1 1
22 0+ + =− −

 (h) a a a an n n n− − =− − −1 2 2 0

 (i) a a an n n+ =− −1 2 1

 (j) a a a nn n n− − =







2 2

Solution:

 (a) Linear, homogeneous, with constant coefficient and of order ‘2’.
 (b) Linear, non-homogeneous, with constant coefficient of order ‘2’.
 (c) Linear, non-homogeneous, with variable coefficient of order ‘1’.
 (d) Linear, non-homogeneous, with constant coefficient, order not defined.
 (e) Non-linear, non-homogeneous, with variable coefficient of order ‘3’.
 (f) Non-linear, homogeneous, with variable coefficient of order ‘3’.
 (g) Non-linear, homogeneous, with constant coefficient of order ‘1’.
 (h) Non-linear, homogeneous, with constant coefficient of order ‘2’.
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Recurrence Relation   4.3

 (i) Non-linear, non-homogeneous, with constant coefficient of order ‘2’.
 (j) Linear, non-homogeneous, with constant coefficient and order not defined.

4.3 First Order Linear Recurrence Relation

Let us consider first order linear and non-homogeneous,

a f n a g n n an n= + ( ) ≥ =−( ) , ,1 12 α

Where f (n) and g(n) are known functions of ‘n’ and f (n) ≠ 0.
Divide whole equation by p f f f nn = ⋅( ) ( ) ( )1 2 �  and rewrite as

a

p

a

p

g n

p
n

n

n

n n

− =−

−

1

1

( )

Consider, 
a

p
vn

n
n=

then v v
g n

p
n n

n

− =−1
( )

Now plug, n = 2, 3, …, n and add all, we get,

⇒ − =

⇒ − =

⇒ = +

=

=

∑

∑

v v
g r

p

a

p

a

p

g r

p

a p
f

g r

p

n
rr

n

n

n rr

n

n n
r

1
2

1

1 2

1

( )

( )

( )

( )α

rr

n

=
∑











2

Example 2 Let a a n n an n= + − ≥ =−
2

3
15 2 11

2
1, , . Find an.

Solution: 

a a nn n= + −−
2

3
151

2

Compare it with a f n a g nn n= +−( ) ( )1

⇒ =

⇒ = 







f n

f f f n
n

( )

( ) ( ) ( )

2

3

1 2
2

3
�

By dividing whole equation by 
2

3








n

 we get,

a a nn
n

n
n n

2

3

2

3

15

2

3

1
1

2









−








=
−









−
−
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4.4  Chapter 4

Let, 
a

bn
n n

2

3








=

⇒ − = − 





−b b nn n

n

1
2 15

3

2
( )

Plugging, n = 2, 3, 4, …, n and adding all we get

b b rn

r

r

n

− = − 







=
∑1

2

2

15
3

2
( )

⇒








− =
a

Sn
n

2

3

3

2
(say)

where,

S n

S

n

= − 





 + − 






 + + − 








=

( ) ( ) ( )2 15
3

2
3 15

3

2
15

3

2

3

2

2
2

2
3

2�

++ − 





 + + − −( )






 + − 






( ) ( ) ( )2 15

3

2
1 15

3

2
15

3

2
2

3
2 2� n n

n n++

− − − −

− = − 





 + 






 + 






 + 






 +

1

2 3 4 5
1

2
11

3

2
5

3

2
7

3

2
9

3

2
S ��+ − 






 − − 








− = − 





 +

+

( ) ( )2 1
3

2
15

3

2

3

4
11

3

2
5

3

2

2
1

3

n n

S

n n







 + 






 + + − 






 + − 






 −
+4 5 1

7
3

2
2 3

3

2
2 1

3

2
� ( ) ( ) (n n n

n n
22

2

2 3

15
3

2

1

4
11

3

2
16

3

2
2

3

2

− 







+ + − − − − +

= − 





 + 






 + 



+

)
n

S 


 + 






 + + 






 − + − 






 + −
+4 5

2
1

22
3

2
2

3

2
2 16

3

2
1�

n n

n n n( ) ( 55
3

2

2

)







+n

⇒ =
−

+ + 













 −

−



















−

−

1

4

99

4
54 2

3

2

3

2
1

3

2
1

4

3

2S n

n

( ++ − 





 + − 








= + 





 −

+ +

+

2 16
3

2
15

3

2

117

4
4

3

2

8

1
2

2

1

n n
n n

n

) ( )

11

4

3

2

1

2
2

13

2

1

4
9

3

2

1

2
4

1
2

1
2

+ 





 − −





⇒ = + 





 ⋅ −

+

+

n

n

n n

S n( nn

S n n
n

−

⇒ = + 





 − −

5

36
3

2
3 12 152

)

( )
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Now,

a
n n

a

n
n

n

n

n

2

3

3

2
36

3

2
3 12 15

75

2

2

3
3

2









− = + 





 − −

⇒ = ×





 +

( )

nn n2 12 15− −

⇒ = ⋅





 + − −
−

a n nn

n

25
2

3
3 12 15

1
2

4.3.1 First Order Linear Homogeneous

a f n a n a

a

a
f n

a

a

a

a

a

a
f n

n n

n

n

n

n

n

n

= ≥ =

⇒ =

⇒ ⋅ =

−

−

−

−

−

( ) , ,

( )

( )

1 1

1

1

1

2

2

1

2 α

� ⋅⋅ −

⇒ = −

f n f

a f n f n fn

( ) ( )

[ ( ) ( ) ( )]

1 2

1 2

�

� α

 

Example  3 Let an = nan-1, a1 = 1. Find an.

Solution: Let us rewrite the recurrence as 
a

a
nn

n−
=

1

⇒ ⋅ ⋅ = − −

⇒ =

⇒ =

−

−

−

−

−

a

a

a

a

a

a

a

a
n n n

a

a
n

a n

n

n

n

n

n

n

n

n

1

1

2

2

3

2

1

1

1 2 2� �( )( )

!

!

4.3.2  First Order Linear, Non-homogeneous 
with Constant Coefficients

a c a c n an n= + ≥ =−1 1 2 12, , α , (where c1, c2 constant and c1 ≠ 1)
Let,

a b

b c b c c

b c b c

n n

n n

n n

= +
⇒ + = + +
⇒ = + −

−

−

λ λ
λ λ

(

(

some constant)

1 1 1 2

1 1 1 1))λ + c2

By taking λ =
−
c

c
2

11
, we get b c bn n= −1 1

Which is a geometric progression with common ratio ‘c1’.

b c b

a c

n
n

n
n

= ⋅

⇒ = − +

−

−
1

1
1

1
1( )α λ λ
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4.6  Chapter 4

Note: In case of c1 = 1,

a c a c a a cn n n n= + ⇒ − =− −1 1 2 1 2

Which is an arithmetic progression, with common difference c2.

⇒ = + −a a n cn 1 21( ) .

Example 4 Let {an} be a sequence such that a1 = 4, and sum of first n terms is Sn and
S S n nn n+ − − − = ∀ ∈1 3 2 4 0 �,  find an.

Solution:
We know that a S S n Sn n n+ += − ∀∈ ≥ =1 1 00 0( )as 

Now, S S S n S nn n n n+ −− = + + − + − +1 13 2 4 3 2 1 4[ ] [ ( ) ]  

⇒ = + ∀ ≥ =+a a n an n1 13 2 1 4,

Let,

a b

b b
n n

n n

= +
⇒ = + ++

λ
λ1 3 2 2

Make 2 2 0 1λ λ+ = ⇒ = −

⇒ = =

⇒ = ⋅ = ⋅

⇒ = ⋅ − ∀ ∈

+
− −

−

b b b

b b

a n

n n

n
n n

n
n

1 1

1
1

1

1

3 5

3 5 3

5 3 1

,

.�

 (As b1= a1+ 1 = 4 + 1 = 5)

Build-up Your Understanding 1

 1. Find the nth term of the sequence {an} such that  
  a1 = 2, an+1 = 2an + 1 (n = 1, 2, 3, …).
 2. Find the nth term of the sequence {an} such that  

  a1 = 1, a a a nn n n+ = − + > ≥1
2 21

4
4 0 1( , )

 3. Find the nth term of the sequence {an} such that

  
a a a

n
n

n
n1 2 1+ + +
= +

�
 (n = 1, 2, 3, …).

 4. The positive sequence {an} satisfies the following conditions (a), (b)
  (a) a1 = 1
  (b) log an - log an-1 = log (n - 1) - log (n + 1), n ≥ 2. 

  Find ak
k

n

=
∑

1

 5. Find the nth term of the sequence {an} such that  

  a1 = 1, an+1 = 
1

2

2 1

1

2

2 2
a

n n

n n
n +

− −
+( )

 (n = 1, 2, 3, …).

 6. Let a1 = 1, an = (n - 1)an-1 + 1. Find n such that n | an.
 7. Let a0 = 1, an = n an-1 + (n + 1)! 2-n. Find an
 8. Let a1 = 1, (n + 1)an+1 + nan = 2n - 3 ∀ n ≥ 1. Find an

M04_Recurrence Relation_C04.indd   6 8/11/2017   2:08:32 PM



Recurrence Relation   4.7

 9. Find the nth term of the sequence {an} such that  
  a1 = 1, an+1 = nan + n - 1 (n = 1, 2, 3, …).
 10. Find the nth term of the sequence {an} such that 
  a1 = 1/2, (n - 1) an+1 = (n + 1)an + 1(n ≥ 2).
 11. Find the nth term of the sequence {xn} such that  

  x1 = 2, xn+1 = (n + 1)2 
2

1
2

x

n
n −






  (n = 1, 2, 3, …)

 12. Find the nth term of the sequence {an} which is defined by

  a1 = 0, a
n

n = −





1

1
3

 an+1 + 
n

n

−1
2  (n = 1, 2, 3, …).

4.4 First Order Non-linear

4.4.1 First Order Non-linear of the Form

a
a

a
n an

n

n

=
+

≥ > ⋅ ⋅ ≠−

−

α
β γ

α β γ1

1
12 1 0; , ; .

By taking reciprocal of both sides, we get

1

1a an n

= +
−

β
α

γ
α

Let,    
1

a
b

n
n=

⇒ = + = =





−b c b c c cn n1 1 2 1 2where, 

γ
α

β
α

,

Example 5 Let {an} be a sequence such that a1 = 1, a2
1

4
= , a

n a

n a
n

n

n
+ =

−
−1
1( )

, for n 
= 2, 3, …. 
Find an.

Solution:

1

1

1 1

1

1 1

1

1

1

1

1

1

1

a

n

n a n

na n a n n n n

n n

n n

+

+

=
−







 −

−

⇒ −
−

= −
−

= −
−( ) ( ) ( )

== −
−

1 1

1n n

Plugging n = 2, 3, …, (n - 1), in above equation and adding all we get,

1

1

1 1

1
1

2

1

1

1

2

1
4

3 2

1
2

2( )

( )
,

n a a n

n

n

n a

n

n

n

n
n

a

n

n

−
− =

−
− =

−
−

⇒
−

=
−
−

+ =
−
−

≥

⇒ nn
n

n=
−

≥
1

3 2
2;

We can see that a1 1
1

3 2
= =

−

Hence, a
n

nn = −
∀ ≥

1

3 2
1
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4.8  Chapter 4

4.4.2 First Order Non-linear of the Form

a
a

a
n a

a b

ca d
n

n

n

=
+
+

≠ ≥ ≠ ≠
+
+











−

−

α β
γ δ

αβγδ
α
γ

β
δ

α1

1
1

1

1

0 2where , , ;

We will transform this to previous form, let a b xn n= +

⇒ + =
+ +
+ +

−

−
b x

b x

b x
n

n

n

α α β
γ γ δ

1

1

       

⇒ =
+ +
+ +

−

=
− + + − +

+

−

−

−

−

b
b x

b x
x

x b x x x

b

n
n

n

n

n

α α β
γ γ δ
α γ α β γ δ

γ

1

1

1

1

( ) ( ) ( )

γγ δx +

Now choose x such that,

        α β γ δx x x+ = +( )  (1)

Solving, γ δ α βx x2 0+ − − =( ) ,  we get x = x1, x2.
Take any root, say ‘x1’,

b
x b

b x

b

x

x b x

n
n

n

n n

=
−
+ +

⇒ =
+

−
+

−

−

−

−

( )

( ) ( )

α γ
γ γ δ
γ δ

α γ
γ

α γ

1 1

1 1

1

1 1 1

1

Let,

1

1 1 2

b
f

f c f c
n

n

n n

=

⇒ = +−

Where c
x

x
c

x
1

1

1
2

1

=
+

−
=

−
γ δ
α γ

γ
α γ( )

,
( )

.

Note: Observe that we can get equation (1) directly from recurrence by replacing ai 

by x, x
x

x
=

+
+

α β
γ δ

.  The value of x satisfying the equation is called fixed point of the 

sequence.

Example 6 Let {an} be a sequence such that a1 = 1, a a a nn n n+ += − ∀ ∈1 14 1( ) ,�  
find an.

Solution:

a
a

n
n

+ =
−1
4

4

Let,    a bn n+ += +1 1 λ

               ⇒ =
− + +

− −+b
b

b
n

n

n
1

24 4

4

λ λ λ
λ

Take      λ λ λ2 4 4 0 2− + = ⇒ =

M04_Recurrence Relation_C04.indd   8 8/11/2017   2:08:35 PM



Recurrence Relation   4.9

⇒ =
−

⇒ = −

+

+

b
b

b

b b

n
n

n

n n

1

1

2

2

1 1 1

2

⇒
1

bn
 in an arithmetic progression with common difference = −

1

2
,  first term

= =
−

= −
1 1

2
1

1b an

.

⇒
−

= − + − −





 = −

+

⇒ − = −
+

⇒ =
+

1

2
1 1

1

2

1

2

2
2

1

2

1

a
n

n

a
n

a
n

n

n

n n

( )

.

Example 7 Let {an} be a sequence such that a1 = 2, a
a

a
n

n

n
+ =

+
+1

3 4

2 3
, n ≥ 1. Find an.

Solution: Let a b nn n= + ∀ ≥λ, 1

⇒ =
+ +
+ +

−

=
− − +

+ +

+b
b

b

b

b

n
n

n

n

n

1

2

3 3 4

2 2 3

3 2 2 4

2 2 3

λ
λ

λ

λ λ
λ

( )

Get − + = ⇒ = ±2 4 0 22λ λ

Take λ = 2

⇒ =
−

+ +

⇒ = + =
−

=
+

−

+

+

b
b

b

b b

n
n

n

n n

1

1

3 2 2

2 3 2 2

1 2

3 2 2

3 2 2

3

( )

( )

,α
β

α βwhere 
22 2

1

3 2 2 2
=

−









( )

Let 
1

b
c

n
n= + µ,

So, c cn n+ + = + +1 µ α β µ( )

Taking α µβ µ µ
α
β

+ − = ⇒ =
−

= −0
1

1

2 2
 

Hence, c cn n+ =1 β

⇒ = ⋅

⇒ + = ⋅

−

−

c c

b
c

n
n

n

n

β

β

1
1

1
1

1 1

2 2
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4.10  Chapter 4

          

= ⋅
−

+










=
+

=
−

−

−

β

β

β

n

n

n

a
1

1

1

1

2

1

2 2

3 2 2

2 2

3 2 2

2 2

    

1 3 2 1

2 2

2 2

3 2 1

b

b

n

n

n n

=
− −

=
− −

( )

( )

β

β

⇒ =
− +

− −













an

n

n
2

3 2 2 1

3 2 2 1

( )

( )

β
β

 

⇒ =
−

+

−
−



















=
+ −−

−

−
an

n

n

n

2

1

3 2 2
1

1

3 2 2
1

2
1 3 2 2

1

2 1

2 1

2 1( )

( )

( )

−− −













=
+ −

− −













−

−

−

( )

( )

( )

3 2 2

2
1 2 1

1 2 1

2 1

4 2

4 2

n

n

n

Aliter: After getting λ = ± 2
Consider,

a

a

a a

a a

a

n

n

n n

n n

n

+

+

−

+
=

+ − +

+ + +

=
−

+

−

1

1

2

2

2

2

3 4 2 2 3

3 4 2 2 3

2 1

2 1

2

( )

( )

( )

( ) aan +









2

 

⇒ = − =
−

+











⇒ =
−

+
=

−

+

+b b b
a

a

b
a

a

n n n
n

n
1

4

1
1

1

2 1
2

2

2

2

2 2

2 2

( ) where 

== −

⇒ = ⋅ − = −

⇒
−

+
=

−

⇒

− −

−

( )

( ) ( )

( )

( )

2 1

2 1 2 1

2

2

2 1

1

2

1
4 1 4 2

4 2

b b

a

a

a

n
n n

n

n

n

nn

n

n
n=

+ −

− −









 =

−

−
2

1 2 1

1 2 1
1 2

4 2

4 2

( )

( )
, , , .…
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Recurrence Relation   4.11

Example 8 Let {an} be a sequence such that a1 = 1, a a a nn n n+ = + + + ≥1
1

16
1 4 1 24 1( ), .

Solution: Let us get rid of radical sign by assuming, 1 24 02+ = >a b bn n n( )with

or a
b

bn
n=
−

=
2

1
1

24
5, .also 

⇒
−

= + ⋅ −( ) +







+b
b bn

n n
1

2
21

24

1

16
1 4

1

24
1

or        

⇒ − = + +

= +
⇒ = + ≥ >

+

+

+

4 4 6 5

2 3

2 3 1 0

1
2 2

1
2 2

1

b b b

b b

b b n b

n n n

n n

n n n

( ) ( )

, (as ))

Let,        b cn n= + λ

⇒ = + −+2 31c cn n λ

set,      λ = 3  

⇒ = ≥

⇒ = 







+

−

c c n

c c

n n

n

n

1

1

1

1

2
1

1

2

,

⇒ − = 





 −

⇒ = 





 ⋅ + =

⇒ = +

−

−

b b

b b

b

n

n

n

n

n

3
1

2
3

1

2
2 3 5

3
1

1

1

1

1

( )

( )as 

22

9
1

2

6

2

2

2
2 4 2

n

n n n
b

−

− −
⇒ = + +

 

⇒ = + +







=
+ ⋅ +

⋅

− −

− −

−

a

a

n n n

n

n n

n

1

24
8

1

2

6

2

1 3 2 2

3 2

2 4 2

1 2 1

2 1
or

 

Build-up Your Understanding 2

 1. an = 
3

2 1
1

1

4
1

1
0

a

a
n an

n

−

− +
≥ =, ,  find an.

 2. Find the nth term of the sequence {an} such that  a1 = 1, an+1 = 
a

a
nn

n2 3
1

+
≥( ) .

 3. Solve: a
a

a
an

n

n

=
+

=−

−

3

2 1

1

4
1

1
0, .

 4. Solve: a
a

a
an

n

n

=
+
+

=−

−

3 1

3
51

1
0, .
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4.12  Chapter 4

 5. Let a1 = 0, a
a

a
n

n

n
+ =

+
−1

6 2

4 13
.  Find an.

 6. a0 = 3, a2
n+1 = an, n ≥ 1.

 7. Find the nth term of the sequence {an} such that a1 = 1, an+1 = 2an
2 (n = 1, 2, 3, 

…).
 8. Find the nth term of the sequence {xn} such that  
  xn+1 = xn(2 - xn) (n = 1, 2, 3, …) in terms of x1.

 9. Find the nth term of the sequence {an} such that a n n nk
k

n

=
∑ = + +

1

3 23 2  and 

 Calculate 
1

1 akk

n

=
∑

4.5  Linear Homogeneous Recurrence Relation with 
Constant Coefficient of Order ‘2’

Consider the recurrence relation

a pa qan n n= +− −1 2  

where p and q are constant.
As we have seen, in first order homogeneous recurrence relation, solution are of the 

form xn (usually). Let us plug this solution in second order with x ≠ 0

⇒ = +

⇒ = +

− − =

− −x px qx

x px q

x px q

n n n1 2

2

2 0or

This equation is called the characteristic equation of the recurrence and the quadratic 
appearing on the left hand side is called the characteristic polynomial.

After solving this quadratic we get two roots, x =α β,  
There are two cases:

Case 1: α β≠ ,  in this case,

an
n n= +λα µβ  

for value of λ, μ use initial conditions.

Case 2: α β= ,  in this case,

a nn
n= +( )λ µ α  

Example 9 Let {an} be a sequence such that, a a a n a an n n= + ≥ = =− −1 2 0 12 2 1 3; , , ,  
find an.

Solution: Replace an by xn, x ≠ 0

⇒ = +

⇒ − − = ⇒ = −

⇒ = − +

− −x x x

x x x

a

n n n

n
n n

1 2

2

2

2 0 1 2

1 2

,

( )λ µ

Now,   a0 1= + =λ µ

also   a1 2 3= − + =λ µ
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Recurrence Relation   4.13

⇒ = = −

⇒ = + −+ +

µ λ
4

3

1

3
1

3
2 12 1

,

( ( ) ).an
n n

Example 10 Let {an} be a sequence such that, a a a n a an n n= + ∀ ≥ = =− −1 2 1 23 1 1, , .  
Find an.

Solution: Replace an by xn, x ≠ 0

⇒ = +

⇒ − − =

⇒ =
±

⇒ =
+







 +

−






− −x x x

x x

x

a

n n n

n

n

1 2

2 1 0

1 5

2

1 5

2

1 5

2
λ µ




⇒ =
+







 +

−







 =

n

a1
1 5

2

1 5

2
1λ µ

Also,  a

an

2
3 5

2

3 5

2
1

1

5

1

5

1

5

1 5

2

=
+







 +

−







 =

⇒ = = −

⇒ =
+






λ µ

λ µ,


 −

−























=
n n

n
1 5

2
1 2, , , .…

Example 11 Let {an} be a sequence such that, a a a a an n n0 1 1 21 0 2 2= = = −− −, , ,  find an.

Solution: Characteristic equation of the recurrence is,

x x

x i i

2 2 2 0

1 2
4 4

− + =

⇒ = ± = ±





cos sin

π π

⇒ = +


















+ −





a i in

n
n

nλ
π π

µ
π π

( ) cos sin ( ) cos sin2
4 4

2
4 4 














= +





 + −






n

n n
i

n n
i

n
( ) cos sin cos sin2

4 4 4 4
λ

π π
µ

π π













= + + −

(De Moivere’s Theorem)

( ) ( ) cos ( )sin2
4

n n
i

n
λ µ

π
λ µ

ππ
4







Now,    a0 1= + =λ µ
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4.14  Chapter 4

a i

i

i

a
n n

n
n

1 2
2 2

0

1 0

2
4

=
+

+
−







 =

⇒ + − =
⇒ − =

⇒ = −

λ µ λ µ

λ µ
λ µ

π

( )

( ) cos sin
ππ
4







 .

Example 12 Let {an} be a sequence such that, a a a a an n n0 1 1 22 25 10 25= = = −− −, ,
∀ ≥ ∈n n2, ,�  find an.

Solution: Characteristic equation of the recurrence is,

x x

x

2 10 25 0

5 5

− + =
⇒ = ,

As characteristic roots are equal,

a nn
n= +( )λ µ 5  

Now,               a0 2= =λ

a1 5 25 3= + = ⇒ =( )λ µ µ

Hence,   a nn
n= +( ) .2 3 5

4.6  General Form of Linear Homogeneous Recurrence 
Relation with Constant Coefficients

Consider the relation c a c a c an n k n k0 1 1 0+ + + =− −�
where ci’s are constants c0, ck ≠ 0, this is called kth order recurrence relation.
By replacing the terms ar by xr, r = n, n - 1, …, n - r.

     ⇒ + + + =− −c x c x c xn n
k

n k
0 1

1 0�

⇒ + + + + =−
−c x c x c x ck k

k k0 1
1

1 0�  (1)

This equation is called characteristic equation of the recurrence.

Case 1: α α α α1 2 3, , , ,… k  are all distinct and roots of the equation then,

an
n n

k k
n= + + +λ α λ α λ α1 1 2 2( ) ( ) ( )�

where λ λ λ1 2, , ,… k  are constants will be calculated using initial conditions.

Case 2: α α α1 2 1, , , ( )… p p k≤ ≤ are the distinct characteristic roots of (1) such that 
αi is of multiplicity mi, i = 1, 2, …, p then

a n n n

n n n

n m
m n

m
m

= + + + +( )
+ + + + +

−λ λ λ λ α

λ λ λ λ

11 12 13
2

1
1

1

21 22 23
2

2

1
1

2

�

� 22 1
2

1 2 3
2 1

−

−

( )
+

+ + + + +( )

α

λ λ λ λ α

n

p p p pm
m

p
nn n n

p

p

�

�

where λij’s are constants will be calculated using initial conditions.
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Example 13 Let {an} be a sequence such that,

a a a a a n a a a an n n n n= − + − ≥ = = = =− − − −5 9 7 2 4 3 8 17 321 2 3 4 0 1 2 3, , , , , .

Find an.

Solution: Characteristic equation of the recurrence is,

x x x x x xn n n n n= − + − ≠− − − −5 9 7 2 01 2 3 4 ,

⇒ − + − + =

⇒ − − = ⇒ =

⇒ = + +

x x x x

x x x

a n nn

4 3 2

3

1 2 3

5 9 7 2 0

1 2 0 1 1 1 2( ) ( ) , , , .

(λ λ λ 22
41 2)( )n n+ λ

Now,

a

a

a

a

0 1 4

1 1 2 3 4

2 1 2 3 4

3 1 2

3

2 8

2 4 4 17

3 9

= + =
= + + + =
= + + + =
= + +

λ λ
λ λ λ λ
λ λ λ λ
λ λ λλ λ

λ λ λ λ
3 4

1 2 3 4

2

2

8 32

1 2 1 2

1 2 2 2

1 2

+ =
⇒ = = = =

⇒ = + + + ⋅

= + +

, , ,

( )

( )

a n n

n

n
n

n++1

Build-up Your Understanding 3

 1. Let x x x x xn n n0 1 1 11 1 2= = = ++ −, ,  ∀ ≥n 1. Find xn

 2. Let a a a a a an n n n0 1 1 11 7 2 3= = = ++ −, , . Find .

 3. Let a1 = 1, a2 = 3, an+2 = 4an+1 - 4an..Findan.
 4. a0 = 3, a3 = 6, an = -6 an-1 - 9an-2 find an
 5.  Let an = 7an-1 - 6an-2, a0 = 2, a1 = 7. Find an.
 6. Solve the following recurrence relation.

  (a) a a a n a an n n= − ≥ = =− −5 6 2 1 51 2 0 1, , ,

  (b) a a a n a an n n= − ≥ = =− −6 9 2 1 21 2 0 1, , ,

 7. an = 3 an-1 - 4 an-3, a0 = -4, a1 = 2, a2 = 6.

 8. Let a a a b a b a0 1 2 2 2= = = − +, , ,  an = 3an-1 - 3an-2 + an-3. Find an.

 9. Let a a1 2 1= = , a
a

a
n

n

n

=
+−

−

1
2

2

2
 ∀ n ≥ 3. Prove that ∀ n ∈ � , an ∈ � .

4.7  General Method For Non-Homogeneous 
Linear Equation

Non-homogeneous linear equations are usually solved using the method of undeter-
mined coefficients (basically guessing the solution of non-homogeneous part and 
checking with the recurrence).

We do this in three parts:
Part 1: Find the general solution an

H( )  of associated homogeneous equation.

Part 2: Find a single solution an
P( )  to the non-homogeneous equation. This solution 

is referred as particular solution.
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Part 3: Now a a an n
H

n
P= +( ) ( ) .  Now put initial condition to get constants in an

H

Example 14 Find the general solution to the recurrence:

a a a n n a an n n= + + ≥ = =− −1 2 0 12 2
7

4

5

4
, , , .

Solution: As non-homogeneous term is a polynomial of degree 1, we guess that par-

ticular solution will be of the form, a pn qn
P( ) = +

⇒ + = − + + − + +
⇒ − + − =
⇒ − = − =

pn q p n q p n q n

pn p q n

p p q

( ) ( )

( )

1 2 2 2

2 5 2

2 1 5 2 0and

⇒⇒ = − = −p q
1

2

5

4
,

Associated homogeneous equation is,

a a a

x x x

a

a

n
H

n
H

n
H

n
H n n

n

( ) ( ) ( )

( )

,

( )

= +

⇒ − − = ⇒ = −

⇒ = + −

⇒

− −1 2

2

2

2 0 2 1

2 1λ µ

== +

= + − − −

= + − = ⇒ + =

= − −

a a

n

a

a

n
H

n
P

n n

( ) ( )

( )λ µ

λ µ λ µ

λ µ

2 1
2

5

4
5

4

7

4
3

2
1

2

0

1 −− = ⇒ − =

⇒ = =

⇒ = + − − −+

5

4

5

4
2 3

2 1

2 1
2

5

4
1

λ µ

λ µ,

( ) .a
n

n
n n

 

Example 15 Let {an} be a sequence such that, a a an n
n= + =−
−2 4 01
1

0, ,  find an.

Solution: Solution to homogeneous put,

a a

a

n
H

n
H

n
H n

( ) ( )

( )

=

⇒ =
−2

2

1

λ

As non-homogeneous term is 4 1n− , let us guess that the particular solution,

a a

a a

a a a

a

n
P n

n n n

n
P n

( )

( )

= ⋅

⇒ ⋅ = ⋅ ⋅ +

⇒ = + ⇒ =

⇒ = ⋅

− −

4

4 2 4 4

4 2 1
1

2
1

2
4

1 1
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Hence,

a a a

a

n n
H

n
P

n
n n

= +

= +

( ) ( )

λ2
1

2
4

 

Now,

a

an
n n

0
1

2
0

1

2
1

2
4 2

= + =

⇒ = −

⇒ = −

λ

λ

( ).

Example 16 Let {an} be a sequence such that,

a a a n a an n n
n= − + ≥ = =− −3 2 2 2 3 81 2 0 1, , , ,  find an.

Solution: Solution to homogeneous part, 

a a a

x x

a

n
H

n
H

n
H

n
H n n

( ) ( ) ( )

( )

,

( )

= −

⇒ − + = ⇒

⇒ = + = +

− −3 2

3 2 0 1 2

1 2 2

1 2

2

λ µ λ µ nn

Unfortunately corresponding non-homogeneous term is 2n which is also appearing in 
homogeneous part. Let us guess particular solution.

a n

n n n

n n

n
P n

n n n n

( )

( ) ( )

( ) (

=

⇒ = − − − +
⇒ = − −

− −

γ

γ γ γ
γ γ γ

2

2 3 1 2 2 2 2 2

4 6 1 2

1 2

nn

a nn
P n

− +
⇒ − =
⇒ =

⇒ = ⋅ +

2 4

2 4 0

2

2 1

)

( )

γ
γ

⇒ = + = + +
= + = = + + =

⇒ =

+a a a n

a a
n n

H
n
P n n( ) ( )

,

λ µ
λ µ λ µ

λ

2 2

3 2 4 8

2

1

0 1Now, and

µµ =

⇒ = + + +

1

2 2 2 1a nn
n n .

4.7.1 A Special Case 

If the recurrence relation is of the form 

a c a c a c a f n f n f nn n n r n r
n n

k
n

k= + + + + + + +− − −1 2 1 21 2 1 2� �α α α( ) ( ) ( )

where α α α α1 2 3, , , ,… k  are constants and f f f fk1 2 3, , , ,…  are polynomials in ‘n’ of 
degree p p p pk1 2 3, , , ,…  respectively, then the characteristic equation of the recur-
rence will be   

x c x c x c x x xr r r
r

p p
k

pk– – – – ( ) ( ) ( )– –
1

1
2

2 � �( ) − − − =+ + +α α α1
1

2
1 11 2 0

Here we added additional roots in the equation as our equation contains terms of the 

form α n f n( )  where α  is a constant and f(n) is a polynomial in ‘n’. 
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4.18  Chapter 4

The general form of the solution is the same as in article 4.6, But we need to know 
more than r initial terms as there are additional  p1 + 1 + p2 + 1 + … +pk + 1 coef-
ficients needed to be resolve. We can obtain these additional terms from the given 
recurrence.

Example 17 Let a0 = 2, an = 3an-1 - 4n. Find an.

Solution: Given recurrence can be rewritten as an = 3an-1 - (1)n 4n

⇒ α =1  and f n n( ) ,= 4  which is of degree 1.

Hence corresponding characteristic equation is,

( )( )x x− − =+3 1 01 1

  ⇒ a nn
n n= + +λ µ γ3 1( )  (1)

Now we need two more terms to resolve µ γand  

a a a0 1 22 2 2= ⇒ = = −,  (From the recurrence relation)

Plugging n = 0, 1, 2 in equation (1), we get

λ µ
λ µ γ
λ µ γ
λ µ γ

+ =
+ + =
+ + = −

⇒ = − = =

2

3 2

9 2 2

1 3 2, , and

Hence a nn
n= − + +3 2 3

Example 18 Let a a n a Find an n
n

n     = + + =−
+2 2 01

1
0, .

Solution: Given recurrence can be rewritten as a a nn n
n n  2   2= + +−1 1 2( ) ( )

⇒ α1 11= =, ( ) ,f n n  which is of degree 1 and α2 22 2= =, ( ) ,f n , which is of zero 

degree. 
Hence corresponding characteristic equation is,

(x - 2) (x - 1)1+1(x - 2)0+1 = (x - 1)2 (x -2)2 = 0

  ⇒ a n nn
n n 1 2= +( ) + +( )λ µ γ δ  (1)

Now we need three more terms. From the recurrence: a1 = 5, a2 = 20, a3 = 59.
Plugging n = 0, 1, 2, 3 in equation (1), we get

λ γ
λ µ γ δ
λ µ γ δ
λ µ γ δ

λ µ γ

+ =
+ + + =
+ + + =
+ + + =

⇒ = − = − =

0

2 2 5

2 4 8 20

3 8 24 59

2 1 2, , , aand δ = 2

Hence   a n nn
n 2= − − + + +2 1 1( )
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Build-up Your Understanding 4

 1. Find the nth term of the sequence {bn} such that 
  b1 = 2, bn+1 = 2bn  + n (n = 1, 2, 3, …).
 2. Given the sequence {an} which is defined by 

  a1 = 1, an+1  = 2an + 2n (n = 1, 2, 3, …). Find the nth term an and sum ak
k

n

=
∑

1

 3. Let a0 = 2, an = 2 an-1 + 3n-1, n ≥ 1. Find an.
 4. Define the sequence {an} such that  
  a1 = -4, an+1 = 2an + 2n+3 n - 13 · 2n+1 (n = 1, 2, 3, …). Find the value of n for 

which an is minimized.
 5. Find the nth term of the sequence {an} such that  
  a1 = 1, an+1 = 2an - n2 + 2n (n = 1, 2, 3, …).
 6. Let a0 = 1, an = 3an-1 - 2n2 + 6n - 3, n ≥ 1. Find an.

 7. Let a a a nn n
n

1 18 3 4 3 2= = − +−, . . Find an
 8. Let a0 = 2, an = 9 an-1 - 56 n + 6n, n ≥ 1. Find an.
 9. Find the nth term of the sequence {an} such that  
  a1 = 1, a2 = 3, an+1 - 3an + 2an-1 = 2n (n ≥ 2).
 10. Find the nth term of the sequence {an} such that  

  a1 = 
1

2
, a2 = 

1

3
, an+2 = 

a a

a a a a
n n

n n n n

+

+ +− +
1

1 12 2
.

 11. Let x0 = 1, x1 = 1, x
x

x
nn

n

n
+

+=
+

∀ =2
11

0 1 2, , , .…  Find x2017.

Solved Problems

Problem 1 Let a1 = 1, a2 = e, an+2 = an
-2 a3

n+1, n ≥ 1. Find an

Solution: ln an+2 = -2 ln an + 3 ln an+1

Let ln an = bn, b1 = 0, b2 = 1

⇒ bn+2 = -2 bn + 3bn+1

Its characteristic equation,

x2 - 3x + 2 = 0
⇒ x = 1, 2
⇒ bn = λ (1)n + μ2

n

⇒ 0 = λ + 2μ and 1 = λ + 4μ

⇒ μ = 
1

2
, λ = -1

⇒ bn = 2n-1 - 1
⇒ an = e

n2 11− −

Problem 2 Let an = 7 an/2 - 6 an/4, a1 = 2, a2 = 7. Find an.

Solution: Take n = 2m

a a am m m2 2 27 61 2= −− −

Let           a bm m2 =

⇒ bm = 7bm-1 - 6bm-2, b0 = 2, b1 = 7
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4.20  Chapter 4

Characteristic equation is 
x2 - 7x + 6 = 0 ⇒ x = 6, 1

 ⇒ bm= λ 6m + μ1m

For  m = 0, 2 = λ + μ
For  m = 1, 7 = 6λ + μ
 ⇒ λ = 1, μ = 1
 ⇒ bm = 6m + 1

 ⇒ a m2  = 6m + 1

 ⇒ an = 6 12log n +
 ⇒ = +a nn

log2 6 1

Problem 3 Let a1 = 1, an+1 = 2an + 3 2 12a nn − ∀ ≥ . Prove that an ∈ � .

Solution: a a a a an n n n n+ +− + = −1
2

1
2 24 4 3 2

⇒ a a a an n n n+ +− + + =1
2

1
24 2 0

⇒ a a a an n n n
2

1 1
24 2 0− + + =– –  or a a a an n n n− − + + =1

2
1

24 2 0–  

⇒ a an n+ −1 1,  are the roots of p(x) = x2 - 4an x + an
2 + 2 = 0

⇒ an+1 + an-1= 4an

⇒ an+1 = 4an - an-1 and by induction we are done

Problem 4 Let an - 2an-1 + an-2 = 
n+









4

4
 ∀ n ≥ 2, a0 = 0, a1 = 5. Find an

Solution: Let an - an-1 = bn; b1 = 5

⇒ bn - bn-1 = 
n+









4

4
 ∀ n ≥ 2

Plugging n = 2, 3, … , and adding all, we get,

bn - b1 = 
r

r

n +









=
∑

4

42

= 
n+







 −








 −










5

5

4

4

5

4

⎛
⎜
⎝
Note: 

k

r

n

rk r

n 






 =

+
+











=
∑

1

1
, known as hockey stick identity

⎛
⎜
⎝

⇒ bn - b1 = 
n+









5

5
 - 6

⇒ an - an-1 = 
n+









5

5
 - 1

Again plugging n = 1, 2, 3, …, n and adding all, we get,

an =
+







 −

=
∑

r
n

r

n 5

51

     =
+







 −








 −

n
n

6

6

5

5
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Problem 5 Let 
n

k
a

n

n
nk

m

n 






 =

+
=

=
∑

1 1
1 2, , , ,…  find an

Solution: Let f(x) = 
n

k
x xk

m

n
n






 = + −

=
∑

1

1 1( )

f t dt
n

k

x

k

x

n
x

x k

m

n n

( )
( )

0

1

1

1

1

1 1

1∫ ∑= 






 +

=
+ −
+

−
+

=

+

Put x = -1, we get

n

k k n

k

m

n 







−
+

= −
+

+
+

=
∑ ( )1

1

1

1
1

1

1

 = 
n

n+1

And since there is obviously a unique sequence ak matching the requirements, we get 

⇒ an = 
( )

.
−
+

+1

1

1n

n

Problem 6 Let a a0 11 2= =,  and a a a nn n n= − ∀ ≥− −4 21 2 .  Find an odd prime factor 
of a2015 .

[Putnam, 2015]

Solution: Characteristic equation

x x x2 4 1 0 2 3− + = ⇒ = ±

⇒ = + + −an
n nλ µ( ) ( )2 3 2 3

⇒ + = + + − =λ µ λ µ1 2 3 2 3 2, ( ) ( )

⇒ = =λ µ
1

2

⇒ an
n n= + + −





1

2
2 3 2 3( ) ( )  (1)

For the sake of notational ease, let 2 3+ =α  and  2 3– ,= β  then an
n n= +

1

2
( )α β

Claim: If k is an odd positive integer and ⋅ ≠an 0  then a an kn|

Proof: 
a

a
kn

n

kn kn

n n

n k n k

n n
=

+
+

=
+
+

α β
α β

α β
α β

( ) ( )

                             = − + − +− − − −α α β α β β( ) ( ) ( ) ( )k n k n n n k n k n1 2 2 1�  (1)

As α . β = 1 and α βm m+ ∈ �  ∀ m, RHS of (1) is an integer ⇒ a an kn|

Now 2015 = 403 × 5

⇒ a a5 5 403| ,.  i.e., ⇒ a a5 2015|

Here   a5

5 52 3 2 3

2
=

+ + −( ) ( )

= 362 = 2 × 181

Hence one possible answer is 181.
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Problem 7 a a a a a nn n n0 1 1 20 1 2 2= = = + ≥− −, , , .  Prove that 2k
na|  if and only if 

2k n| .

[IMO Shortlisted Problem, 1988]

Solution: By the binomial theorem, if (1 + 2)n = An + Bn √2, then (1 - 2)n = An - Bn 
2. Multiplying these 2 equations, we get An

2 - 2Bn
2 = (-1)n. 

This implies An is always odd. Using characteristic equation method to solve the given 
recurrence relations on an, we find that an = Bn.

Now write n = 2km, where m is odd. 
We have k = 0 (i.e., n is odd) if and only if 2Bn

2 = An
2 + 1 ≡ 2 (mod 4), (i.e., Bn is 

odd). Next suppose case k is true. 
Since (1 + 2)2n = (An+ Bn 2)2 = A2n+ B2n 2, so B2n = 2AnBn. 
Then it follows case k implies case k + 1.

Aliter: From given recurrence we can easily get,

a
n n n

n
n n= + − −( ) = 






 +








 +








 +

1

2 2
1 2 1 2

1
2

3
2

5
2( ) ( ) �

Let n = 2km with m being odd; then for r > 0 the summand

2
2 1

2
2 1

1

2
2

2 1

1

2
r r r kn

r

n

r

n

r

m

r

n

r+








 = +

−







 = +

−







+ is divisible by 2r+k (As 2r + 1 

is odd)

Hence, a n
n

r
m sn

r

r

k k= +
+









 = +

>

+∑ 2
2 1

2 2
0

1 ,  for some integer s.

⇒ an is exactly divisible by 2k. 

Problem 8 Let a0 = 0, a1 = 1, an+2 = a an+1 + ban where gcd(a, b) = 1. Let c be a given 
positive integer, m is the least positive integer such that c | am, and n is an arbitrary 
positive integer such that c | an. Prove that m | n.

Solution: Let us first prove that consecutive terms are pair wise coprime
Given a0, a1, a2, a3, a4, … is 0, 1, a, a2 + b, …

First 4 terms are co-prime pairwise 
Let (ak+1, ak) = 1 and suppose p | ak+2, and p | ak+1, where p is prime number.
As ak+2 = a ak+1 + bak

⇒ p | bak ⇒ p | b (As p does not divides ak)
Also ak+1 = aak + bak-1

⇒ p | a . ak ⇒ p | a, which is a contradiction.
Hence any two consecutive terms are pair wise co-prime.
Now Let am be the first term divisible by ‘c’, i.e., m is minimal such number.
Consider the sequence
0, 1, a, a2 + b,…, x, am, am + bx, a2 am + ab x + bam, …
By taking mod c of the sequence we get,
0, 1, a, …, x, 0, b x, ab x,….
⇒ am+k ≡ bx ak (mod c)
Let c | bx ak but c does not divides ak.
Now, gcd (am, am + bx) = 1 and c | am ⇒ c does not divides bx. 
Hence, if c | am+k ⇒ c | ak
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⇒ k must be a multiple of m, since otherwise we can continue retrieving values m 
from k until reaching a term divisible by C, with an index strictly between 0 and m, 
contradicting the minimality of m.

Problem 9 Let a1 = 1, an = ( ) , .n k a nk
k

n

− ∀ ≥
=

−

∑ 2
1

1

 Find an

Solution: a1 = 1 ⇒ a2 = 1, a3 = 3, a4 = 8 and so on.

Then   an+1 = ( )n k ak
k

n

+ −
=
∑ 1

1

 (1)

Also   a n k an k
k

n

= −
=

−

∑ ( )
1

1

 (2)

   ⇒ a a an n k
k

n

+
=

− = ∑1
1

 (From (1) - (2)) (3)

   ⇒ an+2 - an+1 = ak
k

n

=

+

∑
1

1

 (4)

⇒ (an+2 - an+1) - (an+1 - an) = an+1 (From (4) - (3))
   ⇒ an+2 = 3an+1 - an ∀ n ≥ 2

Characteristic equation is

x2 - 3x + 1 = 0 ⇒ x = 
3 5

2

±

⇒ an = λ µ
3 5

2

3 5

2

+







 +

−









n n

a2 = 1 = λ µ
3 5

2

3 5

2

+







 +

+









a3 = 3 = λ µ
7 3 5

2

7 3 5

2

+







 +

−









λ =
+

2

5 3 5( )
 and µ = −

−

2

5 3 5( )
 

⇒ an = 
( ) ( )3 5 3 5

2 5
2

1 1

1

+ − −
∀ ≥

− −

−

n n

n
n

Problem 10 For real numbers a1, a2, a3,…, if an-1 + an+1 ≥ 2an for n = 2, 3, …, then 
prove that 
An-1 + An+1 ≥ 2An for n = 2, 3,…, where An is the average of a1, a2, …, an.

Solution: A A An n n–1 1 2+ ≥+ 

⇔
−

+
+

− ≥=

−

=

+

=
∑ ∑ ∑a

n

a

n

a

n

r
r

n

r
r

n

r
r

n

1

1

1

1

1

1 1

2

0
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⇔
−

+
+

−





+
+

−




+

+
≥

=

−
+∑1

1

1

1

2 1

1

2

1
0

1

1
1

n n n
a a

n n

a

n
r

r

n

n
n

⇔
− +









 −

+
+









 + +

≥
=

−
+∑2

1 1

2

1 1
0

1

1
1

( ) ( ) ( )n n n
a a

n

n n

a

n
r

r

n

n
n

⇔ −
+ −

+
−

≥
=

−

+∑a a
n n

a
n n

r
r

n

n n
1

1

1
2 1

2

1

2
0

( )( ) ( )

⇔ −
+ −

−
+ −








+

−
=

−
=

+

∑ ∑a a
r r

a
r r

a
r

r
r

n

r r
r

n

r

1
2

1
2

1

2 1

2

1 2

2

( )( ) ( )( )

(rr
a

r r
r

r

n −
−

− −





 ≥

=
∑ 1

2

1 2

2
0

2

) ( )( )

⇔ +
+ −






 −

+ −
+

− −





 +−a

r r
a

r r r r
ar r1 1

1 2

2

2 1

2

1 2

2

( )( ) ( )( ) ( )( )
rr

r

n r r
+

=

−

















≥

∑ 1
2

1

2

0

( )

⇔
−






 −

−





 +

−















− +a

r r
a

r r
a

r r
r r r1 1

1

2
2

1

2

1

2

( ) ( ) ( )
 ≥

=
∑
r

n

2

0

⇔
−

− + ≥− +
=
∑ r r

a a ar r r
r

n ( )
( )

1

2
2 01 1

2

Which is true as ar-1 + ar+1 ≥ 2ar for r = 2, 3,…

Problem 11 The first term x1 of a sequence is 2014. Each subsequent term of 
the sequence is defined in term of the previous term. The iterative formula is 

x
x

x
n

n

n
+ =

+ −

+ +
1

2 1 1

2 1

( )

( )
.  Find the 2015th term, i.e., x2015.

 [BMO, 2015]

Solution: x
x

x
n

n

n
+ =

− −

+ −
1

2 1

1 2 1

( )

( )

Let xn = tan an also 2 1
8

− = tan
π

⇒ xn+1 = 
tan tan

tan tan

a

a

n

n

−

+

π

π
8

1
8

⇒ xn+1 = tan an −








π
8

⇒ x2015 = tan a1 2014
8

−





.

π
 = tan a1

4
+








π
 = 

tan

tan

a

a
1

1

1

1

+
−

= 
x

x
1

1

1

1

2015

2013

+
−

= −

Note: For any k, a1 - k
π
8
≠  odd multiple of ⋅

π
2

; Even we can say a1 ≠
π
8

 (integer)
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As tan tan , tan , tan , tana1 2014 0
8

2

8

3

8
= ∉ ± ± ±








π π π

Problem 12 It is given that the sequence ( )an n=
∞

1  with a1 = a2 = 2 is given by the recur-

rence relation 
2

2 3 41

1 1
2

3a a

a a a
n n nn n

n n n

−

− + −
= − ∀ = , , ...

Find integer that is closest to the value of 
a

a
k

kk

+

=
∑ 1

2

2011

 [Singapore MO, 2012]

Solution: 
2 1

1 1
2

3a a

a a a
n nn n

n n n

−

− + −
= −

⇒ 
a a a

a a n n n n n
n n n

n n

− +

−

−
=

−
=

− +
1 1

2

1
3

2 2

1 1( )( )

⇒ 
a

a

a

a
n

n

n

n

+

−
−1

1
 = 

( ) ( )

( )( )

n n

n n n

+ − −
− +
1 1

1 1

= 
1

1

1

1( ) ( )n n n n−
−

+

Plugging n = 2, 3, 4, …, n and adding all, we get,

a

a

a

a n n
n

n−
− = −

+1

2

1

1

2

1

1( )

a

a n n
n

n

+ = − +
+

1 3

2

1 1

1

Again plugging n = 2, 3, …, n and adding all, we get,

a

a
k

kk

n
+

=
∑ 1

2

 = 
3

2

1

2

1

1
× − +

+
n

n

= 
3 1

2

1

1

n

n

−
+

+

For n = 2011,

a

a
k

kk

+

=
∑ 1

2

2011

 = 
6033 1

2

1

2012

−
+

= 3016 + 
1

2012

⇒ Closest integer is 3016

Problem 13 Let x and y be distinct complex number such that 
x y

x y

n n−
−

 is an integer 

for some four consecutive positive integers n. Show that 
x y

x y

n n−
−

 is an integer for all 

positive integers n.
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Solution: For non-negative integer n, let tn = 
x y

x y

n n−
−

.  So t0 = 0, t1 = 1 and we have a 

recurrence relation tn+2 + btn+1 + ctn = 0, where b = -(x + y), c = xy.
Suppose tn is an integer for m, m + 1, m + 2, m + 3. 

Since cn = (xy)n = t2n+2 - tntn+2 is an integer for n = m, m + 1, so c is rational. Since 
cm+1 is integer, c must, in fact, be an integer. Next

b
t t t t

c
m m m m

m
=

−+ + +3 1 2

So b is rational. 
Form the recurrence relation, it follows by induction that tn = fn-1 (b) for some poly-

nomial fn-1 of degree n -1 with integer coefficients. Not the coefficient of xn-1 in fn-1 
is 1, i.e., fn-1 is monic. 

Since b is a root of the integer coefficient polynomial fm(z) - tm+1 = 0, b must be an 
integer. 

So the recurrence relation implies all tn’s are integers.

Problem 14 Let a a a a a nn n n1 2 1 21 1 2 3= = − = − − ∀ ≥− −, , .  Prove that 2 72 2n
na+ −  is a 

perfect square.

Solution: Let us generate enough data

a a a3 2 12= − − = −1 2 1( ) = –1

a a a4 3 22= − −  = 1 + 2 = 3

Now Let    2 72 2 2n
n na b+ − =

⇒ b a1
2 3

1
22 7 8 7 1= − = =–

        b a2
2 4

2
22 7 16 7 9= − = =–

          b a3
2 5

3
22 7 32 7 25= − = =–

         b a4
2 6

4
22 7 64 63 1= − = =–

Let us define b1 = -1, b2 = -3, and bn = -bn-1 - 2bn-2 ∀ n ≥ 3

Claim 1: a
b a

n
n n

+ = −1
2 2

 and bn+1  = - 7

2 2

a bn n−

Proof: for n = 1, a
b a

2
1 1

2 2

1

2

1

2
1= − = − − = − ,  which is true.

b
a b

2
1 17

2 2

7

2

1

2
3= − − = − − = − ,  which is true.

for n = 2, a
b a

3
2 2

2 2

3

2

1

2
1= − = − + = − ,  which is true.

b3 = – ,
7

2 2

7

2

3

2
52 2a b

− = + =  which is true.

Let for n = k, claim be true
For n = k + 1

a a ak k k+ += − −2 1 2

= − + −
b a

ak k
k

2 2
2

M04_Recurrence Relation_C04.indd   26 8/11/2017   2:09:03 PM



Recurrence Relation   4.27

= − = − −





 − −






–

3

2 2

1

2

7

2 2

1

2 2 2

a b a b b ak k k k k k

= −+ +
1

2

1

2
1 1a bk k

and   bk+2 = − − = −+b b
a b

k k
k k

1 2
7

2

3

2

         = 
7

2 2
1 1b bk k+ +−

Hence by induction our claim is true!

Claim 2:   2 72 2 2n an bn+ = +

for n = 1, 23 = 7a1
2 + c1

2 = 7 + 1 = 8 true
Let for n = k, claim be true
For n = k + 1

2k +3= 2(2k+2) = 2(7ak
2 + bk

2)

= 7
2 2

7
2 2

2 2
b a a bk k k k−





 + − −








= 7 1
2

1
2a bk k+ ++

Hence by induction our claim is true.
As 2n+2 = 7an

2 + bn
2

⇒ 2n+2 - 7an
2 = bn

2

⇒ 2n+2 - 7an
2is a perfect square.

Problem 15 Let {an}, {bn}, n = 1, 2, 3,…, be two sequences of integers defined by a1 
= 1, b2 = 0 and n ≥ 1.

an+1 = 7an + 12bn + 6

bn+1 = 4an + 7bn + 3

Prove that an
2  is the difference of two consecutive cubes.

 [Singapore MO, 2010]

Solution: Consider the equation, x2 - 3y2 = 1 (Pell’s Equation)
Its fundamental solution is (2, 1) and all other solutions (xk, yk) will satisfy

xk+1 + yk+1 3  = (xk + yk 3 ) (2 + 3 )

Or        xk+1 + yk+1 3  = 2xk + 3yk + 3 (2yk + xk)
   ⇒ xk+1 = 2xk + 3yk (1)

And    yk+1 = 2yk + xk (2)
Note that xk is even and yk is odd only when k is odd. For odd k = 2n - 1,
Let            x2k-1 = 2fn, f1 = 1

y2k-1 = 2gn + 1, g1 = 0

From (1) and (2)

xk+2 = 2xk+1 + 3yk+1

= 2(2xk + 3yk) + 3(2yk + xk)
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 = 7xk + 12yk

and yk+2 = 2yk+1 + xk+1

 = 2(2yk + xk) + (2xk + 3yk)
 = 4xk + 7yk

 ⇒ 2fn+1 = 7 . 2 fn + 12 . (2gn + 1)
and 2gn+1 + 1 = 4(2fn) + 7(2gn + 1)
 ⇒ fn+1 = 7fn + 12gn + 6
and gn+1 = 4fn + 7gn + 3

Thus fn and gn are exactly equal to an and bn respectively.

Now (2an)
2 - 3(2bn+1)

2 = 1

⇒ a b bn n n
2 23 3 1= + +  = ( )b bn n+ −1

3 3

Hence proved.

Check Your Understanding 

 1. Solve the following recurrence relation.

  (a) a a n an n
n= − ⋅ ≥ =−4 3 2 1 11 0, ,

  (b) a a n n an n= + − ≥ =−3 2 2 1 31
2

0, ,

  (c) a a a n a an n n
n= − + ≥ = =− −6 9 2 2 1 41 2 0 1, , ,

 2. The function f is given by the table

X 1 2 3 4 5

f (x) 4 1 3 5 2

  If a0 = 4 and an+1 = f (an) then find a2017.

 3. Let an+1 = 
a

a
n

n

2 1

2 1

+
+

.  Prove that an < - 
1

2
 ⇔ an+1 < -

1

2

 4. Let an = n(a1 + a2 +…+ an-1) ∀ ≥n 2  a1 = 1. Find an

 5. Let an be a real sequence a1 = 1 and an = 
n

n

+
−

1

1
 (a1 + a2 + a3 +…+ an-1), n ≥ 2. 

Find a2017.

 6. Let {an} be a sequence such that, a a a a n an n1 1 2
21

2
= + + + =, .�

 [CMO, 1985]
 7. Find the nth term of the sequence {an} such that

  a1 = 1, nan = ( )n ak
k

n

−
=
∑1

1

 (n = 2, 3, …)

 8. Let a a
n n

ka nn k
k

n

1 1
1

0
1

2

1

1
= = − +

+
∈+

=
∑,

( )
, .�  Find an .

 9. Let a1 = 1, an = an-1 + 1 + ak
k

n

=

−

∑
1

1

 ∀ n > 1. Find an

 10. Let (n + 2)(n + 1)an+2 + (n + 1) an+1 - an = 0 ∀ n ≥ 1
  a1 = 2, a2 = 1, find an

 11. Let xn = 2 xn
2 -1, n ≥ 0, -1 ≤ x0 ≤ 1,Find xn

 12. Let n(n - 1)an = (n -1) (n -2) an-1 - (n - 2) (n - 3) an-2, n ≥ 2
  a0 = α, a1 = β. Find an
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 13. Let n(n - 1)an = (n - 1) (n - 2)an-1 + (n -3) an-2, n ≥ 2; a0 = α, a1 = β. Find an

 14. Find the nth term of the sequence {an} such that  

  a n n nk
k

n

= + + =
=
∑ 3 4 2 1 2 32

1

( , , , ...)  and calculate ak
k

n
2

1

.
=
∑

 15. Find the nth term of the sequence {an} such that

  a1 = 0, a2 = 1, ( ) ( ).n a a nn k
k

n

− = ≥
=
∑1 12

1

 16. Let an be the nth term of the arithmetic sequence with a1 = 7, the common differ-

ence 2, and bn be the nth term of the geometric sequence with b1 = 
1

3
,  the com-

mon ratio 
1

3
.  For the sequence {cn}, if a b c n n nk k k

k

n

= + + +
=
∑ 1

3
1 2 3

1

( )( )( )  holds, 

then find cn and evaluate
1

1 cnn=

∞

∑ .

 17. Let an = 2 
a

a
nn

n

−

−
≥1

3

2
2

2, ,  a0 = 2, a1 ≥ 2. Find an.

 18. Find the nth term of the positive sequence {an} such that  
  a1 = 1, a2 = 10, an

2an-2 = a3
n-1 (n = 1, 2, 3, . . .).

 19. Let an = 
n

an
2

2
2

+ , a1 = 1. Find an

 20. Let a1 = 1. an = a
n

n
2













 + ,  n > 1. Find a(n)

Challenge Your Understanding 

 1. If D n D D n D Dn n n= − + ≥ = =− −( )( ), , , ,1 3 0 11 2 1 2  then prove that,

  D nD n Dn n
n= + − ≥ =−1 11 2 0( ) ; ,

  And hence or otherwise prove that D n
r

n

r

r

n

=
−

=
∑! ( )

!
.

1

1

 2. Let xn+1 = 2xn - 5xn
2. Find xn in terms of x0

 3. Find the nth term of the sequence {an} such that  

  a1 = 
3

2
,  an+1 = 2an(an + 1) (n ≥ 1).

 4. The operation ⊗  which makes two non zero integers m, n correspond to the inte-
gers m n⊗  satisfies the following three conditions.

  (a) 0 1⊗ = +n n

  (b) m m⊗ = +0 1

  (c) m n m m n⊗ = − ⊗ ⊗ −( ) ( ( )),1 1  (m ≥ 1, n ≥ 1).

  Evaluate the following 1 2 3⊗ ⊗ ⊗n n n, ,

 5. Let a0 0= ,  a1 1= ,  ( ) ( )n n a n an n
2 2

22 0− − − =−  ∀ n ≥ 2. Find an.

 6. Let {an} be the sequence defined as follows a0 = 0, a1 = 1 and an +1= 4an- an-1 for 
n = 1, 2, 3, …

  (a) Prove that a a a nn n n
2

1 1 1 1− = ∀ ≥− + .
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  (b) Evaluate arctan .
k ka=

∞

∑










1
2

1

4

 7. Let T0 = 2, T1 = 3, T2 = 6 and n ≥ 3. Tn = (n + 4) Tn-1 - 4n Tn-2 + (4n - 8) Tn-3. 
Find Tn?

 8. Find the nth term of the sequence {an} such that  

   a1 = a, an+1 =
1

2

1
1a

a
nn

n

+








 ≥( ).

 9. The sequence a0, a1, a2,…. Satisfies am+n + am-n = 
1

2
(a2m + a2n) ∀ m, n ∈ �0  with 

m ≥ n. If a1 = 1 find a2017.

 10. Let an = 5an-1 + 29bn-1, n ≥ 2, bn = an-1 + 5bn-1, n ≥ 2, a1 = 5, and b1 = 1.
  Find an and bn.

 11. Let pn+1= -pn -6qn, n ≥ 1, qn+1 = pn + 4qn, n ≥ 1, p1 = 4, and q1 = -1. Find pn and 
qn

 12. Solve the system of recurrence relations a a b b a bn n n n n n+ += − = +1 1 3and

  Given a b0 01 5= − =, .

 13. The sequence {an} is given by a0 = 3, a a a a nn n= + ∀ ≥−2 10 1 1� .

   (i) Prove that any two term of {an} are relatively prime.
  (ii) Find a2007. [Croatia MO, 2007]

 14. Let x1 = 1, xn
2 + 1 = (n + 1) x2

n +1 ∀ n ≥ 1. Find xn

 15. Let P0(x), P1(x), P2(x), … are polynomial in ‘x’ such that P0(x) = 0, P1(x) = 
x - 2017 and Pn(x) = (x - 2017) Pn-1(x) + (2018 - x) Pn-2(x) ∀ n ≥ 2. Find Pn(x)

 16. Consider an+2 an = a2
n+1 + 2, n ≥ 1, a1 = a2 = 1. Prove the following:

    (i) an ∈ �
   (ii) an is an odd number ∀n ∈ �
  (iii) set {an, an+1, an+2} is pairwise coprime ∀n ∈ �

 17. Let a1 = 1, a2 = 7 and an+2 = 
a

a
n

n

+ −1
2 7

 ∀ n ≥ 1. 

  Prove that 9an an+1 + 1 is a perfect square ∀ n ∈ � .
 18. The sequence {xn} is defined by x1 = a, x2 = b, xn+2 = 2008xn+1 - xn. Prove that 

there exist a, b such that 1 + 2006xn+1xn is a perfect square for all n∈�.   
 [Turkey MO, 2008]

 19. The sequence xn is defined by x1= 2, x
x

x
nn

n

n
+ =

+
−

=1
2

1 2
1 2 3, , , , ....

  Prove that ⋅ ≠xn
1

2
 or 0 for all n and the terms of the sequence are all distinct.

 20. The sequence {an} of integers is defined by − ≤ − ≤+
−

1

2

1

2
1

2

1

a
a

a
n

n

n
 

  with a1 = 2, a2 = 7, prove that an is odd for all values of n ≥ 2. [BMO, 1988]
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5.1 FUNCTION

A function f is a rule ‘f ’ that assigns to each element x of its domain of definition one 
definite value f (x) belonging to its co-domain. 

Formally,
A function f from A to B is a subset of Cartesian product A × B subject to the fol-

lowing condition: 
Every element of A is the first component of one and only one ordered pair in the 

subset. In other words, for every x ∈ A, there is exactly one element y such that the 
ordered pair (x, y) is contained in the subset defining the function f. 

The expression f : A → B means f is a function that has domain A and co-domain B 
or f is a function from A to B.

Usually (but not always) function is denoted with an expressions such as,
f : A → B
f (x) = Expression 
where x is an argument of the function belongs to A and f(x) is a value or f image of 

the function belongs to B.
Collection of all f image, is called range of the function. It is always a subset of

co-domain (i.e., B here)

5.1.1 Some Properties of Function

 1. One to one function (Injective function): If f (a) = f (b) ⇒ a = b, then f is called 
Injective or one to one function. In other words no value in co-domain may be 
taken by f (x) more than once.

 2. Many to one function: If for atleast one a, b such that a ≠ b, f (a) = f (b), then f is 
called many to one function.

 3. Onto function (Surjective function): If range of the function is equal to co-
domain of the function, then function is called onto. In other words for every
b ∈ Co-domain, there exist a ∈ Domain such that f (a) = b. 

5
Chapter

Functional Equations
A

a
b
c
d

1
2
3
4
5

f : B

A

a
b
c

One to one

1
2
3
4

f : B

A

a
b
c

Many to one

1
2
3
4

f : B

A

a
b
c

Onto function

1
2

f : B

Function

Function

Input

Input

Output

α
f, g, h, …

Domain

t,...,

Independent Varible

Domain Elements

Argument

Output

f    , gx

Range Image
Range Elements

Dependent Variable

Value of Function

0, 1, 16, 81

y = x4

(  )α

x = 0, 1, 2, 3

x, (  ) , h(t), ...
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5.2  Chapter 5

 4. Into function: If range is a proper subset of co-domain then function is called 
into.

 5. Bijective function: If f is injective as well as subjective, then f is called bijective 
function.

 6. Increasing function: f (x) is called increasing function (or non-decreasing func-
tion) over I, If

  ∀ a, b ∈ I, a < b ⇒ f (a) ≤ f (b). 
 7. Strictly increasing function: f (x) is called strictly increasing function over I, if 

∀ a, b ∈ I, a < b ⇔ f (a) < f (b)
 8. Decreasing function: f (x) is called decreasing function (or non-increasing func-

tion) over I, If
  ∀ a, b ∈ I, a < b ⇒ f (a) ≥ f (b).
 9. Strictly decreasing function: f (x) is called strictly decreasing function over I, If 

∀ a, b ∈ I, a < b ⇔ f (a) > f (b) 
 10. Monotonic function: If f is either increasing or decreasing then it is monotonic.
 11. Strictly monotonic function: If f is either strictly increasing or strictly decreas-

ing then it is called strictly monotonic.
 12. Even/odd function: If Domain is symmetric about ‘O (origin)’ that is x ∈ 

Domain ⇔ -x ∈D then we can define f (x) even function, if f (-x) = f (x) ∀ x ∈ 
Domain and an odd function if f (-x) = -f (x) ∀ x ∈ Domain.

 13. Periodic function: If f (x + T) = f (x) ∀ x ∈ Domain then f is called periodic, 
where T is a fixed positive real number independent of ‘x’. Least positive T (if it 
exist) called fundamental period of f.

 14. Fixed point of function: If f (a) = a for some a belongs to domain then a is called 
a fixed point of the function.

 15. Identity function: If f (x) = x ∀ x ∈ Domain, then f is called an Identity function.
 16. Self invertiable or involutory function: If f : A → A has the property that f (  f (x)) 

= x for all x ∈ A, then f is called an involution on A or an involutory function. 
Involutory function are very special function. If f : A to A is an involutory func-
tion then A can be partitioned as the union of sets Ai, such that each Ai has either 
one or two elements, and f swaps the two elements (if there are two) or maps the 
element to itself (if there is only one).

5.1.2 Continuity of a Function

Intuitively a continuous function is function whose graph does not ‘breakup’. But one 
should only view this definition informal. Formally, f (x) is continuous at a ∈ A. If f (x) 
approaches f (a) as x approaches a. In mathematical notation, this can be written as 
lim ( ) ( ).
x a

f x f a
→

=  More intuitively, we can say that if we want to get all the f (x) values 

to stay in some small neighbourhood around f (x0), we simply need to choose a small 
enough neighbourhood for the x values around x0. If we can do that no matter how 
small the f (x) neighbourhood is, then f is continuous at x0. In mathematical notation:
f is a continuous at x = a ⇔
∀ ε > 0 ∃ a δ > 0 such that ∀ x ∈ Df  : | x - a| < δ ⇒ | f(x) - f(a)| < ε
Read it “for all epsilon > 0 there exist a delta > 0 such that …”

Note: f (x) is continuous over A, if it is continuous at every a ∈ A.

5.1.2.1 Intermediate Value Theorem

Let f  be continuous over [a, b]. Then for every λ lying between f (a) and f (b) (including 
f (a) and f (b)), there exist atleast one c ∈ [a, b] such that f (c) = λ.

A
a
b
c

Into function

1
2
3

f : B

A

a
b
c

Bijective function

1
2
3

f : B
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5.2 FUNCTIONAL EQUATION

A functional equation is an equation whose variables are ranging over functions and 
our aim is to find all possible functions satisfying the equation.

There is no fixed method to solve a functional equation few standard approaches 
as follows:

5.2.1 Substitution of Variable/Function 

This is most common method for solving functional equations. By substitution we get 
simplified form or some time some additional information regarding equation. We 
replace old variable with new variable by keeping domain of old variable unchanged. 
See the following examples:

Example 1 Let f :  \ {0} →  be such that f
x

x
x

1
1 2

2
+






 = +

1
 ∀ ∈x �  \ {0}, find 

f (x). 

Solution: Let y
x

x
y

= + ⇒ =
−

1
1 1

1
 

⇒ =
−









 + − ∀ ∈ −f y

y
y y( ) ( ) { }.

1

1
1 1

2

2 �  

Example 2 Let p, q be fixed non-zero real numbers. Find all function f : � �→  such 

that f x
q

p
x

p

q
x

q

p
f x

q

p
x x−









 + ≤ + ≤ +









 − ∀ ∈2

2
22 �.

Solution: Substitute x
q

p
y− =  in left inequality, we get f y

p

q
y

q

p
( ) ≤ +2  (1)

Similarly substituting x
q

p
y+ =  in right inequality, we get f y

p

q
y

q

p
( ) ≥ +2  (2)

From Inequations (1) and (2), we get 

f y
p

q
y

q

p
y( ) .= + ∀ ∈2 �  

Example 3 f : { }� �\ 0 →  such that 2 3
1

0f x f
x

x x( ) \ { },+ 





 = ∀ ∈�  find f (x).

Solution: Replace x by 
1

x
,  we get 2

1
3

1
f

x
f x

x







 + =( )

Now by eliminating f
x

1





  from the two equations, we get 

( ) ( )

( ) .

9 4
3

2

3 2

5

2

− = −

⇒ =
−

f x
x

x

f x
x

x
 

Example 4 Find all functions f : � �→  such that x2f (x) + f (1 - x) = 2x - x4 ∀ ∈x �.  

Solution: Replace x by(1 - x), we get 

( ) ( ) ( ) ( ) ( )1 1 2 1 12 4− − + = − − −x f x f x x x  

Now eliminating f (1 - x) from the two equations, we get f (x) = 1 - x2.

Charles Babbage

26 Dec 1791–18 Oct 1871
Nationality: British
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Example 5 f : { , } ,� �− →0 1 f x f
x

x
x( ) +

−





 = +

1
1  find f (x)  

Solution: Replacing x by 
x

x

−1
,  we get 

f
x

x
f

x

x
x

x

x

x

−





 +

−
−

−
















= +

−1
1

1

1
1

1

or f
x

x
f

x

x

x

−





 + −







 =

−1 1

1

2 1
 (1)

again replacing x by 
1

1− x
 in parent equation, we get 

f
x

f x

x
x

x

x

1

1

1

1
1

1

1

1
1

1

2

1−






 +

−
−

−
















= +

−
=

−
−

 

f
x

f x
x

x

1

1

2

1−






 + =

−
−

( )  (2)

By adding parent equation + Eq. (2) and subtracting Eq. (1), we get 

2 1
2

1

2 1
f x x

x

x

x

x
( ) = + +

−
−

−
−

 ⇒ =
− −

−
f x

x x

x x
( )

( )

3 2 1

2 1

5.2.2 Isolation of Variables

We try to bring all functions of x to one side and all functions of y on other side. For 
some particular type of problems this works wonderfully. See the following examples:

Example 6: Find f (x) such that xf (y) = yf (x) ∀x, y ∈  - {0}.

Solution: x f (y) = y f (x)

⇒ =
f x

x

f y

y

( ) ( )

as x, y are independent of each other

⇒ = =
f x

x
c

( )
Constant

⇒ f (x) = cx.

Example 7 If (x - y) f (x + y) - (x + y) f (x - y) = 4xy(x2 - y2) ∀ x, y ∈ , find f (x).

Solution: Given equation is equivalent to 

f x y

x y

f x y

x y
xy

( ) ( )+
+

−
−
−

= 4

= (x + y)2 + (x - y)2

⇒
+
+

− + =
−
−

− −
f x y

x y
x y

f x y

x y
x y

( )
( )

( )
( )2 2

⇒ −
f t

t
t

( ) 2 is constant
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Let 
f x

x
x c f x x cx

( )
( ) .− = ⇒ = +2 2

which satisfies the parent equation.

Build-up Your Understanding 1

 1. Find f : { , } ,� �\ 0 1 →  such that 

  f
x

x
f

x

x
x

−






 =

−





 ∀ ∈

1
2

1
0 1� \ { , }.  

 2. Find f :  \ {0, 1} → , such that 

  f x f
x

x x( ) { , }.+
−







 = ∀ ∈

1

1
0 1�\

 3. f (x2 + x)+ 2f (x2 - 3x + 2) = 9x2 - 15x ∀ x ∈ , find f (2016).
 4. Find f :  → , such that f (x) + x f (1 - x) = 1 + x ∀ x ∈ .
 5. f :  → , f (x + y) + f (x - y) = 2f (x) cos y ∀ x , y ∈ , find all such functions.
 6. Find all functions f : \{0, 1} → , such that

  f x f
x

x

x x
x( )

( )

( )
\ { , }.+

−






 =

−
−

∀ ∈
1

1

2 1 2

1
0 1�

 7. Find all functions f : \{0, 1} → , such that

  f x f
x

f
x

x
x( ) .+ 






 + −







 =2

1
3

1

5.2.3 Evaluation of Function at Some Point of Domain 

We try to determine the unknown function at points 0, 1, -1, etc, which is mostly 
crucial to simplify the complex functional equation. Observe the following examples: 

Example 8 Find all functions f :  →  such that 
f (xf (x) + f (y)) = (  f (x))2 + y ∀ x, y ∈ .

Solution: Let P(x, y) : f (xf (x) + f (y)) = ( f (x))2 + y
P(0, x) : f (  f (x)) = (  f (0))2 + x
Let f (0) = a ⇒ f ( f (x)) = x + a2  (1)
at x = -a2, f (  f (-a2)) = 0
Let f (-a2) = b
⇒ =f b( ) 0

P(b, b) : f (bf (b) + f (b)) = ( f (b))2 + b
⇒ f (b(0) + 0) = 02 + b
⇒ f (0) = b
Also P(0, b) : f (0 ⋅ f (0) + f (b)) = ( f (0))2 + b
f (0) = ( f (0))2 + b
⇒ ( f (0))2 = 0 (as f (0) = b)

⇒ = ⇒ =f a( )0 0 0

From Eq. (1), we get f ( f (x)) = x ∀ x ∈  (2)
Also from P(x, 0) : f (xf (x)) = ( f (x))2 (3)
Replace x by f (x) in Eq. (3)
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5.6  Chapter 5

We get, f ( f (x) ⋅ f (x)) = (  f (  f (x)))2

⇒ f (  f (x) x) = x2 (from Eq. (2)) (4)
From Eqs. (3) and (4), we get
(  f (x))2 = x2 

⇒ f (x) = x or -x
Now we will prove either f (x) = x ∀ x ∈  or f (x) = -x ∀ x ∈ .
If possible let f (x1) = x1 and f (x2) = -x2, x1 ≠  x2

P(x1, x2 ) : f (x1 f (x1) + f (x2)) = (  f (x1))
2 + x2 

f x x x x1
2

2 1
2

2−( ) = +

⇒ ± −( ) = +x x x x1
2

2 1
2

2

+ve, x1
2 + x2 = x1

2 + x2 ⇒ x2 = 0

-ve, -x1
2 + x2 = x1

2 + x2 ⇒ x1
2 = 0

⇒ x1
 = 0

Hence either f (x) = x ∀ x ∈ 
or, f (x) = -x ∀ x ∈ .

Example 9 f : 0 → 0 such that

f (x2 + f (y)) = x f (x) + y ∀ x, y ∈ 0. 

Solution: P(x, y) : f (x2 + f (y)) = x f (x) + y

P(0, x) : f ( f (x)) = x ∀ x ∈ 0 (1)
P(1, 0) : f (1 + f (0)) = f (1) (2)

⇒ f (  f (1+ f (0))) = f (  f (1)) (taking f on both side of Eq. (2))

⇒ 1 + f (0) = 1 (using Eq. (1))

⇒ =f ( )0 0

P(1, f (x)) : f (12 + f (  f (x))) = 1 ⋅ f (1) + f (x)
⇒ f (1 + x) = a + f (x) (Let f (1) = a)
f (x + 1) - f (x) = a (3)
Plugging x = 0, 1, 2, …, n - 1 in Eq. (3) and adding all, we get 
f (n) = na∀n ∈ 0

Checking it in parent equation, we get

a(x2 + ay) = ax2 + y
⇒ a2 y = y ⇒ a2 = 1 ⇒ a = ±1
But a = -1, not possible as co-domain = 0.

⇒ =f n n( ) .

Example 10 Find all functions f :  → , such that
f ( f (x + y)) = f (x + y) + f (x) ⋅ f (y) - x y ∀ x, y ∈ .

Solution:  P(x, y) : f ( f (x + y)) = f (x + y) + f (x) ⋅ f (y) - xy
P(x, 0) : f (  f (x)) = f (x) (1 + f (0)) 
Let f (x) = t
⇒ f (t) = (1 + f (0))t (1)
When t ∈ image set of f
⇒ f (  f (x + y)) = (1 + f (0)) f (x + y)
⇒ f (x + y) + f (x) ⋅ f (y) - xy = (1 + f (0)) f (x + y)
⇒ f (x) ⋅ f (y) - xy = f (0) ⋅ f (x + y) (2)
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Let f (0) = a, x = -a and y = a in Eq. (2)
f (a) ⋅ f (-a) + a2 = a2 

⇒ f (a) ⋅ f (-a) = 0
⇒ 0 ∈ Im(  f     )
From Eq. (1), we get
f (0) = (1 + f (0)) ⋅ 0 = 0
Using this in Eq. (2), we get
f (x) ⋅ f (y) = xy 
⇒ (  f (1))2 = 1 ⇒ f (1) = ±1
⇒ f (x) = x or -x
But f (x) = x only satisfy the parent equation.

5.2.4 Application of Properties of the Function 

Sometime investigating for injectivity or surjectivity of function involved in the equa-
tion is very useful in order to determine it. Sometime identifying function as monoto-
nous reduces the complexity of the problem at great length. See the following examples:

Example 11 Let f :  →  satisfies 
f ( f (n) + 2) = n ∀ n ∈ , f (1) = 0 find f (n).

Solution: Let f (n) + 2 = g(n)
⇒ f (g(n)) = n
as f o g is one to one and onto function, g is one to one and f must be onto. As g(n) = 
f (n) + 2 ⇒ f is one to one function and g(n) is onto also ⇒ f and g are inverse of each 
other.
As f (1) = 0 ⇒ g(0) = 1 ⇒ f (0) + 2 = g(0) = 1

⇒ = −f ( )0 1

from f (n) + 2 = g(n), we get
f (  f (n)) + 2 = g(  f (n)) = n
⇒ n = f (  f (n)) + 2
Replacing n by f (n + 2), we get 
f (n + 2) = f ( f (  f (n + 2))) + 2

= f (n + 2 - 2) + 2 (as f (  f (n)) = n - 2)

⇒ f (n + 2) = f (n) + 2

⇒ f (n + 2) - f (n) = 2
using telescoping sum we get
⇒ f (n) = n - 1 (as f (0) = -1, f (1) = 0)

Example 12 Find all functions f :  →  that have the following two properties:
f ( f (x)) = x ∀ x ∈  and x ≥ y then f (x) ≥ f (y).

Solution: Fix any number x ∈  and Let y = f (x).
From first property f (y) = x
Let x ≠ y, ⇒ x < y or x > y

Case 1: x < y ⇒ f (x) ≤ f (y)
⇒ y ≤ x contradiction

Case 2: y < x ⇒ f (y) ≤ f (x)
⇒ x ≤ y contradiction
Hence x = y ⇒ f (x) = x ∀ x ∈ .
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Example 13 Prove that there is no function
f : 0 → 0 such that f ( f (n)) = n + 1987 [IMO, 1987]

Solution: f must be injective (if it exists)
Let x ≠ y, f (x) = f (y)
⇒ f (  f (x)) = f (  f (y))
⇒ x + 1987 = y + 1997
⇒ x = y Contradiction.
⇒ f must be injective.
Let f (n) misses exactly k distinct values C1, C2, …, Ck in 0, i.e., f (n) ≠ C1, C2, …, Ck 
∀ n ∈ 0, then f ( f (n)) misses the 2k distinct values C1, C2, …, Ck and f (C1), f (C2), …, 
f (Ck) in 0 (No two f (Ci) is equal as f is one to one function). Let y ∈ 0 and y ≠ C1, 
C2, …, Ck, f (C1), f (C2), …, f (Ck), then there exist x ∈ 0 such that f (x) = y. Since y ≠ 
f (Cj), x ≠ Cj, so there is n ∈ 0 such that f (n) = x, then f ( f (n)) = y.

This implies f (  f (n)) misses only the 2k values C1, C2, …, Ck, f (C1), f (C2), …, f (Ck) 
and no others since n + 1987 misses the 1987 values 0, 1, …, 1986 and 2k ≠ 1987 this 
is a contradiction.

5.2.5 Application of Mathematical Induction 

Many functional equation on natural number or on integer can be solved using induc-
tion, sometimes it is also applicable in case of rational numbers. See the following 
examples:

Example 14 Let f :  →  be a function such that f (n + 1) > f ( f (n)) ∀n ∈ .
Prove that f (n) = n ∀ n ∈ .

Solution: Our claim is f (1) < f (2) < f (3) < …. This follows if we can show that, for 
every n > 1, f (n) is the unique smallest element of {  f (n), f  (n + 1) , f (n + 1), …}.

Let us apply introduction on n. 
Firstly for m ≥ 2, f  (m) ≥ f  (   f  (m - 1)). Since f  (m - 1) ∈ {1, 2, 3, … },  this mean that 

f  (m) cannot be the smallest of {f (1), f (2), f (3), …}.
Since {  f  (1), f  (2), … } is bounded below by 1, it follows that f  (1) must be the 

unique smallest element of { f (1), f (2), f (3), …}.
Now suppose that f (n) is the smallest of {  f  (n), f  (n + 1), …}. Let m > n + 1. By the 

induction hypothesis, f (m - 1) > f  (n). Since f (n) > f (n - 1) > … > f (1) ≥ 1, we have 
f  (n) ≥ n and so f (m - 1) ≥ n + 1, so f (m - 1) ∈ {n + 1, n + 2, …}.

But f  (m) > f  (   f  (m - 1)), so f (m) is not smallest in {  f  (n + 1), f  (n + 2), …}. Since 
{  f  (n + 1), f  (n + 2), …} is bounded below, it follows that f (n + 1) is the unique smallest 
element of { f   (n + 1), f  (n + 2), …}.

Now since, 1 ≤ f   (1) < f  (2) < f (3) < …, clearly we have f (n) ≥ n ∀ n ∈ . But if f (n) 
> n for some n, then f  (    f  (n)) > f  (n + 1) a contradiction. Hence f (n) = n ∀ .

Example 15 Let f :  → , such that f (1) = 2 and f (xy) = f (x) ⋅ f (y) - f (x + y) + 1, 
find f (x). 

Solution: Putting y = 1, then
f  (x) = f  (x) ⋅ f  (1) - f  (x + 1) + 1
= 2f (x) - f (x + 1) + 1
⇒ f  (x + 1) = f  (x) + 1
Therefore by applying condition f  (1) = 2 and by mathematical induction, for all 

integer n, we have f  (x) = x + 1.
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For any rational number, let x
m

n
=  where m, n ∈  and n ≠ 0, putting x

m

n
= , y = 

n then

f
m

n
n f

m

n
f n f

m

n
n

f m f
m

n
n

⋅





 =







 ⋅ − +






 +

= 





 +

( )

( ) (

1

1))

( )

− +





 +

+ = 





 + − 






 − +

f
m

n
n

m f
m

n
n f

m

n
n

1

1 1 1  (as f  (x + 1) = f  (x) + 1 ∀ x ∈ )

⇒ 





 = +nf

m

n
n m

or f
m

n

m

n







 = +1

⇒ f (x) = x + 1 ∀ x ∈ .

Build-up Your Understanding 2

 1. The function f is defined for all real numbers and satisfies f (x) ≤ x and f (x + y) ≤ 
f (x) + f (y) for all real x, y. Prove that f (x) = x for every real number x.

 2. Let R denote the real numbers and f :  → [-1, 1] satisfy

  f x f x f x f x+





 + = +






 + +








13

42

1

6

1

7
( )

  for every x ∈. Show that f is a periodic function, i.e., there is a non-zero real num-
ber T such that f (x + T ) = f (x) for every x ∈ . [IMO Shortlisted Problem, 1996]

 3. Find all functions f :  →  such that
  f (f (x + y)) = f (x + y) + f (x) f (y) - xy for all x, y ∈ .
 4. Find all functions f :  →  such that
  f ((x + y f (x)) = f (x) + xf (y) for all x, y in .
 5. Let f :  →  be a continuous function such that f (f (x)) + f (x) + x = 0 ∀ x ∈. 

Find all such f (x).

5.2.6 Method of Undetermined Coefficients 

It is mostly used when we know that given function is a polynomial then we assume a 
polynomial with unknown coefficients and using given functional equation we try to 
get the coefficients. See the following example:

Example 16 Let f be a polynomial and f x f
x

f x f
x

( ) ( )⋅ 





 = + 








1 1
 ∀x ∈  - {0}. 

Find ‘f’.

Solution: Let f (x) = a0 + a1x + a2x
2 + … + anxn, an ≠ 0

Now using given equation we get 

(a0 + a1x + a2x
2 + … + anx

n) a
a

x

a

x

a

x
n
n0

1 2
2

+ + + +





�

M05_Functional_Equations.indd   9 8/11/2017   2:13:24 PM



5.10  Chapter 5

= (a0 + a1x + … + anx
n) + a

a

x

a

x
n
n0

1+ + +





�

Multiply xn on both side and clearing the denominators, we get 

(a0 + a1x + a2x
2
 + … + anx

n)(a0x
n + a1x

n-1 + … + an)

= (a0x
n + a1x

n+1 + … + anx
2n) + (a0x

n + a1x
n-1 + … + an)

Comparing [x2n] on both side, we get a0an = an ⇒ a0 = 1 (as an ≠ 0)
Comparing [x2n–1], we get

ana1 + an-1a0 = an-1

⇒ ana1 + an-1 = an-1

⇒ ana1 = 0

⇒ a1 = 0
Similarly a2 = a3 = a4 = … = an–1 = 0
Comparing [xn], we get 

a a a an n
2

1
2

0
2

02+ + + =− �  

an
2 1=

⇒ an = ±1
⇒ f (x) = 1 ± xn

which satisfy the given functional equation.

5.2.7 Using Recurrence Relation 

When functional equation involves relation between f (n), f (  f (n)), f (  f (  f (n))), etc., 
then we can use this method effectively. See the following examples:

Example 17 f : 0 →  such that f (n + m) + f (n - m) = f (an) ∀n ≥ m
where a be a positive integer, find f.

Solution: Plug m = 0, 2f (n) = f (an)
for n = 0, 2f (0) = f (0) ⇒ f (0) = 0
Plug m = 1, f (n + 1) + f (n - 1) = f (an) = 2f (n) (1)
Let f (n) be an ∀ n ≥ 0
Then from Eq. (1), we get
an+1 - 2an+1 + an–1 = 0
Its characteristic equation
xn+1 - 2xn+1 + xn-1 = 0, x ≠ 0
⇒ x2 - 2x + 1 = 0
⇒ (x - 1)2 = 0 ⇒ n = 1, 1
an = αn + β
Now a0 = f (0) = 0 ⇒ β = 0
⇒ an = αn
or f (n) = αn
Checking it with parent equation, we get
α(n + m) + α(n - m) = aαn
⇒ α(2 - a)n = 0 ⇒ α(2 - a) = 0
for a ≠ 2, α = 0 ⇒ f (n) = 0; for a = 2, f (n) = αn.

Example 18 If f :  →  such that
f ( f ( f (n))) + f ( f (n)) + n = 3f (n) ∀n ∈ , then find f.
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Solution: Replace n by f (n) successively in parent functional equation k times we get

fof of n fofof of n fofofof

k k

…� �� �� …� ��� ��� …( ) ( )
+ +

+ +
3 2times times

oof n fofo of n

k k

( ) ( )
times times

� ��� ��� …� ��� ���=
+

3
1

 (1)

Let a0 = n for some fix n and ak+1 = f (ak) ∀k ≥ 0
⇒ From Eq. (1) we get
ak+3 + ak+2 - 3ak+1 + ak = 0
Its characteristic equation is
xk+3 + xk+2 - 3xk+1 + xk = 0, x ≠ 0
or x3 + x2 - 3x + 1 = 0
⇒ (x - 1)(x2 + 2x - 1) = 0

⇒ = − ±x 1 1 2,

⇒ = + − + + − − ∀ ≥a c c c kk
k k

0 1 21 2 1 2 0( ) ( ) .

Observe that | | | |− − > > − +1 2 1 1 2

for c2 > 0, a2k+1 → -∞ which is a contradiction
for c2 < 0, a2k+1 → ∞ which is again a contradiction as n is fix.
⇒ c2 = 0

⇒ = + −a c ck
k

0 1 2 1( )

Now a0 = n ∈ 
a1 = f (a0) = f (n) ∈ 

a c c0 0 1
02 1= + −( )

a c c1 0 1 2 1= + −( )

⇒ − = −a a c1 0 1 2 2( )

If c1 ≠ 0 then 2 2 1 0

1

− =
−

∈
a a

c
�

which is contradiction

⇒ c1 = 0

⇒ ak = c0

⇒ a1 = a0

⇒ f (n) = n.

Build-up Your Understanding 3

 1. Consider the function f : [0, 1] → [0, 1] defined by f(x) = 4x (1 - x).
  How many distinct roots does the equation f 1992(x) = x have? [where f  n(x) = f (f  n-1(x))]
 2. Prove that there exists a unique function f from the set + of positive real numbers 

to + such that f (f (x)) = 6x - f(x) and f (x) > 0 for all x > 0. [Putnam, 1988]
 3. Let f(x) = x2 - 2 with x ∈ [-2, 2]. Show that the equation f n(x) = x has 2n real 

roots. [where f  n(x) = f (f  n-1(x)).]
 4. Let {an} be the sequence of real numbers defined by a1 = t and an+1 = 4an (1 - an), 

n ≥ 1. For how many distinct values of t do we have a1998 = 0?
 5. Given the expression

  P x x x x xn n

n n
( ) ,= + −( ) + − −( )









1

2
1 12 2

M05_Functional_Equations.indd   11 8/11/2017   2:13:26 PM



5.12  Chapter 5

  prove that Pn(x) satisfi es the identity

  P x xP x P xn n n( ) ( ) ( ) ,− + =− −1 2
1

4
0

  and that Pn(x) is a polynomial in x of degree n.
 6. Find all continuous functions f :  →  that satisfy 3f (2x + 1) = f (x) + 5x.
 7. Find all increasing bijections f of  onto itself that satisfy

  f(x) + f -1(x) = 2x, where f -1 is the inverse of f.
 8. Find all function f : + → + that satisfy

  f x f
x

( ) + 





 =

1
1

  and f x
f x

( )
( )

1 2
2

+ =  for all x in the domain of f.

5.2.8 Cauchy’s Functional Equation

The equation f :  → , f (x + y) = f (x) + f (y) ∀ x ∈  is called Cauchy’s functional 
equation (or additive function). Observe the Cauchy’s step by step method to solve the 
following functional equation.

Example 19 f :  →  such that f (x + y) = f (x) + f (y) ∀ x, y ∈ , find f.

Solution: f (x + y) = f (x) + f (y)
⇒ f (x1 + x2 + … + xn) = f (x1) + f (x2) + … + f (xn)

Let x1 = x2 = x3 =  …  = xn = x

⇒ f (nx) = nf (x), n ∈ , x ∈  (1)

also from x = y = 0 in parent equation, we get f (0 + 0) = f (0) + f (0) ⇒ f (0) = 0

Plug y = -x in parent equation, we get

f (0) = f (x) + f (-x) ⇒ f (-x) = -f (x)

⇒ f is odd

Replace x by -x in Eq. (1)

f (-nx) = nf (-x)

= -nf (x)

Let -n = k ∈ –

⇒ f (kx) = k f (x) ∀ x ∈ , ∀ k ∈ – (2)

From Eqs. (1) and (2), we get

f (nx) = nf (x) ∀ x ∈ , ∀ n ∈  (3)

Now take x
p

q
= ; p, q ∈ , q ≠ 0 and n = q

⇒ ⋅








 = ⋅









f q

p

q
q f

p

q

⇒ ⋅ = ⋅








f p q f

p

q
( )1

⇒ =








pf qf

p

q
( )1  (From Eq. (3))

Augustin-Louis Cauchy

21 Aug 1789–23 May 1857
Nationality: French
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⇒








 = ⋅f

p

q

p

q
f ( )1  (1)

⇒ f (x) = ax ∀ x ∈ 
where a = f (1).

Example 20 f :  → , such that f (x + y) = f (x) + f (y) ∀ x, y ∈ and f is bounded 
above on an interval then prove that f (x) = ax ∀ x ∈  where a ∈ .

Solution: In previous example we already proved for additive function
f (x) = ax ∀ x ∈ .
Consider: g(x) = f (x) - ax
Now g :  →  is an additive function
⇒ g(r) = 0 ∀ r ∈ .
Let f be bounded above on (a, b)
⇒ g will be bounded above on (a, b).
Let g(x) < M ∀ x ∈ (a, b)
Let x ′ be any arbitrary read number
Consider interval (a - x ′, b - x ′)
This interval contains, a rational number r.
As r ∈(a - x ′, b - x ′) ⇒ r + x ′ ∈ (a, b)
Now g(r + x ′) = g(r) + g(x ′) (as g is an additive function)

⇒ g(x ′) = g(r + x ′) (as g(r) = 0)

⇒ g(x ′) = g(r + x ′) < M

⇒ g(x ′) < M
Hence g(x) < M ∀ x ∈ 

Now g x g
n

nx
n

g nx( ) ( )′ = ⋅ ′





 = ′1 1

 (as g is an additive function)

⇒ ′ = ′ ≤g x
n

g nx
M

n
( ) ( )

1

Also g x g
n

nx
n

g nx
M

n
( ) ( ) ( )′ = − − ′






 = − − ′ > −

1 1

Hence for ∀n ∈ 

− ≤ ′ ≤
M

n
g x

M

n
( )

as n → ∞, we get g(x ′) = 0
⇒ g(x) = 0 ∀ x ∈  (as x ′ is an arbitrary real number) 

⇒ f (x) - ax = 0
or f (x) = ax ∀ x ∈ .

Notes: All the following statements are equivalent:
 1. f is bounded above (or bounded below) over an interval and f is additive function.
 2. f is increasing (or decreasing) and f is additive function.
 3. f is continuous at a point and f is additive function.
We can easily prove that (2) → (1) and (3) → (1)
and from first we already got f (x) = ax ∀ x ∈.

M05_Functional_Equations.indd   13 8/11/2017   2:13:29 PM



5.14  Chapter 5

Proof of (2) → (1): It is obvious as f is increasing over an interval then f is bounded 
above over some interval. Similarly for decreasing function bounded below over some 
interval. 

Proof of (3) → (1): Let f be continuous at a ∈ .
Then there is δ > 0 such that | x - a| < δ ⇒ | f (x) - f (a)| < ε
⇒ ε - f (a) < f (x) < ε + f (a)
⇒ f is bounded over (a - δ, a + δ).

5.2.8.1 Equations Reducible to Cauchy’s Equations 

Example 21 f : (0, ∞) → , f (xy) = f (x) + f (y) ∀x ∈ (0, ∞) and f is bounded over some 
interval, find f.

Solution: Let f (x) = g(ln x)
⇒ g(ln xy) = g(ln x) + g(ln x)
⇒ g(ln x + ln y) = g(ln x) + g(ln y)
or g(u + v) = g(u) + g(v) (where ln x = u, ln y = v)
and also g is bounded above as f bounded above.
⇒ g(t) = at
⇒ f (x) = g(ln x) = a ⋅ ln x.

Example 22 f :  → , f (x + y) = f (x) ⋅ f (y) ∀ x, y ∈ and f is bounded below by a 
positive real number, find f.

Solution: If there exist some x0 such that f (x0) = 0, then replace x by x - x0 and y = x0, 
we get

f (x - x0 + x0) = f (x - x0) ⋅ (x0)
⇒ f (x) = 0 ∀ x ∈ 
For other solutions, let f (x) ≠ 0 ∀ x ∈ 

replace x by 
x

2
and y by 

x

2
,  we get

f
x x

f
x x

2 2 2 2
+






 =







 ⋅








⇒ = 















 >f x f

x
( )

2
0

2

 

⇒ f (x) > 0 ∀ x ∈ 
Also plug y = 0 in parent equation

⇒ f (x + 0) = f (x) ⋅ f (0) ⇒ f ( )0 1=

Let g(x) = ln f (x)
⇒ ln f (x + y) = ln f (x) + ln f (y) 
⇒ g(x + y) = g(x) + g(y)
g is an additive function and bounded below also as f is bounded below by positive 

real number.
⇒ g(x) = ax 

⇒ ln ( f (x)) = ax
⇒ f (x) = eax

⇒ f x b xx( ) .= ∀ ∈�
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Example 23 Let f :  →  be a continuous function such that f (xy) = f (x) ⋅ f (y) ∀ x 
∈ , find all such ‘f’.

Solution: Such type of function called multiplicative function.
Plug x = y = 0 ⇒ f (0) = f (0)2

⇒ f (0) = 0, 1

Case 1: f (0) =1
Plug y = 0 ⇒ f (0) = f (x) ⋅ f (0)
⇒ f (x) = 1 ∀ x ∈ 
This is a solution of the equation.

Case 2: f (0) = 0
Plug x = y = 1 ⇒ f (1) = (  f (1))2

⇒ f (1) = 0 or 1 
Sub-case 1: f (1) = 0
Plug y = 1, f (x) = f (x) ⋅ f (1) = 0
⇒ f (x) = 0 ∀ x ∈ 
This is a solution of the equation.
Sub-case 2: f (0) = 0 and f (1) =1
Now f (x) ≠ 0 ∀ x ∈ \{0}
Otherwise if at some x0 ≠ 0, f (x0) = 0 

then replace x by 
x

x0

 and y by x0 

⇒ ⋅








 =









 ⋅ ( ) =f

x

x
x f

x

x
f x

0
0

0
0 0

⇒ f (x) = 0 ⇒ f (1) = 0
Which is contradiction
Now plug x = y = -1
⇒ f ((-1)x(-1)) = f (-1) ⋅ f (-1)
⇒ 1 = (  f (-1))2

⇒ f (-1) = ±1
Let f (-1) = 1, then ∀ x ∈  - {0},
f (x) = f (| x | sgn x)
= f (| x |) f (sgn x)
= f (| x |) ⋅ 1
⇒ f (x) = f (| x |) ∀ x ∈ \{0}
Now it sufficient to solve f for positive real x.
Let f (xy) = f (x) ⋅ f (y), x > 0, y > 0
Set x = eu, y = ev and f (eu) = g(u) ≠ 0
We get g(u + v) = g(u) ⋅ g(v) (1)

Now g u g
u u

g
u

g
u

( ) = +





 =







 ⋅







2 2 2 2

= 















 >g

u

2
0

2

Take log on base e of Eq. (1)
⇒ ln g(u + v) = ln g(u) + ln g(v)
Let ln g(u) = h(u)
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⇒ h(u + v) = h(u) + h(v)
⇒ h is additive and continuous as it is given that f is continuous
⇒ h(x) = ax
ln g(x) = ax ⇒ g(x) = eax

⇒ f (ex) = eax

⇒ f (eln t) = e aln t = e t aln

⇒ f (t) = ta

⇒ f (x) = xa

⇒ f (x) = | x |a ∀x ∈ 
This is a solution of the given equation.
Let f (-1) = -1
Then ∀ x ∈  \ {0},
f (x) = f (| x | sgn x)
= f (| x |) ⋅ f (sgn x)
f (x) = sgn (x) ⋅ f (| x |) ∀ x ∈ 
Solving this similar to previous case, we get 
f (x) = sgn (x) ⋅ | x |a

This is also a solution.
Hence, f (x) = 0 ∀ x ∈ 
or f (x) =1 ∀ x ∈ 
or f (x) = | x |a ∀x ∈ 
or f (x) = sgn (x) ⋅ | x |a ∀x ∈ 
is complete set of solution of multiplicative and continuous function.

Example 24 f :  →  such that f (x + y) = f (x) + f (y) and f (xy) = f (x) ⋅ f (y), find f.

Solution: From f (xy) = f (x) ⋅ f (y)
We get for positive real x

f x f x x f x f x( ) ( ) ( ) ( )= ⋅ = ⋅

= ≥( ( ))f x 2 0

⇒ f (x) is bounded below 
f (x) is also additive, hence f (x) = ax.
From second equation, we get axy = ax ⋅ ay ⇒ a = 0 or 1.

Example 25 f :  →  such that f (ax + by + c) = p f (x) + q f (y) + r ∀ x ∈ , where a, 
b, c, p, q, r are real number and ab ≠ 0. Prove that g (x + y) = g(x) + g(y), where g(x) 
= f (x) - f (0).

Solution: P(x, y) : f (ax + by + c) = pf (x) + qf (y) + r ∀x ∈ 

P
a

f pf
a

qf r
c c

−





 = −






 + +, : ( ) ( )0 0 0  (1)

P
x c

a
f x pf

x c

a
qf r

−





 =

−





 + +, : ( ) ( )0 0  (2)

P
a

y
f y pf

a
qf

y
r

c

b

c

b
−





 = −






 +







 +, : ( )  (3)

P
x c

a

y
f x y pf

x c

a
qf

y
r

b b

−





 + =

−





 +







 +, : ( )  (4)
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By Eqs. (4) - (3) - (2) + (1), we get
f (x + y) - f (x) - f (y) + f (0) = 0
⇒ f (x + y) - f (0) = (  f (x) - f (0)) + (  f (x) - f (0))
⇒ g(x + y) = g(x) + g(y).

Build-up Your Understanding 4

 1. Find the continuous solutions f :  →  of the functional relation
  f (x + y) = ayf (x) + ax f (y), ∀x, y ∈,
  where a is a positive constant.
 2. Find the continuous solutions f :  →  of the functional equation

  f
x y f x f y

x y
2 2 2 2

2 2

+










=

+
∀ ∈

( ) ( )
, , .�

 3. Find the continuous solutions f :  →  of the functional equation
  f (x + y) = f (x) + f (y) + f (x) f (y), ∀x, y ∈.
 4. Find all continuous functions f:  →  that satisfy
  f (xy) = x f (y) + yf (x).
 5. If a > 0 find all continuous functions f for which
  f(x +y) = axy f (x) f (y).
 6. Find all continuous functions f :  →  that satisfy

  f x y
f x f y

f x f y
( )

( ) ( )

( ) ( )
.+ =

+
−1

 7. Suppose f :  →  satisfies f (1) = 1, f (a + b) = f (a) + f (b) for all a, b, ∈  and 

f x f
x

( )
1

1






 =  for x ≠ 0. Show that f(x) = x for all x.

5.2.9 Using Fixed Points

This method is seldom used in very tough problems. Observe the following Examples: 

Example 26 Determine all functions f : +→ + such that that f (x f (y)) = y f (x) ∀ x, 
y ∈ + and as x → ∞, f (x) → 0. [IMO, 1983]

Solution: P(x, y) : f (x f (y)) = y f (x)
P(1, 1) : f ( f (1)) = f (1) (1)
P(1, f (1)) : f ( f ( f (1))) = ( f (1))2

⇒ f (1) = ( f (1))2 (using Eq. (1))
⇒ f (1) = 1 (as f ∈ +)
⇒ 1 is a fixed point
P(x, x) : f (x ⋅ f (x)) = x ⋅ f (x) (2)
⇒ x ⋅ f (x) is a fixed point ∀x ∈ +

Let x > 1 is a fixed point
From Eq. (2), we get f (x ⋅ x) = x ⋅ x
or f (x2) = x2

⇒ x2 is a fixed point

⇒ x
m2  is a fixed point ∀ m ∈ 

Now f x
m

( )2 = x
m2  

M05_Functional_Equations.indd   17 8/11/2017   2:13:32 PM



5.18  Chapter 5

lim ( ) lim
m m

f x x
m m

→∞ →∞
= = ∞2 2

which is a contradiction to lim ( )
x

f x
→∞

= 0

⇒ fixed point x cannot be greater than 1.
Let x ∈ (0, 1) be a fixed point, then

1 1
1 1 1

= = ⋅





 = ⋅






 = ⋅ 






f f

x
x f

x
f x x f

x
( ) ( )

⇒ = ⋅ 





1

1
x f

x

or f
x x x

1 1 1





 = ⇒ is a fixed point

as x ∈ (0, 1), 
1

1
x
∈ ∞( , )  which is a contradiction

Hence 1 is the only fixed point, which implies
x f x⋅ ≡( ) 1

⇒ =f x
x

( ) .
1

Example 27 Find all functions f : 0 → 0

such that f (m + f (n)) = f (  f (m)) + f (n) ∀ m, n ∈ 0. [IMO, 1996]

Solution: P(m, n) : f (m + f (n)) = f (   f (m)) + f (n)
P(0, 0) : f (    f (0)) = f (   f (0)) + f (0)
⇒ f (0) = 0
⇒ 0 is a fixed point
P(0, n) : f (   f (n)) = f (  f (0)) + f (n)
= f (n)
⇒ f (n) is a fixed point of f ∀ n ∈ 0

⇒ f (m + f (n)) = f (m) + f (n)
Let us prove if z is a fix point then kz is a fixed point ∀ k ∈ 0

for k = 0, 1 it is true
Let mw be a fixed point. ∀ m ≤ k

 P(w, mw) : f (w + f (mw)) = f (w) + f (mw)
 f (w + mw) = w + mw
 f ((m + 1)w) = (m + 1)w

Hence mw is a fixed point ⇒ (m + 1)w is a fixed point.
If w = 1, then f (nw) = nw ⇒ f (n) = n is a solution.
If 0 is the only fixed point of f, then f (n) = 0 ∀n ∈ 0 (since f (n) is a fixed point 

∀n ∈ 0)
Otherwise f has a least fixed point z ≥ 2.
Now we will prove that the only fixed points are kz, k ∈ 0.
Let x be a fixed point and x = kz + r, 0 ≤ r < z,

We have x = f (x) = f (r + kz) = f (r + f (kz))

 = f ( f (r)) + f (kz) (From Parent equation)

 = f (r) + kz (as f (r) is a fixed point)

 ⇒ f (r) = x - kz

 = r
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⇒ r is a fixed point but z is the least positive fixed point, hence r = 0.
⇒ x = kz.
Now the identify f ( f (n)) = f (n)
f (n) in a fixed point and also all fixed point must be multiple of z.
Hence f (n) = cn z, for some cn ∈ 0, where c0 = 0.
For n ∈ 0, we have
 n = kz + r, 0 ≤ r < z
 f (n) = f (kz + r) = f ( f (kz) + r)
 = f ( f (r)) + f (kz)
 = f (r) + f (kz)
 = cr z + kz
 = (cr + k) z

 f n c
n

z
zr( ) = + 















which is a solution of the equation.

Build-up Your Understanding 5

 1. Find all polynomials P(x) such that
  P (F(x)) = F(P(x)), P(0) = 0,
  where F is some function defined on  and that satisfies F (x) > x, ∀x ≥ 0.
 2. Let S be the set of real numbers strictly greater than -1. Find all functions
  f : S → S satisfying the two conditions
  (a) f (x + f (y) + x f (y)) = y + f (x) + y f (x), ∀x, y ∈ S;
  (b) f (x)/x is strictly increasing on each of the intervals -1 < x < 0 and 0 < x. 

 [IMO, 1994]
 3. Let  denote the real numbers. Find all functions f :  →  such that f (f (x)) = 

x2 - 2 or show no such function can exist.
 4. Let g(x) be a quadratic function such that the equation g(g(x)) = x has at least 

three different real roots. Then there is no function f :  →  such that

      f ( f (x)) = g(x) 
  for all x ∈ .

Solved Problems

Problem 1 Let f be a function on the positive integers, i.e., f :  →  with the follow-
ing properties:
 (i) f (2) = 2
 (ii) f (m × n) = f (m) f (n) for all positive integers m and n, 
 (iii) f (m) > f (n) for m > n. 
Find f (1998).

Solution: 2 = f (2) = f (1 × 2) = f (1) × f (2) = f (1) × 2

∴ f ( )1
2

2
1= =

Now, f (4) > f (3) > f (2) = 2

and f (4) = f (2) × f (2) = 2 × 2 = 4
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and so, 4 > f (3) > 2, and f (3) is an integer, hence f (3) = 3
and f (6) > f (5) > f (4)
⇒ f (2) × f (3) > f (5) > 4
⇒ 2 × 3 > f (5) > 4
⇒ f (5) = 5
So, we guess that f (n) = n. Let us prove it.
We will use mathematical induction for proving. 
f (n) = n is true for n = 1, 2.
Let us assume that the result is true for all m < n, and then we shall prove it for n, 

where n > 2.
If n is even, then let n = 2m
f (n) = f (2m) = f (2) × f (m) = 2 × m = 2m = n.
If n is odd and n = 2m + 1, then n > 2m
2m < 2m +1 < 2m + 2
⇒ f (2m) < f (2m + 1) + f (2m + 2)
⇒ f (2) . f (m) < f (2m + 1) < f (2) ⋅ f (m + 1)
⇒ 2m < f (2m + 1) < 2m + 2
There is exactly one integer 2m + 1 between 2m and 2m + 2 and hence,
f (n) = f (2m + 1) = (2m + 1) = n
Thus, f (n) = n for all n ∈ N
Hence, f (1998) = 1998

Problem 2 Let f be a function from the set of positive integers to the set of real num-
bers. If:  →  such that
 (i) f (1) = 1
 (ii) f (1) + 2f (2) + 3f (3) + … + nf (n) = n(n + 1) f (n).
Find f (1997).

Solution: f (1) = 1

f (l) + 2f (2) = 2(2 + 1) f (2)

⇒ 4f (2) = 1, ⇒ f (2) = 
1

4
.

Again, f (1) + 2f (2) + 3f (3) = (3 × 4) f (3)

⇒ 9f (3) = 1 + 1

2
 = 3

2

⇒ f (3) = 
1

6
.

The above calculation suggests that f (n) may be
1

2n
for n > 1.

Let us verify if it is so.

For n = 2, f ( )2
1

2 2

1

4
=

×
=  is true.

n = 3, f ( )3
1

3 2

1

6
=

×
=  is also true.

So, let us assume that f n
n

( ) .=
1

2

Now, we should show that f n
n

( )
( )

.+ =
+

1
1

2 1
(Here we use the principle of mathematical induction.)
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By the hypothesis (ii), we have
f (1) + 2f (2) + … + nf (n) = n(n + 1) f (n) 

f (1) + 2f (2) + … + nf (n) + (n + 1) f (n + 1)  = (n + 1)(n + 2) f (n + 1) 

⇒ + + + + +

−

+ + +1
1

2

1

2

1

2

1

2
1

1 1�
� ���� ����

n

n f n

times

( ) ( )

        = (n + 1)(n + 2) f (n + 1)

⇒ + − = + + + −

= + × +

1 1
1

2
1 1 2 1

1 12

( ) ( ) ( )( )

( ) ( )

n n f n n

n f n

⇒ + =
+ −

+
=

+
+

=
+

f n
n

n

n

n n
( )

( )

( ) ( ) ( )
.1

1 1
1

2
1

1

2 1

1

2 12 2

Thus by the principle of mathematical induction, we have proved that f (n) = 
1

2n
 

for n > 1

∴ f (1997) = 
1

2 1997

1

3994×
= .

Problem 3 Find all functions f :  → , for which
f (xy) = f (x) f (y) - f (x + y) + 1 ∀ x, y ∈ .

Solution: Let P(x, y) : f (xy) = f (x) f (y) - f (x + y) + 1
P(0, 0) : f (0) = ( f (0)2) - f (0) + 1
⇒ ( f (0))2 - 2f (0) + 1 = 0
⇒ ( f (0) - 1)2 = 0

⇒ f ( )0 1=  (1)

P(1, -1) : f (-1) = f (1) ⋅ f (-1) - f (0) + 1
⇒ f (-1) = f (1) ⋅ f (-1) (as f (0) = 1)
⇒ ( f (1) - 1) ⋅ f (-1) = 0
⇒ f (1) = 1 or f (-1) = 0

Case 1: f (-1) = 0
P(x, yz) : f (xyz) = f (x) ⋅ f (yz) - f (x + yz) + 1
= f (x) [f (y) ⋅ f (z) - f (y + z) + 1] - f (x + yz) + 1
⇒ f (xyz) - f (x) ⋅ f (y) ⋅ f (z) = -f (x) ⋅ f (y + z) + f (x) - f (x + yz) + 1 (1)
In Eq. (1), LHS is symmetric in x, y, z. But RHS is not so. Interchanging z and x, 

we get
f (zyx) - f (z) ⋅ f (y) ⋅ f (x).= -f (z) ⋅ f (y + x) + f (z) - f (z + yx) + 1 (2)
From Eqs. (1) and (2), we get
-f (x) ⋅ f (y + z) + f (x) - f (x + yz) + 1 = -f (z) ⋅ f (x + y) + f (z) - f (z + xy) + 1 (3)
for z = -1
- f (x) f (y - 1) + f (x) - f (x - y) = -f (-1 + xy) (as f (-1) = 0)
or f (x) ⋅ ( f (y - 1) - 1) + f (x - y) = f (xy - 1) (4)
Plugging x = 1, and y = 2 in Eq. (4), we get
f (1) ⋅ ( f (1) - 1) = f (1)
⇒ f (1) ⋅ ( f (1) - 2) = 0
⇒ f (1) = 0 or 2
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Sub-case 1: f (1) = 0
Plugging x = 1, and y = x + 1 in Eq. (4), we get
f (1) ⋅ ( f (x + 1 - 1) - 1) + f (1 - x - 1) = f (1 ⋅ (x + 1) - 1) (5)
⇒ f (-x) = f (x)
P(x, -y) : f (-xy) = f (x) ⋅ f (-y) - f (x - y) + 1
or f (xy) = f (x) ⋅ f (y) - f (x - y) + 1
Comparing it with parent equation, we get
f (x + y) = f (x - y) ∀ x, y ∈

Replacing x by 
x

2
 and y by 

x

2
, we get

f
x x

f
x x

2 2 2 2
+






 = −








f x f( ) ( )= 0  

⇒ f (x) = Constant
⇒ f (x) = f (1) = 0
⇒ f (x) = 0, but it does not satisfy the parent equation.
Sub-case 2: f (1) = 2 using this in Eq. (5), we get
2( f (x) - 1) + f (-x) = f (x)
⇒ f (x) + f (-x) = 2
or 1 - f (x) = -(1 - f (-x))
Let g(x) = 1 - f (x) ⇒ g(x) = -g(-x)
⇒ g is an odd function.
Now from parent equation, we get
Q(x, y) : g(xy) = g(x) + g(y) - g(x) ⋅ g(y) - g(x + y) (6)
Q(x, -y) : -g(xy) = g(x) - g(y) + g(x) ⋅ g(y) - g(x - y) (7)
From Eq. (6) + Eq. (7), we get
0 = 2g(x) - g(x + y) - g(x - y)
or g(x + y) + g(x - y) = 2g(x)
for y = x, g(2x) + g(0) = 2g(x)
⇒ g(2x) = 2g(x) (as g(0) = 0)
⇒ g(x + y) + g(x - y) = g(2x)
Let x + y = u, x - y = v, ⇒ 2x = u + v
⇒ g(u) + g(v) = g(u + v)
Which is a Cauchy’s equation with domain , so g(x) = kx for some fix ‘k’.
Using this in Eq. (6), we get
kxy = kx + ky - k2 ⋅ xy - k(x + y)
⇒ kxy = k2 ⋅ xy
⇒ k = 0 or k = -1
k = 0 is not possible ⇒ k = -1
⇒ g(x) = -x ⇒ f (x) = 1 + x ∀ x ∈ .

Problem 4 Find all functions f :  →  that satisfy f (m + f (n)) = n + f (m).

Solution: Let P(m, n) : f (m + f (n)) = f (m) + n
 P(0, n) : f ( f (n)) = f (0) + n
 P(0, 0) : f (0 + f (0)) = 0 + f (0)
 ⇒ f ( f (0)) = f (0)
 P(0, f (0)) : f (0 + f ( f (0))) = f (0) + f (0)
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 f ( f ( f (0))) = 2f (0)

 ⇒ f (0) = 2f (0)

 ⇒ f (0) = 0

 ⇒ f ( f (n)) = n

 P(m, f (n)) : f (m + f ( f (n))) = f (m) + f (n)

 ⇒ f (m + n) = f (m) + f (n)
It is an additive function
⇒ f (n) = an for some integer a
But f ( f (n)) = n
 ⇒ f (an) = n
 ⇒ a(an) = n ⇒ a2 = 1 ⇒ a = ±1
Hence, f (n) = n or f (n) = -n both satisfy the parent equation.

Problem 5 The function f is defined on the positive integers and satisfies f (2) = 1, 
f (2n) = f (n), f (2n + 1) = f (2n) + 1. Find the maximum value of f (n) for n ∈ {1, 2, 3, .., 
2002}. [Spain MO, 2002]

Solution: f (n) is obviously number of 1’s in the binary expansion of n. we will prove 
it by induction on n.

Let g(n) = The number of 1’s in the binary representation of n.
Claim: f (n) = g(n) ∀ n ∈ 
For n = 1, f (1) = f (2 ⋅ 1) = f (2) = 1
g(1) = 1
⇒ f (1) = g(1)
Let for some k ≥ 1, f (n) = g(n) ∀ n < k
If k is even, then k = 2l, (l < k) and f (k) = f (2l) = f (l).
Also the binary representation of k is obtained from that of l by adding a 0 to the 

end. 
So g(k) = g(l).
The inductive hypothesis ensures that f (l) = g(l)
⇒ f (k) = g(k) for k = Even
For k = Odd, k = 2l + 1 ⇒ f (k) = f (2l + 1) = f (2l) + 1 = f (l) + 1.
Also the binary representation of k is obtained from that of l by adding a 1 at the 

end, therefore g(k) = g(l) + 1
so f (k) = g(k) for k = Odd
Now maximum value of f (n) is f (1023) = 9.

Problem 6 Prove that there exists a unique function f : (0, ∞) → (0, ∞), such that 
f (  f (x)) + f (x) = 6x ∀ x ∈ (0, ∞). [Putnam, 1988]

Solution: Let a0 = x, ak+1 = f (ak), k ≥ 0.
From given equation, we get ak+2 + ak+1 = 6ak, k ≥ 0
Corresponding characteristic equation 
xk+2 - xk+1 - 6xk = 0, x ≠ 0
or x2 - x - 6 = 0
x = 2, -3
⇒ ak = α ⋅ 2k + β ⋅ (-3)k
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⇒ =
+






 +

−





 −a

a a a a
k

k k3

5
2

2

5
30 1 0 1 ( )

Also lim
k

k

k→∞
= ∞

3

2
⇒ = −∞ <

→∞
lim
k

ka2 0for β

⇒ = −∞ >
→∞

+lim
k

ka2 1 0for β

⇒ β = 0 ⇒ a1 = 2a0

Hence, f (x) = 2x ∀ x ∈ (0, ∞).

Problem 7 Find all functions f : � �→  that satisfy f (m + n) + f (mn) = f (m) ⋅ f (n) + 1.

Solution: Let P(m, n) : f (m + n) + f (mn) = f (m) f (n) + 1
P(0, 0) : f (0) + f (0) = ( f (0))2 + 1

⇒ =− ⇒ =( ( ) ) ( )f f0 1 0 0 12

P f f f f( , ) : ( ) ( ) ( ) ( )− + − = − ⋅ +1 1 0 1 1 1 1

⇒ − =f ( )1 0  or f ( )1 1=  (as f (0) = 1)

For f ( ) ,1 1=

Put (m, 1) : f m f m f m f( ) ( ) ( ) ( )+ + = ⋅ +1 1 1

⇒ + =f m( )1 1

⇒ = ∀ ∈f n n( ) 1 �

For f (-1) = 0
P (-1, -1) : f (-2) + f (1) = f (-1) ⋅ f (-1) + 1
f f( ) ( )− + =2 1 1

P (-2, 1) : f (-1) + f (-2) = f (-2) ⋅ f (1) + 1
⇒ f (-2) = f (-2) ⋅ f (1) + 1
⇒ f (-2)(1 - f (1)) = 1

⇒ (1 - f (1))2 = 1 (As f (-2) = 1 - f (1))

⇒ 1 - f (1) = ±1

⇒ f (1) = 0 or 2

For f (-1) = 0 and f (1) = 0
P (m, 1) : f (m + 1) + f (m) = 1
 ⇒ f (m + 1) = 1 - f (m)

Claim: f (2m) = 1, f (2m + 1) = 0

Proof: For m = 0, f (0) = 1
for m = 1, f (1) = 0

Let for n = k, claim be true: 

then f (k + 1) = 1 - f (k) 

=
− =
− =





1 1

1 0

,

,

k

k

Even

Odd

=
+ =
+ =





0 1

1 1

,

,

k

k

Odd

Even
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Similarly, f (k - 1) = 1 - f (k)

=
− =
− =





1 1

1 0

,

,

k

k

Even

Odd

=
− =
− =





0 1

1 1

,

,

k

k

Odd

Even

For f (-1) = 0, f (1) = 2
P(n, 1) : f (n + 1) + f (n) = f (1) ⋅ f (n) + 1
⇒ f (n + 1) = f (n) + 1
f (n + 1) - f (n) = 1 ⇒ f (n) are in AP
with common difference = 1 as f (0) = 1
⇒ = + ∀ ∈f n n n( ) .1 �

Problem 8 Find all functions f :  → , that satisfy f (x2 + y ⋅ f (x)) = x ⋅ f (x + y).

Solution: P(x, y) : f (x2 +y ⋅ f (x)) = x ⋅ f (x + y)

P f( , ) : ( )0 0 0 0=  (1)

P x f x x f x( , ) : ( ) ( )0 2 = ⋅

P x x f x x f x x f( , ) : ( ( )) ( )− − ⋅ = ⋅ =2 0 0

f x x f x( ( ))2 0− ⋅ =

If possible let x2 - x f (x) ≠ 0 for some x0 ≠ 0 (otherwise x2 - x f (x) = 0 ⇒ f (x) = x). 
Also assume x0 

2 - x0 f (x0) = a
⇒ f (a) = 0
P(a, y) : f (a2) = a ⋅ f (a + y)
⇒ af (a) = a ⋅ f (a + y)
⇒ a ⋅ f (a + y) = 0
⇒ a = 0 or f (a + y) = 0

Case 1: f (a + y) = 0, replace y by x - a, we get

⇒ =f x( ) 0  

Case 2: a = 0, x2 - x f (x) = 0 ⇒ f (x) = x for x ≠ 0
⇒ f (x) = x ∀ x ∈  (as f (0) = 0)
so f (x) = 0 ∀ x ∈  or f (x) = x ∀ x ∈ .

Problem 9 Find all functions f :  →  that satisfy f (-x) = -f (x), f (x + 1) = f (x) + 1 ∀ 

x ∈  and f
x

f x

x

1
2







 =

( )
 ∀ x ∈ \{0}.

Solution: See the adjacent graph. It is a connected graph. From any node we can reach 
any other node. Let us find a cycle!

Observe the cycle, 

x x
x x x

x

x

x

x x x
x→ + →

+
→ −

+
→ −

+
=

+
→

+
= + → →1

1

1

1

1
1

1

1 1

1
1

1 1

Now, let f (x) = y
⇒ f (1 + x) = f (x) + 1 = y + 1

⇒
+







 =

+
+

=
+

+ +
f

x

f x

x

y

x x

1

1

1

1

1

2 12 2

( )

( )

x − x

1 + x 1
x
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⇒ −
+







 = −

+
+

f
x

y

x

1

1

1

1 2( )

⇒ −
+







 = −

+
+

+f
x

y

x
1

1

1

1

1
1

2( )
 

=
+ −
+

x x y

x

2

2

2

1( )

⇒
+






 =

+ −

+ ⋅
+

f
x

x

x x y

x
x

x

1 2

1
1

2

2
2

2
( )

( )

⇒ 





 =

+ −
− =

−
f

x

x x y

x

x y

x

1 2
1

22

2 2

⇒ =
−

= −
⋅

f x
x y

x
x

x y( )
2

1
2

2
2

⇒ y = 2x - y ⇒ 2y = 2x ⇒ y = x ⇒ f (x) = x ∀ x ≠ 0, -1.
Also from f(-x) = -f(x) we get f(-0) = -f (0) ⇒ f(0) = 0 and f (0 + 1) = f(0) + 1 = 1⇒ 

f(-1) =-1 so f(x) = x ∀ x ∈ .

Check Your Understanding 

 1. Given a constant c, |c| ≠ 1, find all function of f, such that 
  f (x) + cf (2 - x) = (x - l)3 for all x.

 2. Let f x
x

1
1

1
( ) =

−
 and f x f f xn n( ) ( ( ))= −1 1  for n = 1, 2, 3, …; Evaluate f2012(2012) 

and f2013(2013).

 3. For any positive integer n, let f (n) be defined as 4 4 1

2 1 2 1

2n n

n n

+ −

+ + −
.

  Show that the value of f (1) + f (2) + f (3) + … + f (40) is rational.
 4. Let f (n) be a function defined on the non-negative integers given the following 

facts:
     (i) f (0) = f (1) = 0
   (ii) f (2) = 1
  (iii)  For n > 2, f (n) gives the smallest positive integer, which does not divide n. 
  Let g(n) = f ( f ( f (n))). Find the value of S 2012 = g(1) + g(2) + g(3) +…+ g(2012).
 5. If f denotes the function which gives  cos 17x in terms of cos x, that is cos 17 x = 

f (cos x), then, prove that it is the same function ‘f ’ which gives sin 17x in terms of 
sin x, Generalize this result.

 6. A real valued function f is defined for positive integers and a positive integer a 
satisfies

  f (a) = f (1995), f (a + 1) = f (1996),

  f a f f n a
f n

f n
( ) ( ), ( )

( )

( )
+ = + =

−
+

2 1997
1

1
  for every  integer n.
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  Prove that:
  (a) f (n + 4a) = f (n) for any positive integer n. 
  (b) Determine the smallest possible value of a.

 7. Let f x
a

a a

x

x
( ) ,=

+
 evaluate:

  f
n

f
n

f
n

f
n

n

1 2 3 1





 +







 +







 + +

−





�

 8. Let f (1) = 1, f (1) + … + f (n) = n2 . f (n) for all n ∈ . What is f (n)?
 9. Let x be the set of positive integers greater than or equal to 8. Let f :  →  be a 

function, such that f (x + y) = f (xy) for all x ≥ 4, y ≥ 4. If f (8) = 9, determine f (9).
 10. The function defined on the set of ordered pairs of positive integers, has the fol-

lowing properties:
  (a) f (x, x) = x, ∀ x
  (b) f (x, y) = f (y, x) ∀ x, y
  (c) (x + y) f (x, y) = yf (x, x + y) ∀ x, y
  Prove that f (52, 14) = 364.
 11. Given f :  →  such that f (0) ≠ f (-1) also f (m + n) + f (mn - 1) = f (m) f (n) + 2 

for all integers m, n. Show that f (5) = 26.

 12. Find all f : (0, ∞) → (0, ∞) such that

  
( ( )) ( ( ))

( ) ( )

f x f y

f z f t

x y

z t

2 2

2 2

2 2

2 2

+
+

=
+
+

 ∀ x, y, z, t ∈ (0, ∞) with xy = zt. [IMO, 2008]

 13. Find all functions f :  →  which satisfy f (2) = 2, f (mn) = f(m) . f (n) ∀ m, n ∈ 
, gcd (m, n) = 1 and f (m) < f (n) whenever m < n.

 14. Find all functions f :  →  such that f ((x - y)2) = (f (x))2 - 2x f (y) + y2.
 15. Find all functions f :  →  such that f (x + y) = f (x) + f(y) ∀ x, y ∈ 

  and f
x

f x

x
x

1
0

2







 = ∀ ≠

( )
.

Challenge Your Understanding 

 1. Find all polynomials P(x) such that (x - 16) P(2x) = 16(x - 1) P(x) ∀ x ∈ .
 2. f, g, h :  →  all are continuous functions such that
  f (x + y) = g(x) + h(y), ∀ x, y ∈  find f, g, h.

 3. f : + →  such that f (x) is strictly increasing function, f x
x

x( ) > − ∀ >
1

0  and 

f x f f x
x

x( ) ( ) .⋅ +





 = ∀ >

1
1 0  Find f. [Greece MO, 1997]

 4. f : � �→ such that f (n) = f (n - 1) + f (n - 2), f (0) = 0, f (1) = 1, find f.

 5. Find all solutions of the following system of equations:

  
4

4 1

4

4 1

4

4 1

2

2

2

2

2

2

x

x
y

y

y
z

z

z
x

+
=

+
=

+
=, ,  [Canada MO, 1996] 

 6. Find all polynomials f (x), g(x) and h(x) such that

  | f (x) | - | g(x) | + h(x) =
− < −
+ − ≤ ≤

− + >









1 1

3 2 1 0

2 2 0

,

,

,

x

x x

x x

 [Putnum, 1999]
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 7. Do there exist functions f, g :  →  such that f (g(x)) = x2 and g( f (x)) = x3 ∀x∈.

 8. Let f :  →  such that f (  f (  f (n))) + f ( f (n)) + f (n) = 3n, find f.

 9. f : [0, ∞) →  such that f (0) = 0 and f (x) = 1 + 5f 
x

f
x

x
2

6
4

0











 −












∀ > .  

Find f.
 10. f :  →  such that f (1) = 2, f (2) = 1, f (3n) = 3f (n), f (3n + 1) = 3f (n) + 2,

  f (3n + 2) = 3f (n) + 1. Find number of integer n ≤ 2006 for which f (n) = 2n.

 11. f :  →  be a strictly increasing function such that f (  f (n)) = 3n ∀ n ∈ . 
Determine f (2016).

 12. Find all functions f :  →  that satisfy f (  f (n)) = n, f (  f (n + 2) + 2) = n and 
f (0) = 1. [Putnam, 1992]

 13. Determine all functions f :  →  such that
  f (x - f (y)) = f (  f (y)) + xf (y) + f (x) - 1 ∀ x, y ∈ . [IMO, 1999]

 14. Find all functions f :  →  such that
  (  f (x) + f (z)) (  f (y) + f (t)) = f (xy - zt) + f (xt + yz) ∀ x, y, z, t ∈.  [IMO, 2002]

 15. Find all functions f :  →  such that x, f (y) and f (y + f (x) - 1) are sides of a 
triangle for all x, y ∈ . [IMO, 2009]
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6.1 divisibility oF intEGErs

An integer a ≠ 0 divides b, if there exists an integer x such that b = ax, and thus, we 
write as a | b (read a divides b). This can also be stated as b is divisible by a or a is a 
divisor of b or b is a multiple of a. If a does not divide b we write as a | b.

6.1.1 Properties of Divisibility

 1. a | b and b | c ⇒ a | c
 2. a | b, a | c ⇒ a | (b + c), and a | (b - c)
 3. a | b, a | (b + c) ⇒ a | c
 4. a | b, a | (b - c) ⇒ a | c
 5. a | b and a | c ⇒ a | (kb ± lc) for all k, l ∈ 
 6. a | b and b | a ⇒ a = ± b
 7. a | b ⇒  b = 0 or | a | ≤ | b |. In particular if a | b where a > 0, b > 0, 

then a < b
 8. a | b ⇒ a | bc for any integer c 
 9. a | b iff  ma | mb where m ≠ 0

Notes:

1. ( ) | ( )x y x y nn n+ + ∀ ∈+ +2 1 2 1
0�

Proof:
For n = 0 it is obvious, for n ≥ 1, we have
( ) ( )( )x y x y x x y x y yn n n n n n2 1 2 1 2 2 1 2 2 2 2+ + − −+ = + − + − +…

2. ( ) | ( )x y x y nn n− − ∀ ∈�

Proof: 
For n = 1 it is obvious, for n ≥ 2, we have
x y x y x x y x y yn n n n n n− = − + + + +− − − −( )( )1 2 3 2 1…

6
Chapter

Number Theory

In the margin of his copy of a book by Diophantus, Pierre 
de Fermat wrote:

“Cubum autem in duos cubos, aut quadrate-quadratum in 
duos quadrate-quadratos, et generaliter nullamin infinitum 
ultra quadratum potestatem in duos eiusdem nominis fas 
est divider cuius rei demonstrationem mirabilem sane detexi. 
Hanc marginis exiguitas non caperet.”

“But to divide a cube into two cubes, or a doublesquare 
into two doublesquare and generally no power up to 
infinity from beyond the square into two of the same 
name, is not permissible. Of which thing I have of course 
uncovered a wonderful proof. The smallness of the margin 
would not be able to contain it.”

[Known as Fermat’s Last Theorem, the proof of which 
remained elusive for 358 years and in 1994, proven by 
Adrew Wiles, a British mathematician.]

Pierre de Fermat

(Between 31 Oct to
6 Dec 1607–12 Jan 1665),

Nationality: French
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Example 1 The equation x2 + px + q = 0 has rational roots, where p and q are integers. 
Prove that the roots are integers.

Solution: x
p p q

=
− ± −2 4

2
,

since the roots are rational, p2 - 4q is a perfect square.

If p is even, p2 and 4q are even and hence, p2 - 4q is an even integer and hence, 

− ± −p p q2 4 is an even integer and hence,
− ± −p p q2 4

2
is an integer.

If p is odd, (p2 - 4q) is odd and − ± −p p q2 4 is an even integer and hence, 

− ± −p p q2 4

2
 is an integer and hence, the result.

Example 2 Find the number of positive integer n for which (i) n ≤ 1991 (ii) 6 is a 
factor of n2 + 3n + 2.

Solution: 6 | (n2 + 3n + 2) 

⇒ 6 | (n + l)(n + 2)
⇒ 2 | (n + 1)(n + 2) and also 3 | (n + 1)(n + 2)  

But the product of two consecutive integers is even, and 3 | (n + 1)(n + 2) only when n 
is not a multiple of 3, i.e., n ≠ 3, 6, …, 1989.

So, the number of n ≤ 1991 satisfying the conditions is 1991 - (the number of mul-
tiples of 3, up to 1991)

= − 




= − =1991

1991

3
1991 663 1328.

Example 3 Find all six-digit numbers (a1a2a3a4a5a6)10 formed by using the digits 1, 
2, 3, 4, 5, 6 once each such that the number (a1a2…ak)10 is divisible by k for 1 ≤ k ≤ 6.
 [RMO, 1994]

Solution: (a1a2a3a4a5)10 is divisible by 5 and hence, a5 = 5. a1a2, a1a2a3a4, and 
ala2a3a4a5a6 are to be divisible by 2, 4 and 6, respectively. a2, a4 and a6 should be even 
numbers.

So, a1 = 1 and a3 = 3 or a1 = 3 and a3 = 1.

Case 1: If a1 = 1, a2 can be 2, 4 or 6 and a1a2a3 = 123, 143 or 163 but 143, 163 are 
not divisible by 3, so ala2a3 should be 123. For a4, we have either 4 or 6 but for a4 = 
4, 1234 is not divisible by 4 and hence, a4 = 6 and hence, the six-digit number, when 
a1 = 1, is 123654.

Case 2: If a1 = 3. a2 can be 2 or 6 or 4 but then, ala2a3  = 321 is divisible by 3 and 361 
or 341 is not divisible by 3.

So, a2 cannot be 6 or 4.
Now, ala2a3a4 = (321a4)10 and a4 can be 4 or 6. For a4 = 4, 3214 is not divisible 

by 4 and hence, a4 = 6 and a6 = 4.
Hence, the number is 321654.
Thus, there are exactly 2 numbers 123654 and 321654 satisfying the conditions.
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Example 4 Let T be the set of all triplets (a, b, c) of integers such that  
1 ≤ a ≤ b ≤ c ≤ 6. For each triplet (a, b, c) in T, take the number a × b × c and add all 
these numbers corresponding to all the triplets in T. Prove that this sum is divisible by 7.

Solution: If (a, b, c) is a valid triplet then (7 - c, 7 - b, 7 - a) is also a valid triplet as 
1 ≤ (7 - c) ≤ (7 - b) ≤ (7 - a) ≤ 6.

Note that (7 - b) ≠ b, etc.

Let S = ( ),abc
a b c1 6≤ ≤ ≤ ≤
∑ then by the above 

 S = 
1 6≤ ≤ ≤ ≤
∑

a b c

(7 - a)(7 - b)(7 - c)

 2S = 
1 6≤ ≤ ≤ ≤
∑

a b c

[(a . b . c) + (7 - a)(7 - b)(7 - c)]

 = 
1 6≤ ≤ ≤ ≤
∑

a b c

[73 - 72(a + b + c) + 7(ab + bc + ca)]

In the RHS, every term is divisible by 7, i.e., 7 | 2S, and hence, 7 | S.

Example 5 Show that 11997 + 21997 + … + 19961997 is divisible by 1997.

Solution: We shall make groups of the terms of the expression as follows:

(11997 + 19961997) + (21997 + 19951997) + … + (9981997  + 9991997).

Here each bracket is of the form ( )a bi
n

i
n2 1 2 1+ ++ is divisible by (ai+ bi).

But (ai + bi) = 1997 for all i.
\ Each bracket and hence, their sum is divisible by 1997.

Example 6 Prove that for any natural number, n, E = 2903n - 803n - 464n + 261n is 
divisible by 1897.

Solution: 1897 = 7 × 271 

Now, (2903n - 803n) - (464n - 261n)

As (2903 - 803) | (2903n- 803n) and (464 - 261) | (464n - 261n)

i.e., 2100 | (2903n - 803n) and 203 | (464n - 261n) 

⇒ 7 | (2903n - 803n) and 7 | (464n - 261n) (∵2100 = 7 × 300 and 203 = 7 × 29) 

Hence, 7 | E

Again, 2903n - 803n - 464n + 261n = (2903n - 464n) - (803n - 261n) 

 2903 - 464 = 2439 | (2903n - 464n) 

and (803 - 261) = 542 | (803n - 261n)

i.e., 2439 = 271 × 9 | (2903n - 464n) and 542  = 271 × 2 | (803n - 261n)

So, 271 | (2903n - 464n) and 271 | (803n - 261n)

and hence, 271 | E.
Thus, the given expression is divisible by the prime numbers 7 and 271 and hence, 

is divisible by 271 × 7 = 1897.

M06_Number Theory_C06.indd   3 8/11/2017   2:19:26 PM



6.4  Chapter 6

6.2 Euclids division lEmma

If a and b are any two integers, a ≠ 0, then there exist unique integers q and r such that 
b = aq + r, 0 ≤ r < |a|

b, a, q and r are called dividend, divisor, quotient and remainder respectively.

Example 7 When the numbers 19779 and 17997 are divided by a certain three-
digit number, they leave the same remainder. Find this largest such divisor and the 
remainder. How many such divisors are there?

Solution: Let the divisor be d and the remainder be r.
Then by Euclidean Algorithm, we find

  19779 = dq1 + r  (1)
and 

  17997 = dq2 + r  (2)

By subtracting Eq. (2) from Eq. (1), we get 

1782 = d(q1 - q2)

\ d is a three-digit divisor of 1782.
Therefore, possible values of d are 891, 594, 297 and 198, 162.
Hence, the largest three-digit divisor is 891 and the remainder is 177.

Build-up Your Understanding 1

 1. Prove that (a - c)|(ab + cd) if and only if (a - c)|(ad + bc).
 2. Prove that 6|(a + b + c) if and only if 6|(a3 + b3 + c3).
 3. Prove that 641|(232 + 1).

 4. Find all natural numbers n, such that, 
( )n

n

+
+
1

7

2

 is an integer. Find, then, 

corresponding values of the expression also.
 5.  Prove that, for any natural number n, 1n + 8n - 3n - 6n is divisible by 10.
 6.  Prove that 1k + 2k + 3k + … + nk is divisible by 1 + 2 + 3 + … + n, where n is an 

integer and k is odd.
 7. Prove that for any natural number n, the result of l1987 + 21987 + … + n1987 cannot 

be divided by (n + 2) without a remainder. 
 8. If a, m, n are positive integers with a > 1 and (am + 1)|(an + 1), them m|n.
 9. Let a, b be positive integers with b > 2. Show that (2b - 1) | (2a + 1).
 10. Let a, b, c, d be integers such that ad - bc > 1. Prove that there is at least one 

among a, b, c, d which is not divisible by ad - bc.

6.3 GrEatEst common divisor (Gcd)

The greatest common divisor of any two integers a, b (at least one of them non-zero), 
is the greatest among the integral common divisors of a and b.

The greatest common divisor is denoted as GCD and represented as (a, b).
If (a, b) = 1, then we say that a and b are relatively prime integers or co-prime integers.

Euclid of Alexandria

Mid 4th century BCE to 
Mid 3rd century BCE 

Nationality: Greek
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6.3.1 Properties of GCD

 1. (a, b) ≥ 1
 2. (a, b) = (| a |, | b |)
 3. (a, 0) = | a |, a ≠ 0
 4. (a, b) = (a + kb, b) ∀ k ∈
 5. (a, b) = (b, a)

 6.  If (a, b) = g and d is a common divisor of a and b, then d | g.
 7. For any non-zero m ∈ , (ma, mb) = |m|(a, b).

 8. If d | a and d | b and d > 0, then 
a

d

b

d d
a b, ( , ).







 =









1
 

 9. If (a, b) = g, then 
a

g

b

g
, .









 =1  

 10. If (a, b) = 1 and (a, c) = 1, then (a, bc) = 1.

 11. If a | bc and (a, b) = 1, then a | c

  If (a, b) ≠ 1, then we cannot conclude that a | c.

  For example, a = 6, b = 21, c = 10
  6 | 21 × 10, but (6, 21) = 3 and (6, 10) = 2 and 6 divides neither 21 nor 10.

 12. If a, b ∈ , (a, b) = 1 and a × b = ck, k, c ∈ , then each of a and b is a perfect kth power.

 13. If (a, b) = g, then there exist two integers x and y such that g = xa + yb.

Note: In general xa + yb is a multiple of g ∀ x, y ∈ 

 14. (a, b) = 1 ⇔ am + bn = 1 for some m, n ∈ . This is known as Bézout’s identity.

  The Euclidean algorithm can be used to fi nd the GCD of two integers as well as 
representing the GCD as linear combination of numbers. 

   Consider two numbers 18, 28. 

 28 = 1 . 18 + 10 

 18 = 1 . 10 + 8 

 10 = 1 . 8 + 2 

 8 = 4 . 2 + 0 

 (18, 28) = 2 (retracing the steps)

 (18, 28) = 2 = 10 - 1 . 8

 = 10 - (18 - 1 . 10)

 = 2 . 10 - 1 . 18 = 2(28 - 1 . 18) - 1 . 18

 = 2 . 28 - 3 . 18 = 2 . 28 + (-3) . 18

Note: The representation in property (13) is not unique. In fact we can represent 
(a, b) as xa + yb in infinite number of ways, where x, y ∈ .

 (18, 28) = 2 . 28 + (–3) 18

 = 2 . 28 + 252k + (–3)18 – 252k 

 = (2 + 9k) 28 + (–3 – 14k)18 

  where k is any integer.

Étienne Bézout

31 Mar 1730–27 Sep 1783 
Nationality:  French
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6.3.2 Least Common Multiple

Least common multiple of two integers a, b is the smallest positive integer divisible by 
both a and b and it is denoted by [a, b].

In the above example, 252 is the least common multiple of 18 and 28.

252 = 9 × 28 and 252 = 14 × 18

Note: [a, b](a, b) = ab

Example 8 If a and b are relatively prime, show that (a + b) and (a - b) are either rela-
tively prime or their gcd is 2.

Solution: If d is the gcd of (a + b) and (a - b) then d | (a + b) and d | (a - b) and there-
fore, d | (a + b) ± (a - b)

⇒ d | 2a and d | 2b
⇒ d | (2a, 2b)

But (a, b) = 1
\ (2a, 2b) = 2
\ d | 2.
Hence, d is either 1 or 2.

Example 9 If (a, b) = 1, then (a ± b, b) = 1 and (a, a ± b) = 1.

Solution: If (a ± b, b) is d, then d | (a ± b), and d | b and this implies d | a
⇒ d | (a, b) = 1 ⇒ d | 1 ⇒ d = 1.
Again (a, a ± b) = d, then d | a and d | (a ± b) and this implies d | b.
So, d | a and d | b implies d | (a, b) ⇒ d | 1 ⇒ d = 1.

Example 10 Prove that the fraction 21 4

14 3

m

m

+
+

is irreducible for every natural num-

ber m.

Solution: Assuming the contrary, if p is a number which divides both 21m + 4 and also 
14m + 3, then p should divide,

3(14n + 3) - 2(21m + 4) = 1.

Thus, p = 1.
Therefore, the gcd of (14m + 3) and (21m + 4) is 1.

So, 
21 4

14 3

m

m

+
+

is irreducible, 

Example 11 Prove that the expressions 3x + 11y and 29x + 23y are divisible by 
125 for the same set of positive integral values of x, y. Find at least two such pairs 
(x, y).

Solution: Since 3(3x + 11y) + 4(29x + 23y) = 125(x + y)
Now, 3 and 125 are relatively prime and so are 4 and 125.
Thus, if one of the expressions is divisible by 125, then the other expression should 

also be divisible by 125. Here we have used the following properly:
For a | b and a | c ⇒ a | (ka + lb) conversely a | (ka + lb) and a | ka, then a | lb and if (a, 

l) = 1, then a | b.
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To find the values of x and y for which both the expressions are divisible by 125,

 3x + 11y = 125n1 (1)
 29x + 23y = 125n2 (2)

Solving Eqs. (1) and (2) for x and y, we get

x
n n

y
n n

n n
=

−

=
−










∈

11 23

2
29 3

2

2 1

1 2
1 2for all  , �

Example 12 If 1 1 1

a b c
+ = where a, b, c are positive integers with no common factor, 

prove that a + b is a square. [RMO, 1992]

Solution: Let the gcd of a, b be k, then a = kp and b = kq, and p, q are relatively prime.

∴ + =
1 1 1

a b c

⇒ c(a + b) = ab
⇒ ck(p + q) = k2pq
⇒ c(p + q) = kpq. (1)

Since, k is the GCD of a, b and a, b, c have no common factor (c, k) = 1.
So, c | pq (2)
As (p, q) = 1; p, q are prime to (p + q) and hence, (p + q) is prime to pq and hence, 

pq | c. (3)
From Eqs. (2) and (3), we have

 c = pq (4)
From Eqs. (1) and (4), we have, p + q = k
So, (a + b) = k(p + q) = k × k = k2 and hence, the result.

Build-up Your Understanding 2

 1. If a = qb + r where a, q, b and r are integers, then prove that (a, b) = (b, r).
 2. If a, b are integers both greater than zero and d is their gcd, then, prove that 

d = ax + by for some x, y ∈ . 

 3. Prove that 
12 1

30 2

n

n

+
+

 is irreducible for every positive integer n.

 4. Prove that the expression 
63 14

42 9

n

n

+
+

 is irreducible for every positive integer n.

 5. Show that gcd(n! + 1, (n + 1)! + 1) = 1 for any n∈�.
 6. Prove that the expression 2x + 3y and 9x + 5y are divisible by 17 for the same set 

of integral values of x and y.
 7. If x, y are integers and 17 divides both the expressions x2 - 2xy + y2 – 5x + 7y and 

x2 – 3xy + 2y2 + x – y, then prove that 17 divides xy – 12x + 15y. [RMO, 2005]
 8. Find the least possible value of a + b, where a, b are positive integers such that 11 

divides a + 13b and 13 divides a + 11b. [RMO, 2006]
 9. Show that if 13 divides n2 + 3n + 51 then 169 divides 21n2 + 89n + 44.
 [RMO, 2012]

and having same parity (i.e., both even or both odd).
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6.8  Chapter 6

 10. If gcd(a, b) = 1, then prove that (a2 + b2, ab) = 1 and also prove that  
gcd(a + b, a2 - ab + b2) = 1 or 3.

 11. If a b, ∈�  and ab|(a2 + b2), then prove that a = b.

 12. Let a, b, c be positive integers such that a divides b2, b divides c2, c divides a2. 
Prove that abc divides (a + b + c)7. [RMO, 2002]

 13. If gcd(a, b, c) = 1 and c
ab

a b
=

−
,  then prove that a - b is a perfect square.  

 14. Let m, n be positive integers, such that, 3m + n = 3 lcm[m, n] + gcd(m, n); prove 
that, n divides m.

 15. Let a1, b1, c1 be natural numbers. We define a2 = gcd(b1, c1), b2 = gcd(c1, a1), 
c2 = gcd(a1, b1)  and a3 = lcm(b2, c2), b3 = lcm(c2, a2), c3 = lcm(a2, b2). Show that 
gcd(b3, c3) = a2. [RMO, 2013]

 16. Find the minimum possible least common multiple (lcm) of twenty (not necessar-
ily distinct) natural numbers whose sum is 801. [RMO, 1998]

 17. Let m, n, l ∈  and lcm[m + l, m] = lcm[n + l, n], then prove that m = n.

 18. Find the set of all ordered pairs of integers (a, b) such that, of gcd(a, b) = 1 and 
a

b

b

a
+

14

25
 is an integer.

 19. Let 
a

b
= − + − + +1

1

2

1

3

1

4

1

1319
�  such that gcd(a, b) = 1. Show that 1979 | a.

 [IMO, 1979]

 20. Let 
a

b
= + + + + +1

1

2

1

3

1

4

1

2002
�  such that gcd(a, b) = 1. Show that 2003 | a.

 21. Let 
a

b
= − + − +1

1

2

1

3

1

67
�  such that gcd(a, b) = 1. Show that 101| a.

 22. Let m, n ∈  and n be an odd number then prove that gcd(2n - 1, 2m + 1) = 1.
 23. For each positive integer n, define an = 20 + n2 and dn = gcd(an, an+1). Find the set 

of all values that are taken by dn and show by examples that each of these values 
are attained. [RMO, 1997]

 24. Let P(x) = x3 + ax2 + b and Q(x) = x3 + bx + a, where a, b are non-zero real num-
bers. Suppose that the roots of the equation P(x) = 0 are the reciprocals of the 
roots of the equation Q(x) = 0. Prove that a and b are integers. Find the greatest 
common divisor of P(2013! + 1) and Q(2013! + 1). [RMO, 2013]

 25. If (a, b) = 1 and xa = yb for some natural numbers a, b, x, y all greater than 1 then 
show that x = nb and y = na for some n > 1.

 26. Prove that gcd(ka - 1, kb - 1) = kgcd(a,b) - 1 where k > 1; k, a, b, ∈ 

6.4 PrimEs

An integer p > 1 is called a prime number if it has exactly two distinct divisors namely 
1 and p.

In other words, p is a prime, if there is no d, 1 < d < p, such that d | p. A number 
more than 1 which is not prime is called a composite number. 1 is neither prime nor 
composite.

Some properties of a prime number p:

 1. p | ab ⇒ p | a or p | b
 2. p | an ⇒ p | a ⇒ pn | an, n ∈ 
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 3. Every integer greater than 1 is divisible by at least one prime.
 4. For n > 1 there is at least one prime p such that n < p < 2n. A slight generalization 

for n > 3, there always exists at least one prime p with n < p < 2n - 2. Another 
way let pn be nth prime for n ≥ 1 then pn+1 < 2pn.

 5. The number of primes less than or equal to a real number x is ≈ x/ ln x.

6.4.1 Euclidean Theorem

The number of primes is infinite.

Proof:
Suppose on the contrary that there are only finitely many primes p1, p2, …, pn. Look at

p1
 . p2

… pn + 1

This number is not divisible by any of the primes p1, p2, …, pn, because it leaves 
a remainder of 1 when divided by any of them. But as every integer greater than 1 
is divisible by a prime. This contradiction implies that there cannot be finitely many 
primes, i.e., there are infinitely many.

Note: Given k > 1, we can find k consecutive composite numbers.
One such k consecutive composite numbers are

(k + 1)! + 2, (k + 1)! + 3, (k + 1)! + 4, …, (k + 1)! + (k + 1). 
For k > 1, these numbers are divisible by 2, 3, 4, …, k + 1, respectively.

Example 13 Prove that if p and (8p - 1) are prime then (8p + 1) is a composite number.

Solution: If 3 | p then p = 3 ⇒ 8p + l = 24 + l = 25 ⇒ 8p + 1 is a composite number 
otherwise consider (8p - 1), 8p and (8p + 1). These are three consecutive numbers, 
where (8p - 1) is a prime number > 3 ⇒ 3 | (8p -1).

Since 3 | 8 and 3 | p, hence, 3 | 8p.
So, 3 | (8p + 1) as among three consecutive integers, one must be a multiple of 3 and 

8p + 1 > 3 ⇒ 8p + 1 is a composite number.

Example 14 Determine with proof all the arithmetic progression (AP) with integer 
terms, with the property that for each positive integer n, the sum of the first n terms is 
a perfect square.

Solution: When n = 1, the first term itself is a perfect square. Let it be k2.
The sum to n terms of the AP is

S
n

a n d a kn = + − =
2

2 1 2[ ( ) ], .where

Since Sn is a perfect square for every n, 2a + (n - 1) d > 0, for every n and hence, d > 0.
If n is an odd prime, say p, then

S
p

a p dp = + −
2

2 1[ ( ) ].

Since Sp is a perfect square p | [2a + (p - 1)d], i.e., p | [(2a - d) + pd]
But p | pd, so p | (2a - d). This is possible for all prime p, if and only if, 2a - d = 0 

or 2a = d, i.e., d = 2k2.
So the required AP is

k2, 3k2, 5k2, …, (2n -1)k2

where k is any natural number.
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Example 15 Prove that the polynomial f (x) = x4 + 26x3 + 52x2 + 78x + 1989 cannot 
be expressed as a product of two polynomials p(x) and q(x) with integral coefficients 
of degree less than 4.

Solution: If possible, let us express

x4 + 26x3 + 52x2 + 78x + 1989 = (x2 + ax + b)(x2 + cx + d),

where a, b, c, d ∈
By comparing coefficients of both sides, we get

 a + c = 26 (1)

 ac + b + d = 52 (2)

 bc + ad = 78 (3)

 bd = 1989 = 13 × 32 × 17 (4)

Now, we see that 13 is a divisor of 26, 52, 78, and 1989 and 13 is a prime number.

Thus, 13 | bd ⇒ 13 divides one of b or d, but not both.

If 13 | b, say, and 13 |d then from Eq. (3), 13 | a.

Now, 13 | ac, 13 | b, and 13 | 52.

\ 13 | d from Eq. (2) is a contradiction. 

So, if 13 | d and 13 | b,

Then, again, from Eq. (3), 13 | c ⇒ 13 | a (from Eq. 1)

Now, b = 52 - ac - d.

13 | b, but it is again a contradiction. So, there does not exist quadratic polynomials 

p(x) and q(x)with integral coefficients, such that f (x) = p(x) × q(x).

Similarly, if p(x) is a cubic polynomial and q(x) is a linear one, then let

p(x) = x3 + ax2 + bx + c 

q(x) = (x + d)

x4 + 26x3 + 52x2 + 78x + 13 × 32 × 17 = (x3 + ax2 + bx + c)(x + d)

Again, comparing coefficients

 a + d = 26 (5)

 ad + b = 52 (6)

 bd + c = 78 (7)

 cd = 13 × 32 × 17 (8)

As before 13 divides exactly one of c and d.

If 13 | d, and 13 |c, then by Eq. (7),

c bd= + ⇒78  13 | c is a contradiction.

So, let 13 | c and 13 |d

By Eq. (7), 13 | b, 
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By Eq. (6) ad = 52 - b

⇒ ⇒13 13| asad a| 13 |d

By Eq. (5), d = 26 - a ⇒ 13 | d, (a contradiction).

Hence, there does not exist any polynomials p(x) and q(x)as assumed, so is  the result.

6.4.2 Sophie Germain Identity

a b a b a b a b

a b ab

a

4 4 2 2 2 2 2 2 2 2

2 2 2 2

2

4 2 2 2 2 2

2 2

+ = + + ⋅ ⋅ − ⋅

= + −

= +

( ) ( )

( ) ( )

( 22 2 2 22 2 2

2 2 2 2

b ab a b ab

a b b a b b

+ + −

= + + − +

)( )

(( ) )(( ) )

This is very useful for proving whether a given number is a prime or composite.

Example 16 Prove that n4 + 4 is a composite number for all n > 1, n ∈ .

Solution: Since n4 + 4 = (n4 + 4n2 + 4) - 4n2

 = (n2 + 2)2 - (2n)2

 = (n2 + 2n + 2)(n2- 2n + 2).

 = [(n + 1)2 + 1] [(n - 1)2 + 1]

For n > 1, (n ± 1)2 + 1 > 1 and hence, n4 + 4 is a composite number for all n > 1, n ∈ .

Example 17 Prove that n4 + 4n is a composite number for all n ∈ , n > 1.

  [RMO, 1991]

Solution: If n is even, then both n4 and 4n are even and hence, n4 + 4n is an even num-
ber and hence, it is, composite as n4 + 4n is surely greater than 2.

If n > 1 is odd, then n = 2k + 1 where k is a natural number. 

Now,    n4 + 4n = n4 + 42k+1 

 = n4 + 4 . 42k

 = n4 + 4(24k) 

 = n4 + 4(2k)4 

Let a = 2k. 

Then a > 2 as k ≥ 1.

Then n4 + 4n = n4 + 4a4

 = n4 + 4n2a2 + 4a4- 4n2a2 

 = (n2 + 2a2)2 - (2na)2 

 = (n2 + 2a2 + 2na)(n2 + 2a2 - 2na).

            = ((n + a)2 + a2)((n - a)2 + a2)

  (n ± a)2 + a2 > a2 > 22 = 4
\ n4 + 4n is composite number.

Marie-Sophie Germain

1 Apr 1776–27 Jun 1831 
Nationality: French
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Build-up Your Understanding 3

 1. Show that 4 6 4 13 2n n n+ + +  is composite for n = 1, 2, 3…

 2. Prove that 5123 + 6753 + 7203 is not a prime number.
 3. Prove that 512 + 210 is composite.
 4. Show that 32008 + 42009 can be written as a product of two integers each of which 

is greater than 2009182. [RMO, 2009]
 5. Prove that if p and p2 + 2 are primes, then p3 + 2 is also a prime.
 6. Prove that if 2n + 1 and 3n + 1 are squares, then 5n + 3 is not prime where, n ∈ .
 7. Find all distinct primes p, q such that p2 - 2q2 = 1.

 8. Find all integers n such that 
n3 1

5

−







  is prime.

 9. Find all numbers p such that all six numbers p, p + 2, p + 6, p + 8, p + 12, and 
p + 14 are primes.

 10. Prove that N =
−
−

5 1

5 1

125

25
 is a composite number.

 11. Find all primes p and q such that p2 + 7pq + q2 is a square of an integer.
 [RMO, 2001]
 12. Find all triples (p, q, r) of primes such that pq = r + 1 and 2(p2 + q2) = r2 + 1.
 [RMO, 2013]
 13. Prove that, if a, b are prime numbers (a > b), each containing at least two digits, 

then (a4 - b4) is divisible by 240. Also prove that, 240 is the gcd of all the numbers 
which arise in this way.

 14. Prove that there are infinitely many primes of the form 4n - 1. 
 15. Prove that there are infinitely many primes of the form 6n - 1.
 16. If ab = cd, prove that a2 + b2 + c2 + d2 is composite.
 17. Let m, n ∈  such that 2m2 + m = 2n2 + n, then prove that m - n and 2m + 2n + 1 

are perfect squares.
 18. Let a, b, c, d ∈  and in strictly increasing order such that b2 - bd - d2 = a2 - ac - c2. 

Prove that ab + cd is not a prime number. 
 19. Let p p p pn1 2 3, , , , ,… …  be a sequence of primes defined by p1 = 2 and for n ≥ 

1, pn+1 is the largest prime factor of p1p2
…pn + 1. (Thus p2 = 3, p3 = 7). Prove that 

pn ≠ 5 for any n. [RMO, 2004]
 20. Let n be a positive integer and p1, p2, …, pn be n prime numbers all larger than 5 

such that 6 divides p p pn1
2

2
2 2+ + +� . Prove that 6 divides n. [RMO, 1998]

 21. Prove that for n p p p pn n≥ <+5 1
3

1 2, �  where pi is the ith prime. 

 22. (a) If n is not a prime, prove that 2n - 1 is not a prime.
  (b)  Prove that if an - 1 is prime, then a = 2 and n must be a prime. The smallest p 

for which 2p - 1 is composite is 11(211 = 2047 = 23 × 89). Prime numbers of 
the form 2p - 1 are called MERSENNE primes and usually denoted by Mp.

  (c)  Show that every prime divisor of 2p - 1 is of the form 2kp + 1 for some k ∈ .
 23. (a) If n has an odd divisor > 1, prove that 2n + 1 is not prime.

  (b)  Prove that if an + 1 is prime and a > 1, then a must be even and n = 2k for some 

k ∈ . Numbers of the form 2 12n +  are called FERMAT numbers, and usually 
denoted by Fn. The only Fermat numbers known to be prime correspond to n < 4.

  (c)  Show that every prime divisor of 2 12 n +  is of the form k n2 12+ +  for some 
k ∈ .

Largest known Mersenne prime 
is 274,207,281-1. It has 22,338,618 
digits! As of Jan 2016, 49 
Mersenne primes are known.
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6.5 FundamEntal thEorEm oF arithmEtic

Every integer greater than 1 can be expressed as a product of primes. The factorisation 
is unique but for the order of the factors.

Any number n can be written as

n p p p pm
m= × × × ×1 2 3

1 2 3α α α α�

where p1, p2, p3,…, pm are distinct primes and a1, a2, a3, …, am are natural numbers.

Notes: 

 1. A number n p p pm
m= × × ×1 2

1 2α α α� is a perfect square, if and only if each ai (i = 1, 
2, 3, …, m) is an even number.

 2. If n = p1 × p2 × … × pm, then n is called a square-free number. That is if each ai 

(i = 1, 2, …, m) is 1, then n is square-free integer.

6.6  numbEr oF PositivE divisors oF a comPositE numbEr

If a composite number is

n p p pm
m= × × ×1 2

1 2α α α�

then the number of positive divisors of n is t(n) = (a1 + l)(a2 + 1) … (am + 1). This is 
read as ‘tau of n’.

For example, if we take a number 24 = 23 × 31, the number of divisors of 24 is  
t (24) = (3 + 1)(1 + 1) = 8.

You can easily see that 1, 2, 3, 4, 6, 8, 12, 24 are the 8 divisors of 24.

Notes: 
 1. If n is a perfect square, t(n) is odd as all the ai are even.
 2. If n is not a perfect square, t(n) is even.
 3. The number of ways of writing n as the product of two factors (order immaterial) 

is:

 if n is a perfect square, 
τ( )n +1

2

 if n is not a perfect square, 
τ( )

.
n

2
 4. The number of ways, in which a composite number can be expressed as a product 

of two relative prime factors (order not considered), is 2m-1, where m is the num-
ber of distinct prime.

  For example, 58 × 37 × 415 can be resolved into product of two factors, in 23–1 = 
22 = 4 ways so that the factors are co-prime numbers. 

  Here they are

     58 × (37 × 415) 

     37 × (58 × 415) 

     415 × (37 × 58)  

  and finally 1 × (415 × 37 × 58).

Now s(n), (This is read as sigma of n) the sum of the positive divisors of n, is given by

σ
α α α

( ) ,n
p

p

p

p

p

p
m

m

m

=
−
−

×
−
−

× ×
−
−

+ + +
1

1

1

2
1

2

11 21

1

1

1

1

1
�
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where n p p pm
m= × × ×1 2

1 2α α α� .

For example,

σ σ( ) ( )48 2 3

2 1

2 1

3 1

3 1
31 4 124

4

5 2

= ×

=
−
−

×
−
−

= × =

sk(n), the sum of the kth power of the positive divisors of n

=
−

−
×

−
−

× ×
−

−

+ + +p

p

p

p

p

p

k

k

k

k
m
k

m
k

m
1

1

1

2
1

2

11 21

1

1

1

1

1

( ) ( ) ( )

.
α α α

�

Example 18 Find the smallest integer with exactly 24 divisors.

Solution: If n is the required number and 

n p p pk
k= 1 2

1 2α α α, , ,…

then t(n) = (a1 + l)(a2 + 1) … (ak + 1). 
But 24 can be written as the product of 2 or 3 or 4 factors. Corresponding to each 

factorisation, we can get a smallest composite number.

 24  223  148576

 12 × 2   211 × 31  6144

 6 × 4   25 × 33  864

 8 × 3  27 × 32  1152

 6 × 2 × 2 25 × 31 × 51 480

 4 × 3 × 2  23 × 32 × 5 360

 3 × 2 × 2 × 2 22 × 3 × 5 × 7 420

The smallest number having 24 divisors is 360.

Example 19 Find the sum of the cubes of the divisors of 12.

Solution: Since 12 = 22 × 3

∴ =
−

−
×

−
−

=
−

×
−

= × =

+ +
σ3

3 2 1

3

3 1 1

3

9 6

12
2 1

2 1

3 1

3 1

2 1

7

3 1

26
73 28 204

( )
( ) ( )

44.

Example 20 Show that s (N) = 4N when N = 30240. 

Solution: Since N = 30240 = 25 × 33 × 51 × 71.

So, σ ( )
( ) ( )

( )

( )

( )

( )

( )
N =

−
−

×
−
−

×
−
−

×
−
−

= ×

2 1

2 1

3 1

3 1

5 1

5 1

7 1

7 1

63 4

6 4 2 2

00 6 8

2 3 5 7

2 2 3 5 7

4 4

7 3

2 5 3 1 1

× ×

= × × ×

= × × × ×
= × =N N .
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Example 21 N = P1P2P3 and P1, P2 and P3 are distinct prime numbers. If d N
d N|
∑ = 3  

[or s(N) = 3N], show that 
1

3
1 dii

N

=
=
∑ .  

Solution: The divisors of N are 

1, P1, P2, P3, P1P2, P1P3, P2P3, P1P2P3.

It is given that

1 + P1 + P2 + P3+ P1P2 + P1P3 + P2P3 + P1P2P3 = 3N.

Now

1 1

1

1 1 1 1 1 1 1

1 2 3 1 2 1 31 2 3 1 2 3

1 2 3

d P P P P P P P P P P P P

P P P P
ii

N

= + + + + + + +

=
+

=
∑

22 3 1 3 1 2 3 2 1

1 2 3

1P P P P P P P P

P P P

+ + + + + +
.

But the numerator is the sum of the divisors of N,

i e d N P P P
d

P P P

P P Pd N i

N

. ., , .
|

= = = =∑ ∑
=

3 3
1 3

31 2 3
1

1 2 3

1 2 31

and hence

Example 22 Let f (n) be sum of number of divisors of divisors of n.
Prove that f (18) = f (2) . f (32).

Solution: Divisors of 18 are 1, 2, 3, 6, 9, 18 and therefore,

f q
q

( ) ( )
|

18 1 2 2 4 3 6 18
18

= = + + + + + =∑τ

  
f q

q

( ) ( )
|

2 1 2 3
2

= = + =∑τ

f q
q

( ) ( )
|

3 1 2 3 62

32

= = + + =∑τ

\  f (2) . f (3) = 3 × 6 = 18 = f (18).

Example 23 Show that f p p f p f p( ) ( ) ( ),1 2 1 2
1 2 1 2α α α α⋅ = ⋅  where p1 and p2 are distinct 

prime.

Solution: The divisors of p p1 2
1 2α α⋅ of the form p pr s

1 2⋅ ,  where 0 ≤ r ≤ a1 and 
0 ≤ s ≤ a2.

Now, f p p p p

r s

r s

r
s

s

( ) ( )

( )( )

1 2 1 2
0
0

0

1 2

1

2

2

1 1

α α

α
α

α

τ⋅ = ⋅

= + +

≤ ≤
≤ ≤

≤ ≤

∑

∑
00

00

1

21

1 1

≤ ≤

≤ ≤≤ ≤

∑

∑∑= + +












r

sr ga

r s

α

α
( ) ( )
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\

                   

= +
+ +








=
+ +

+

≤ ≤

≤ ≤

∑

∑

( )
( )( )

( )( )
( )

r

r

r

r

1
1 2

2

1 2

2
1

2 2

0

2 2

0

1

1

α α

α α

α

α

==
+ + + +

= = +
≤ ≤ ≤
∑

( )( ) ( )( )

( ) ( ) ( )

α α α α

τα

α

2 2 1 1

1 1
0 0

1 2

2

1 2

2

11

1

f p p rr

r r≤≤
∑

=
+ +

α

α α

1

1 21 2

2

( )( )

Similarly, f p( )
( )( )

2
2 22

1 2

2
α α α

=
+ +

∴ ⋅ = ⋅f p p f p f p( ) ( ) ( )1 2 1 2
1 2 1 2α α α α

where p1 ≠ p2, i.e., f is multiplicative.

Example 24 Define F n d
d n

( ) ( )
|

= ∑τ3 where t3 (d) = cube of the number of divisors of 

d, i.e., F (n) is defined as the sum of the cubes of the number of divisors of the divisors 
of n. Prove that F(18) = F (32) . F (2).

Solution: Consider F (18). 
Divisors of 18 are 1, 2, 3, 6, 9, 18.
Number of divisors of divisors of 18 are 1, 2, 2, 4, 3, 6. 

So, F(18) = 13 + 23 + 23 + 43 + 33 + 63 = 324 

Now, 18 = 21 × 32

 F (21) = l3 + 23 = 9 

 F (32) = F (9) = 13 + 23 + 33 = 36 

and F (2) × F (32) = 9 × 36 = 324 = F (18).
Thus, F is also multiplicative.

Example 25 Show that F p p F p p( ) ( ) ( ).1 2 1 2
1 2 1 2α α α α× = ×  

Solution: Any divisor of p1
1α is pr

1  where 0 ≤ r ≤ a1 

F p p rr

rr

( ) ( ) ( )1 3 1
3

00

1

11

1α
αα

τ= = +
==
∑∑ = sum of the cubes of the first a1 + 1 natural 

numbers.

                                   
=

+ +





( )( )
.

α α1 2
2

1 2

2

Similarly, F p( )
( )( )

2
2 2

2
2

1 2

2
α α α

=
+ +
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F p p p p

r s

r s

r
s

sr

( ) ( )

( ) ( )

1 2 3 1 2
0
0

3 3

0

1 2

1

2

2

1 1

α α

α
α

α

τ⋅ = ⋅

= ⋅ + +

≤ ≤
≤ ≤

=

∑

∑
==

= =

=

∑

∑ ∑

∑

= + +










= + ⋅
+

0

3

0

3

0

3

0

2

1

1 2

1

1 1

1
1

α

α α

α α

( ) ( )

( )
(

r s

r

r s

r

))( )

( ) ( )

( )
( )( )

α

α α

α
α

α

2
2

2
3

0

2
1 1

2

2

1

1 2

2

2

1

2

+





= ⋅ +

=
+ +

=
∑F p r

F p

r







=

3

2 1
2 1F p F p( ) ( ).α α

Hence, proved.

Example 26 Prove that F p f p( ) { ( )} ,1 1
21 1α α=   where F and f are as defined in previ-

ous problems.

Solution: Since 

     F p( ) ... ( )1
3 3 3

1
31 1 2 3 1α α= + + + + +

[ ( )] [ ... ( )]

( )( )

f p1
2

1
2

1 1
3

3 3

1 1 2 3 1

1 2

2

1 2

α α

α α

= + + + + +

=
+ +





= + + .... ( )

( ).

+ +

=

α
α

1
3

1

1

1F p

Example 27 Prove that sum of the cubes of the number of divisors of the divisors of a 
given number is equal to square of their sum. [For example, if N = 18.] The divisors of 
18 are 1, 2, 3, 6, 9, 18.

Number of divisors of divisors of 18 are 1, 2, 2, 4, 3, 6 respectively.
Sum of the cubes of these numbers

 13 + 23 + 23 + 43 + 33 + 63 = (13 + 23 + 33 + 43) + 23 + 63

 = 100 + 224 = 324.

Square of the sum of these divisors = (1 + 2 + 2 + 4 + 3 + 6)2

 = 182 = 324.

Solution: The solution is based on the result derived in previous problems.
We should show that F (N) = f (N)2, where F and f are as defined in previous prob-

lems.
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[This interesting property of numbers was originally given by Liouville, and Srinivasa 
Ramanujan, rediscovered it.]

If n p p pn
n= ⋅1 2

1 2α α α… ,  then 

F n F p p pn
n( ) ( )= ⋅1 2

1 2α α α… and p1, p2,…, pn distinct prime numbers and we have 

proved earlier that F is multiplicative.

∴ = ⋅

= ⋅

F n F p p p

F p F p F p

n

n

n

n

( ) ( )

( ) ( ) ( ).

1 2

1 2

1 2

1 2

α α α

α α α

…

…

But F p

i

i i

i i

( )

( )( )

α α

α α

1 1 2

1 2

2

3 3 3

2

= + + +

=
+ +





∈

�

�for all

We have

F n n n( )
( )( ) ( )( ) ( )(

=
+ +




⋅

+ +





+ +α α α α α α1 1
2

2 2
2

1 2

2

1 2

2

1 2
�

))

2

2






=  [(a1+ 1)(a1 + 2)(a2 + 1)(a2 + 2) … (an + 1)  × (an + 2)]2/(2n)2 (1)

Now,

multip

f p p p

f p f p f p f is

n

n

n

n

( ... )

( ) ( ) ( ) [

1 2

1 2

1 2

1 2

α α α

α α α

⋅

= ⋅ � ∵ llicative]

( )( ) ( )( )
...

( )( )

(

=
+ +

⋅
+ + + +

=

α α α α α α

α

1 1 2 2

1

1 2

2

1 2

2

1 2

2
n n

++ + + +
+ +

1 2 1 2
1 2

2
21 2 2)( )( )( )...

( )( )
( )α α α

α αn n
n

\ From (1) and (2), we see that F (n) = [f (n)]2.

6.6.1 Perfect Numbers

If the sum of the divisors of a number n, other than itself, is equal to n, then n is called 
a perfect number. For example, the first two perfect numbers are 6 and 28.

 6 = 1 + 2 + 3 

 28 = 1 + 2 + 4 + 7 + 14

There are 49 perfect numbers known to date (January 2016) all even, and it is conjec-
tured that there are no odd perfect numbers.

Example 28 Show that n = 2m–1(2m – 1) is a perfect number, if (2m – 1) is a prime 
number.

Solution: Let n = 2m–1 × p, where p = 2m – 1 is a prime number.
The divisors of 2m-1 × p are

1, 2, 22, 23, …, 2m-1, p, 2p, 22p, …, 2m-2p, 2m-1p
Now, we should sum all these divisors except the last one, 2m-1p.
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S p

p

m m

m m

= + + + + + + + + +

=
−
−

+
−

− −

−

( ) ( )

( ) [ ( )]

1 2 2 2 1 2 2 2

1 2 1

2 1

1 2 1

2 1 2 2

1

� �

22 1

2 1 2 1

2 1 2 1

2

2 2 1

1

1

1

1

−
= − + −

= + − = −

= ⋅

= −

−

−

−

−

m m

m m

m

m m

p

p p p

p

( )

( ) [ ]

( )

∵

== n.

Example 29 N = 2n-1 (2n - 1) and (2n - 1) is a prime number. 1 < d1 < d2 < … < dk = N 
are the divisors of N. Show that

1

1

1 1 1
2

1 2

+ + + + =
d d dk

� .

Solution: Let 2n - 1 = q.
We already saw that 1, d1, d2,…, dk are 1, 2, 22, …, 2n-1, q, 2q, …, 2n-1q, 

respectively.

So, S
d d d

q

k

n n

= + + + +

= + + + + + × + + + +
−

1

1

1 1 1

1

1

1

2

1

2

1

2

1 1

1

1

2

1

2

1

2

1 2

2 1 2

�

� �
−−





1

∴ =
−

+
−

=
− + −

=
− +

− − −
S

q

q

q

q

q

n

n

n

n

n n

n

n

2 1

2

1 2 1

2

2 1 2 1

2

2 1 1

2

1 1 1

( ) ( ) ( )

( )( )
nn

n n

n n

n

n

− −

−

=
−
−

= =

1 1

1

2 1 2

2 1 2

2

2
2

( )( )

( )( )

.

Example 30 If n1 and n2 are two numbers, such that the sum of all the divisors of n1 
other than n1 is equal to n2 and sum of all the divisors of n2 other than n2 is equal to n1, 
then the pair (n1, n2) is called an amicable number pair.

Given: a = 3 . 2n - 1,

b = 3 . 2n-1 - 1

and           c = 9 . 22n-1 - 1, n > 1

where a, b and c are all primes numbers, then show that (2nab, 2nc) is an amicable pair.

Solution: If N p p pn
n= ⋅1 2

1 2α α α... , then sum of the divisors: of N is given by the formula 

d N
p

p

p

p

p

p
n

n

n

( ) =
−
−

×
−
−

×
−
−

+ + −

∑ 1
1

1

2
1

2

11 21

1

1

1

1

1

α α α

�

So, the sum of the divisors of 2nab is

( )2 1
1

1

1

1
1

2 2
n a

a

b

b
+ − ×

−
−

×
−
−

 = (2n+1 - 1)(a + 1)(b + 1)

 = (2n+1 - 1)(9.22n-1).
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But 2nab = 2n[9 . 22n-1 - 9 . 2n-1 + 1] (on simplification)
The sum of the divisors of 2nab other than 2na . b is

9 . 22n -1 (2n+1 - 1) - 2n(9.22n -1 - 9.2n-1 + 1)

 = 9 . 23n- 9 . 22n-1- 9 . 23n-1 + 9 . 22n-1- 2n

 = 9 . 23n-1(2 - 1) - 2n

 = 9 . 23n-1 - 2n

 = 2n (9.22n-1 - 1)

 = 2n . c 

Thus, the sum of the divisors of 2n . ab other than itself is 2nc. Now, sum of the divisors 
of 2nc other than itself is

2 1

2 1

1

1
2

1 2n
nc

c
c

+ −
−

×
−
−

− ⋅

 = (2n+1 - l)(c + 1) - 2n . c
 = (2n+1 - 1)9 ⋅ 22n-1 - 2n(9 . 22n-1 - 1)
 = 9 . 23n - 9 . 22n-1 - 9 . 23n-1 + 2n

 = 9 . 23n-1 - 9 . 22n-1 + 2n

 = 2n [9 . 22n-1 - 9 . 2n-1 + 1] 
 = 2nab

i.e., the sum of the divisors of 2nc other than 2nc is equal to 2nab.

Build-up Your Understanding 4

 1. Find the number of positive integers which divide 10999 but not 10998.
 [RMO, 1999]

 2. Find the number of rationals 
m

n
 such that (i) 0 1< <

m

n
,  (ii) gcd(m, n) = 1, 

(iii) mn = 25!. [RMO, 1994]

 3. Determine largest 3-digit prime factor of 
2000

1000









 . [RMO, 1992]

 4. Determine the smallest positive integer n, which has exactly 144 distinct divisors 
and there are 10 consecutive integers among these divisors.

 5. Prove that every even perfect number is of the form 2 2 11p p− −( ),  where 2 1p −  
and p must be prime numbers.

 6. Prove that every even perfect number ends in 6 or in 28.

 7. Show that for any natural number n ≥ 1, the sum 
1

3

1

5

1

7

1

2 1
+ + + +

+
�

n
 is never 

an integer.

 8. Prove that the sum 
1 1

1

1

p p p n
+

+
+ +

+
�  is a fraction when reduced to simplest 

terms, has an even denominator.
 9. [a, b, c] and (a, b, c) denote the least common multiple (lcm) and the greatest 

common divisor (gcd). Show that 
[ , , ]

[ , ][ , ][ , ]

( , , )

( , ) ( , ) ( , )
.

a b c

a b b c c a

a b c

a b b c c a

2 2

=

 [USA MO, 1972]
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6.7 modular arithEmatic 

The set of integers can be partitioned into n disjoint sets or module namely S0, S1 . . ., 
Sn–1, where Sr = set of integers with r as remainder when divided by n, for r = 0, 1, 2, 
…, n - 1.

Any two numbers belonging to the same set or module Sr are said to be congruent 
modulo n.

Formally, 
if a and b both leave the same remainder or equivalently, n | (a - b) or a = kn + b, 

for some k ∈   we define, 

a ≡ b (mod n),

This is read as a is congruent to b modulo n.
For example, 16 ≡ 1 mod 3 (as 16 = 5 × 3 + 1)
Also we can see 16 ≡ 1 ≡ 4 ≡ -2 ≡ -5 (mod 3)
We are just adding or subtracting multiples of ‘3’

6.7.1 Properties of Congruence

In what follows n, a, b, c, d, x, y are integers.

 1. a ≡ a (mod n) (Refl exive relation for all a ∈ )
 2. a ≡ b (mod n) ⇔ b ≡ a (mod n) (Symmetric relation for all a, b ∈ )
 3. a ≡ b (mod n), b ≡ c (mod n) ⇒ a ≡ c (mod n) (Transitive relation for all Integers 

a, b, c )
 4. If a ≡ b (mod n) and c ≡ d (mod n), then 
    (i) a + c ≡ b + d (mod n)
   (ii) a - c ≡ b - d (mod n)
  (iii) ac ≡ bd (mod n)
  (iv) ax + cy ≡ bx + dy (mod n)
 5. If a ≡ b (mod n), then
    (i) a + c ≡ b + c (mod n)
   (ii) a - c ≡ b - c (mod n)
  (iii) ac ≡ bc (mod n)
  (iv) a + k1n ≡ b + k2n (mod n); k1, k2 ∈ 
   (v) am ≡ bm (mod n), m ∈
 6. a ≡ b (mod c) ⇒ f (a) ≡ f (b) (mod c)
  Where f is a polynomial over . i.e., f (x) is a polynomial with integer coeffi  cients

 7. a b n a b
n

n
λ λ

λ
≡ ⇒ ≡









(mod ) mod

( , )

  In particular, if gcd(λ, n) = 1, then aλ ≡ bλ (mod n) ⇒ a ≡ b (mod n)
 8. If n ≠ 0 and (a, n) = 1, then there exists an integer a′ such that aa′ ≡ l (mod n) 

which is called the inverse of ‘a’ modulo n.

Example 31 Find the largest positive integer n such that n3 + 100 is divisible by
(n + 10).

Solution: Using modulo (n + 10) numbers, we see that

       n n+ ≡ +10 0 10[mod ( )]    

Johann Carl
Friedrich Gauss

30 Apr 1777–23 Feb 1855 
Nationality: German

M06_Number Theory_C06.indd   21 8/11/2017   2:19:42 PM



6.22  Chapter 6

i.e.,         n n≡−10[ ]mod ( +10)  

             n n3 310 10≡ − +( ) [mod ( )]

                  ≡− +1000 10[mod ( )]n

\ n n3 100 1000 100 10+ ≡ − + +( )[mod ( )]

                  ≡− +900 10[mod ( )].n

Now, we want (n + 10) to divide n3 + 100, implying that (n + 10) should divide -900.
The largest such n is 900 - 10 = 890, as (n + 10) cannot be greater than |-900 | = 900 

and the greatest divisor of |-900| is 900.
So the largest positive integer n, such that n3 + 100 is divisible by (n + 10) is n = 890.

Note: 900 = 32 × 22 × 52 has 27 divisors and each divisor greater than 10, gives a cor-
responding value for n they are 2, 5, 8, 10, 15, 20, 26, 35, 40, 50, 65, 80, 90, 140, 170, 
215, 290, 440, and 890.

Example 32 Determine all positive integers n for which 2n + 1 is divisible by 3.

Solution: 2n + 1 = 2n + 1n.
If n is odd, then (2 + 1) is a factor. Thus for all odd values of n, 2n + 1 is divisible 

by 3.
For n even = 2 m say,
2n + 1 = 22m + 1 = 4m - 1 + 2
Now 3 = 4 - 1 divides 4m -1n but 3 | 2 ⇒ 3 | (2m + 1) for n even.

Aliter: 2 ≡ -1 (mod 3)

⇒ 22m+1 ≡ -1 (mod 3) and 22m ≡ 1 (mod 3)
So, 2n + 1 ≡ 0 (mod 3), if n is odd.
and 2n + 1 ≡ 1 + 1 = 2 (mod 3), if n is even.

Therefore, 2n + 1 is divisible by 3, if and only if, n is an odd number.

Example 33 What is the remainder when 20162016 is divided by 2017?

Solution:  As 2016 ≡ –1 (mod 2017)

⇒ 20162016 ≡ 1 (mod 2017)

Example 34 Find the remainder when 45272452

is divided by 3.

Solution: This problem doesn’t require much work, just one insight leads to immedi-
ate solution, we note that 452 ≡ –1 (mod 3), thus

452 1 1 372 72452 452≡ − ≡( ) (mod ).

The last congruence holds because 72452 is surely even.

Example 35 Suppose 55555 is divided by 24, find the remainder.

Solution: It is not hard to find, by inspection, that 52 = 25 ≡ 1 (mod 24). Now we can 
write 

55555 = 55554 . 5 = (52)2777 . 5 ≡ 12777 . 5 ≡ 5
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Finding number ‘a’ such that 5a ≡ 1 (mod n) basically allows us to reduce the exponent 
in a problem, if the a is small such as 2, then the reduction is very drastic as seen in 
example above.

Example 36 Show that 255
 + 1 is divisible by 11.

Solution: 25 = 32 ≡ (-1) (mod 11)

 255 = (25)11 ≡ (-1)11 ≡ -1 (mod 11)
So,  255 + 1 ≡ 0 (mod 11)
\ It is a multiple of 11.

Example 37 Find the sum of all integers n, such that 1 ≤ n ≤ 1998 and that 60 divides 
n3 + 30n2 + 100n.

Solution:
 (i) If 60 = 3 × 4 × 5 and 4 | 100n, then 4 should divide n3 + 30n2, i.e., 4 should divide 

n2(n + 30). This implies that n is even. i.e., 2|n
 (ii) As 5 | (30n2 + 100n), 5 should divide n3. Hence, 5 should divide n.
 (iii) As 3 | 30n2, then 3 should divide n3 + 100n, i.e., 3 should divide n(n2 + 100n) = 

n(n2 + 1 + 99) 
If n ≡ ± 1 (mod 3), n2 ≡ 1 (mod 3), and n2 + 1 ≡ 2 (mod 3), so neither of (n2 + 

1 + 99) and n are divisible by 3.
However, if n ≡ 0 (mod 3), then n(n2 + 1 + 99) is divided by 3, i.e., n(n2 + 100) 

is divisible by 3 only if n is a multiple of 3.

From (i), (ii), and (iii), we find that n must be a multiple of 2 × 3 × 5 = 30. So, we 
should find the sum of all multiples of 30 less than 1998 

 Sn = 30 + 60 + … + 1980

 = 30(1 + 2 + … + 66) = 66330.

Example 38 Find the last two digits of (56789)41.

Solution:  56789 ≡ 89 (mod 100)

 ≡ -11 (mod 100)

 \ (56789)41 ≡ (-11)41 (mod 100)

 ≡ (-11)40 × (-11) (mod 100)

 ≡ (11)40 × (-11) (mod 100)

 112 ≡ 21 (mod 100)

 114 ≡ 41 (mod 100)

 116 ≡ 21 × 41 (mod 100)

 ≡ 61 (mod 100)

 1110 ≡ 41 × 61 (mod 100)

 ≡ 01 (mod 100)

 1140 ≡ (01)40 (mod 100)

 ≡ 1 (mod 100)
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 (-11)41 ≡ 1140 × (-11) (mod 100)

 ≡ 1 × (-11) (mod 100)

 ≡ -11 (mod 100)

 (56789)41 ≡ 89 (mod 100)

i.e., the last two digits of (56789)41 are 8 and 9 in that order.

Example 39 Prove that 22225555 + 55552222 is divisible by 7. 

Solution: Since 22225555 + 55552222

 = 22225555 + 45555 + 55552222 - 42222 - 45555 + 42222

 = (22225555 + 45555) + (55552222 - 42222) - 42222 (43333 - 1)

Now, 22225555+ 45555 is divisible by 2222 + 4 = 2226 = 7 × 318, 55552222 - 42222 is 
divisible by 5555 - 4 = 5551 = 7 × 793 and 43333- 1 =  (43)1111- 1 = 641111- 1 is divis-
ible by 64 - 1 = 63 = 7 × 9.
Thus 22225555 + 55552222 can be split up into three terms each of which is divisible by 
7 and hence, the result.

Aliter:

  2222 ≡ 3 (mod 7)

 ⇒ 22222 ≡ 9 ≡ 2 (mod 7) (1)

 ⇒ 22224 ≡ 4 (mod 7) (2)

 ⇒ 22226 ≡ 8 ≡ 1 (mod 7) (From (1) and (2))

 ⇒ 22225555 = [(2222)6]925 × 22225 = [(2222)6]925 × 22224 × 22221 
 ≡ 1 × 4 × 3 (mod 7) ≡ 12 ≡ 5 (mod 7)

 Also 5555 ≡ 4  (mod 7)

 ⇒ 55553 ≡ 43  (mod 7) ≡ 1 (mod 7)

 ⇒ (5555)2222 = (55553)740 × 55552 ≡ 1 × 4 × 4 (mod 7) ≡ 2 (mod 7)

and hence, 22225555 + 55552222 ≡ 5 + 2 = 0 (mod 7) and hence, the result.

Example 40 If a, b, c are any three integers, then show that abc(a3 - b3)(b3 - c3) 
(c3 - a3) is divisible by 7.

Solution: Let us find the value of a3 (mod 7) for any a ∈ .
As, a (mod 7) is 0, ±1, ±2, ±3, a3 (mod 7) will be only among 0, ±1.
Now, if 7 divides one of a, b, c, the given expression is divisible by 7. If not, then 

a3, b3, c3 (mod 7) will be only among 1 and -1. Hence, two of them must be the same, 
say a3 and b3 (mod 7).
\ (a3 - b3) ≡ 0 (mod 7). The given expression is divisible by 7.

Example 41 Let f (x) be a polynomial with integral coefficients. Suppose that both f (1) 
and f (2) are odd. Then, prove that, for any integer n, f (n) ≠ 0.
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Solution: Let f (n) = 0 for some integer n
If n ≡ 1 (mod 2)
Then f (n) ≡ f (1) (mod 2) ⇒ 0 ≡ odd (mod 2) which is a contradiction
If n ≡ 2 (mod 2)
Then f(n) ≡ f(2) (mod 2) ⇒ 0 ≡ odd (mod 2) which is a contradiction
So, there exists no integer n, for which f (n) = 0.

Example 42 If a, b, c are positive integers less than 13 such that

2ab + bc + ca ≡ 0 (mod 13)
ab + 2bc + ca ≡ 6abc (mod 13)
ab + bc + 2ca ≡ 8abc (mod 13)

Then determine the remainder when a + b + c is divided by 13.

Solution: As 13 is prime, we may multiply each equation by (abc)–1:

 2c–1 + a–1 + b–1 ≡ 0 (mod 13) (1)

 c–1 + 2a–1 + b–1 ≡ 6 (mod 13) (2)

 c–1 + a–1 + 2b–1 ≡ 8 (mod 13) (3) 

Adding (1), (2) and (3) we get   
4 (a–1 + b–1 + c–1) ≡ 14 ≡ 1 (mod 13) ≡ 1 + 3 × 13 (mod 13)

⇒ a–1 + b–1 + c–1 ≡ 10 (mod 13) (4)

From (1) and (4) we get c–1 ≡ -10 ≡ 3 (mod 13).

⇒  c ≡ 3-1 mod 13

⇒ 3c ≡ 1 mod 13

⇒ 3c ≡ 1 + 2 × 13 (mod 13) ≡ 27 (mod 13)

⇒  c ≡ 9 (mod 13)

Similarly, a ≡ 3 (mod 13) and b ≡ 6 (mod 13) and therefore our answer is a + b + c 
≡ 3 + 6 + 9 ≡ 5 (mod 13).

Example 43 Find the last three digits of 200511 + 200512 + … + 20052006.

Solution: Finding last n digits of a number is done by finding the remainder when said 
number is divided by 10n. 

We note that 2005 ≡ 5 (mod 1000), so the sum is congruent to 

511 + 512 + … + 52006 (mod 1000),

We have 54 = 625 and 5 . 625 ≡ 125 (mod 1000), but 5 . 125 = 625, so powers 
of 5 modulo 1000 repeat periodically 625, 125, 625, 125, … that is to say 5n ≡ 625 
(mod 1000) for even n ≥ 4 and 5m ≡ 125 (mod 1000) for odd m ≥ 5. So we can write 
the sum as

511 + 512 + … + 52005

≡ 125 625 125 125 625
1996

+ + + + +�� ������ ������
terms

 (mod 1000),

Now

125 625 125 125 625
1996

+ + + + +�� ������ ������
terms

= 998 . 625 + 998 . 125 = 998 . 750
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Thus the sum is congruent to

998 . 750 ≡ ( –2 )(-250) ≡ 500 (mod 1000).

Example 44 Let n be a number that is made from a string of 5s and is divisible by 

2003. What is the last 6 digits of quotient when n is divided by 2003?

Solution: Let 2003x = 55…55555555

⇒ 3x ≡ 555 (mod 1000)

⇒ x ≡ 185 (mod 1000)

⇒ x = 103y + 185 Say 

⇒ 2003(103y + 185) = 55…55555555

⇒ (2003000)y + 370555 = 55…55555555

⇒ (2003000)y = 55…55185000

⇒ 3y ≡ 185 (mod 1000)

⇒ 3y ≡ 1185 (mod 1000)

⇒ y ≡ 395 (mod 1000)

Hence, x ≡ 395185 (mod 1000000)

Example 45 If a and b are two integers such that 11 divides a2 + b2, show that 121 
divides a2 + b2.

Solution: Suppose 11 divides a2 + b2.

If 11 divides a2, then 11 should also divide b2, which implies that 11 divides a and 
b both, and in turn 121 divides a2 and also b2 and hence, 121 divides a2 + b2.

Assume 11 divides neither a2 nor b2.
Let a ≡ k (mod 11), where k = 1, 2, …, 10.
Therefore, a2 ≡ k2 (mod 11) = l (mod 11), where l = 1, 4, 9, 5, 3.
Similarly, b2 ≡ m (mod 11), where m = 1, 4, 9, 5, 3

\ a2 + b2 ≡ (l + m) (mod 11). But l + m ≡/  0 (mod 11)

\ 11 | (a2 + b2) iff 11 | a2 and 11 | b2 and hence, 121 | (a2 + b2).

Example 46 Show that if the sum of the square of two whole numbers is divisible by 3, 
then each of them is divisible by 3.

Solution: Let x and y be any two integers 

Then     x ≡ 0, 1, 2 (mod 3)
and   x2 ≡ 0, 1 (mod 3)
Similarly,   y2 ≡ 0, 1 (mod 3)
So            x2 + y2 ≡ 0, 1, 2 (mod 3) (1)

In Eq. (1), x2 + y2 is a multiplying of 3. Iff Eq. (1) is the result of adding x2 ≡ 0 (mod 3) 
and y2 ≡ 0 (mod 3) implying both x2 and y2 are divisible by ‘3’ and hence, both x and 
y are divisible by 3.

Note: In general, if p ≡ 3 (mod 4) and p | (a2 + b2), then p | a and p | b.
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Build-up Your Understanding 5

 1. Solve the following:
  (a) 5x ≡ 7 (mod 21)
  (b) 19x ≡ 3 (mod 8)
  (c) 12x ≡ 9 (mod 24)
  (d) 17x ≡ 3 (mod 210).
 2. Find the last two digits of 31234.
 3. Find the last two digits of 7100 - 3100. 
 4. Find the remainder, when 19981999 + 19991998 is divided by 7.
 5. Prove that a number is divisible by 11 if and only if the difference of the sum of 

the odd ranked digits and the sum of the even ranked digits is divisible by 11.
  [i.e., 11 | (d1d2 … dk)10 if and only if 11 | ((dl + d3 + d5 + …) - (d2 + d4 + d6 + …)) 

where d1, d2,…, dk are the digits of the number (dd2 … dk)10 written in decimal 
form.]

 6. A number is said to be palindromic if it reads the same backwards as forward (in 
decimal notation). For example, 181; 5005; 1234321. Prove that any palindromic 
number with an even number of digits is divisible by 11.

 7. Derive a divisibility test by 7.
 8. Derive a divisibility test by 13.
 9. Prove that (41999 + 71999 - 2) is divisible by 9.
 10. Show that (3099 + 61100) is divisible by 31.
 11. Prove that the number (10790 - 7690) is divisible by 1891.
 12. Prove that (11n+2 + 122n+1) is divisible by 133.
 13. Find all sets of positive integers a, b, c satisfying the three congruences

  a b c b c a c a b≡ ≡ ≡(mod ), (mod ), (mod ).

 14. If gcd(a, b) = 1 and p is an odd prime, show that gcd , .a b
a b

a b
p

p p

+
+
+









 =1 or

 15. If a > b > 1 and n ∈ , show that gcd , gcd( , ).a b
a b

a b
a b n

n n

−
−
−









 = −

 16. Prove that if a, m, n are positive integers with m ≠ n, then

gcd ,a a
m n2 21 1+ +( ) = 



1 if a is even

2 if a is odd

  Use this to show that there are infinitely many primes.

6.8 comPlEtE rEsiduE systEm (modulo n)

Given any number n; the number of all possible remainders that can be obtained by 
dividing any integer by n is n.

If {x1, x2, …, xn} is a set of n integers such that xi ≡  xj (mod n) ∀i, j = 1, 2, 3, ..., n; 
i ≠ j then {xi | i = 1, 2, …, n} is called a complete residue system modulo ‘n’. There can 
be an infinite number of complete residue systems for a given number n.

If n = 5 (say) then {0, 1, 2, 3, 4} is a complete residue system. Also known as, least 
non-negetive system of residues (modulo 5) and also {5, 6, 7, 8, 9} or even {5, 11, 17, 
23, 29} are complete residue systems for modulo 5.
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6.8.1 Reduced Residue System (Modulo n)

A related concept is reduced residue system. It is a collection of all elements of a 
complete residue system modulo ‘n’ which are co-prime with ‘n’. For example, n = 
12, one complete residue system is {0, 1, 2, …, 11}. If a is an element of this system 
and (a, 12) = 1, then the corresponding member in the complete residue system given 
above is one of 1, 5, 7, 11. Now we define the set {1, 5, 7, 11} to be a reduced residue 
system (mod 12).

Formally, a reduced residue system modulo n is a set of integers {r1, r2,…, rk} sat-
isfying the following conditions.

 (i) (rj, n) = 1, 1 ≤ j ≤ k.
 (ii) ri /≡  rj (mod n), where i ≠ j, 1 ≤ i, j ≤ k.
 (iii)  For every integer x relatively prime to n, there is a ‘rj’ such that x ≡ rj (mod n) 

where 1 ≤ j ≤ k.

6.8.2 Properties

 1. If r1, r2, …, rn is a complete residue system modulo n and (a, n) = 1, then ar1, ar2, 
…, arn is also a complete residue system. This property also holds for reduced 
residue system.

 2. A reduced residue system modulo n can be formed from a complete residue sys-
tem modulo n by removing all integers not relatively prime to n.

 3. If p is a prime number then a reduced residue system modulo p is {1, 2, …, p - 1}.
 4. ϕ(n) is the number of elements in any reduced residue system (mod n), the func-

tion ϕ is called Euler’s totient function. 

6.9 somE imPortant Function/thEorEm

6.9.1 Euler’s Totient Function

The number of positive integers less than or equal to n that are coprime to n is denoted 
by ϕ(n) and is called Euler’s totient function.

Euler’s totient function is multiplicative, i.e., if gcd(m, n) = 1,
then ϕ(mn) = ϕ(m) . ϕ(n).
It is also obvious that for prime p, ϕ(p) = p – 1, ϕ(pk) = pk - pk–1=pk–1(p – 1).
Also ϕ(1)=1.  
and it can be shown that 

φ( )
|

n n
pp n

= ⋅ −








∏ 1

1

i e n p p p

n n
p p

k
k. .,

( )

If   then = ⋅

= −








 −










1 2

1 2

1 2

1
1

1
1

α α α

φ

…

�� 1
1

−










pk

6.9.2 Carmichael Function

Carmichael function is denoted λ(n) and returns smallest natural number k such that 

ak ≡ 1 (mod n),

for every integer a, where gcd(n, a) = 1. 

Leonhard Euler

15 Apr 1707–18 Sep 1783 
Nationality: Swiss
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If we know the prime factorization of n, then we can compute Carmichael function:

λ

φ
α

φ
φ

α

α
( )

( )

( )

( )
n

n
n

n n p p

n n
=

= ≥

= ≥
=

2
2 3

3

for  with 

for  with 

for 22 3

1 1
1

α

α α α

α

λ λ α

 with 

lcm for where

<

( ) ( )( ) = =p p n pm i
m

i
m i, ..., ,Π ii ≥












 0

6.9.3 Fermat’s Little Theorem (FLT)

For any prime number p and any integer a the following congruence holds

ap ≡ a (mod p),
additionally from the modular cancellation law it follows that if gcd(a, p) = 1, then 

ap–1 ≡ 1 (mod p).

6.9.4 Euler’s Theorem

If gcd(n, a) = 1, then

aϕ(n) ≡ 1 (mod n)

If n = p, then we obtain Fermat’s little theorem.

6.9.5 Carmichael’s Theorem

If gcd(n, a) = 1, then

aλ(n) ≡ 1 (mod n),

this theorem is stronger than Euler’s theorem because λ(n) ≤ ϕ(n).

Example 47 Find the remainder when 35117!

is divided by 19.

Solution: By Fermat’s little theorem we have 318 ≡ 1 (mod 19). This hints that we will 

want to find 5117!

 in modulo 18. Now note that ϕ(18) = 6. So by Euler’s theorem we 
have, 56 ≡ 1 (mod 18).

This hints that we will want to evaluate 117! In modulo 6, this is easy because

117! ≡ (–1)7! ≡ 1 (mod 6).

So there exists a such that 117! = 6a + 1, hence

5117!

 ≡ 56a . 5 ≡ 5 (mod 18),

This means that there exists b such that 5117!

= 18b + 5, so,

35117!

 ≡ 318b . 35 ≡ 35 ≡ 15 (mod 19).

Example 48 Show that 11101967

 ≡ 1 (mod 101968). 

Solution: Solution of this problem really shows how powerful Carmichael function is. 
First we can compute

Robert Daniel 
Carmichael

1 Mar 1879–2 May 1967 
Nationality: American
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λ (101968) = lcm(λ (21968), λ (51968))

λ (21968) = 
φ( )2

2

1968

 = 21966.

λ (51968) = ϕ (51968) = 51968 . 1
1

5
−






  = 4 . 51967.

Returning to beginning of the problem we find that

λ (101968) = lcm(21966, 4 . 51967) = 21966 . 51967.

Now

21966 . 51967 | 101967

So there exists a such that 101967 = a . λ(101968) and we are done by Carmichael 
theorem because

11101967

 = 11 1110 101967 1968

= ( )( )λ a
 ≡ 1 (mod 101968).

6.9.6 Wilson’s Theorem

Natural number n ≥ 2 is prime number if and only if (n – 1)! ≡ –1 (mod n).

Example 49 Find the remainder when 33! is divided by 37.

Solution: Notice that 37 is prime, Wilson’s theorem states that 36! ≡ –1 (mod 37), now 
for simplicity let x = 33!, then 34 . 35 . 36 . x ≡ –1 (mod 37).

We have 34 . 35 . 36 ≡ (-3)(-2)(-1) ≡ −6 (mod 37),
So –6x ≡ –1 (mod 37) ⇔ 6x ≡ 1 (mod 37),
i.e., there exists a such that 6x = 37a + 1, looking at this equation modulo 6 we find 

37a ≡ a ≡ –1 ≡ 5 (mod 6), which is to say that there exists b such that a = 6b + 5, thus

6x = 37 (6b + 5) + 1 ⇔ x = 37b + 31. ⇒ x ≡ 31(mod 37)

Example 50 What is the remainder when 10! is divided by 13?

Solution:
By Wilson’s Theorem
12! ≡ –1 (mod 13)
12! ≡ -1 + 13 (mod 13)
11! ≡ 1 (mod 13) by ‘dividing’ by 12
11! ≡ 1 + 5 × 13 (mod 13)
10! = 6 (mod 13) by ‘dividing’ by 11

6.9.7 Chinese Remainder Theorem (CRT)

Let n1, …, nr be natural numbers such that (ni, nj) = 1 for i ≠ j. The system of congruence

  x ≡ a1 (mod n1)

  x ≡ a2 (mod n2)

   

…

  x ≡ ar (mod nr)

has a unique solution in modulo n1 n2 n3 … nr.

John Wilson

6 Aug 1741–18 Oct 1793
Nationality: British
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Proof: n1 . n2 … nr = N (say). Writing N

n
N

j
j= , simultaneous solution x0 is given by

x0 ≡ a1N1x1 + a2N2x2 + … + arNrxr (mod N)

where xi is the individual solution Nixi ≡ l (mod ni). For i = 1, 2, 3, …, r.

Example 51 Find the last three digits of 1241000.

Solution:  We want to evaluate the number modulo 1000. Here we find ourselves in 
trouble, we have gcd (124, 1000) ≠ 1, so we cannot use Euler’s theorem or Carmichael’s  
theorem. But luckily Chinese remainder theorem can help us. First we write 1000 as 
product of coprime numbers 1000 = 8 . 125, now we have

1241000 ≡ 0 (mod 8),

and

1241000 ≡  (–1)1000 ≡ 1 (mod 125).
Well, what was that for? Now we have system of congruences, namely

124 0 8

124 1 125

1000

1000

≡
≡





(mod )

(mod )
.

And remember that according to Chinese remainder theorem this system of congru-
ences has unique solution in modulo 8 . 125 = 1000, which is exactly what we want! 
Notice that Chinese remainder theorem does not tell us how to find the solution, fortu-
nately it is nothing hard. From first congruence there exists ‘a’ such that 1241000 = 8a, 
so in second congruence we have

8a ≡ 1 (mod 125),

i.e., there exists b such that 8a = 125b + 1, looking at this modulo 8 we find that 3b ≡ 
1 (mod 8) ⇔ 3b ≡ 1 + 8 (mod 8) ⇔ b ≡ 3 (mod 8). This means that there exists c such 
that b = 8c + 3, thus

1241000 = 125(8c + 3) + 1 = 1000c + 376.

So the last three digits are 376.

6.9.8 Binomial Coefficient

Number 
k
n( ) , where 0 ≤ k ≤ n, n ∈  is called binomial coefficient and we have

k
n n

n k k
( ) =

− ⋅
!

( )! !
.

6.9.9 Binomial Theorem

The following expansion holds for any real numbers x, y:

( ) ( ) ,x y x y nn
i
n

i

n
n i i+ = ∈

=

−∑
0

�

Example 52 Find last three digits of 999.

Solution: We wish to find remainder when 999 is divided by 1000. Now we will write 
9 = 10 – 1 and use binomial theorem
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9 10 1 1 10 100 100099 99
1
99

2
99≡ − ≡ − + −( ) ( ). ( ). (mod ) .

Other terms in the expansion vanish because they are divisible by 1000.

Now ( )1
99  = 99 and ( )2

99  = 
99

97 2

!

! !
 = 

98 99

2

⋅
 = 4851. Thus

999 ≡ – 1 + 990 – 485100 ≡ –111 ≡ 889 (mod 1000).

Aliter: We may compute λ(1000) = 100, which is very useful to even remember. We 
must remember to check that indeed gcd(9, 1000) = 1 and by applying Carmichael’s 
Theorem we get 9100 ≡ 1 (mod 1000), i.e.,

999 ≡ 9–1 (mod 1000),

Where 9–1 is so called modular multiplicative inverse of 9 modulo 1000, i.e., we have 
9 . 9–1 ≡ 1 (mod 100). For simplicity denote 9–1 = x, we wish to find this number. The 
inverse can be generally found by noting that the congruence means that there exists a 
such that 9x – 1 = 1000a. 

Look at this equation modulo 9 to get 1000a ≡ a ≡ –1 ≡ 8 (mod 9), which is to say 
that there exists b such that a = 9b + 8, thus

9x = 1000(9b + 8) + 1 ⇔ x = 1000b + 889,

Which means

999 ≡ x ≡ 889 (mod 1000).

6.9.10 Digit Sum Characteristic Theorem

Sum of digits of a number is congruent to the number modulo 9. The same holds for 
modulo 3.

Proof: Since 10n ≡ 1 (mod 9) for all n ∈ N, any number written in decimal representa-
tion such as (anan-1an-2 … ala0)10 ≡ an+ an-1 + … + a1 + a0  (mod 9).

Example 53 All two-digit numbers from 10 to 99 are written consecutively, i.e., N 
=101112…99. Show that 32 | N. From which other two-digit number you should start so 
that N is divisible by (a) 3 (b) 32.

Solution: N is divisible by 9, if the digit sum is divisible by 9.

The digital sum of N:
The number of 1’s occurring in the digits 
from 10 to 19 = 11
and from 20 to 99 = 8.
So, total of 1’s is 11 + 8 = 19.
Similarly, No. of 2’s, 3’s,…, 9 are all equal to 19.
So, sum of all the digits = 19 (1 + 2 + 3 + … + 9)

=
× ×

= × × =
19 9 10

2
19 5 9 855

and as 9|855, 1011…99 is divisible by 9.
When the numbers start from 12, the sum of the digits become 855 - 3 = 852 (Since 

10, 11 account for the digital sum 3) and hence, is divisible by 3.
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 (a) For divisibility by 3, it could start from 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, …
 (b) For divisibility by 32 = 9 the numbers may start from any of 18, 19, 27, 28, 36, 37, 

…

Example 54 Find the remainder when 43333333 is divided by 9. 

Solution: 4333 ≡ 4 + 3 + 3 + 3 = 13 (mod 9) ≡ 4 (mod 9) 
\ 43333 ≡ 43  (mod 9) 
 ≡ 64 (mod 9) 
 ≡ 1   (mod 9)

⇒ 43333333 ≡ 1 (mod 9)

i.e., when 43333333 is divided by 9, the remainder is 1.

Example 55 Prove that among 18 consecutive three-digit numbers there is at least one 
number which is divisible by the sum of its digits.

Solution: Among 18 consecutive integers there are two numbers which are divisible 
by 9.

The sum of the digits of these two numbers must be 9, 18 or 27.
If the sum of the digits is 9, then the number is divisible by the sum of the digits, so 

there is nothing to prove.
If the sum of the digits is 27, then the three-digit numbers should be 999 = 9 × 111 

= 9 × 3 × 37 and hence, the result. Let both the numbers have 18 as the sum of their 
digits. Let those numbers be a and b with a < b.

If a is odd and sum of its digits is 18, it is divisible by 9 but not by 18. However, the 
other number b is also divisible by 9 and b should be a + 9 ⇒ b is even and sum of its 
digits is 18, and hence, b is an even number as well as divisible by 9 ⇒ b is divisible by 
18.

Example 56 Suppose δ(n) denotes digit sum of n. Find δ(δ (δ(52013))).

Solution: First repeatedly using modulo 9 yields

δ(δ(δ(52013))) ≡ δ(δ(52013)) ≡ δ(52013) ≡ 52013 (mod 9)

Thus finding 52013 in modulo 9 will help us. This can be done by finding ϕ(9) = 6. So 
by Euler’s theorem we get

52013 ≡ (56)335 . 53 ≡ 53 ≡ 8 (mod 9).

Now it suffices to realize that the sought number will probably be very small because 
digit sum of a big number is much smaller than the number. So it suffices to establish 
some upper bounds on the number sought. We can of course establish sharp bounds, 
but it is not needed for this problem, we have 52013 < 102013, so

δ(52013) < 9 . 2014 = 18126

Number less than 18126 with greatest digit sum is 9999, so

δ(δ(52013)) ≤ 9 + 9 + 9 + 9 = 36,

Again number less than or equal to 36 that has greatest digit sum is 29, thus

δ(δ(δ(52013))) ≤ 11.

But only positive number less than or equal to 11 and congruent to 8 modulo 9 is 8. 
Thus the number sought was 8.
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Build-up Your Understanding 6

 1. (a) Prove that 1001 | (3003000–1)

  (b) Prove that 13 2 370 70| ( ).+

  (c) Prove that 11 31 61 20 115⋅ ⋅ −| ( ).

  (d) Prove that 169 3 26 273 3| ( )n n+ − −  for all n ∈ . 

  (e) Prove that 19 2 32 6 2

| ( )
n+ +  for all n ∈ 0.

 2. Prove that the square of any prime number larger than 3 leaves a remainder 1 
when divided by 12.

 3.  Show that the eighth power of any number N is written in one of the forms 17m 
or 17m ± 1.

 4.  Find the remainder when 21990 is divided by 1990. [RMO, 1990]
 5. Find the remainder when 1992 is divided by 92. [INMO, 1992]
 6. Find the three last digits of 79999.
 7. What is the fifth digit from the end (i.e., the ten thousand’s digit) of the number 

55555

.
 8. Show that (1993 - 1399) is positive and divisible by 162. [RMO, 1993]

 9. Find all positive integers n for which 120|(n5 - n).

 10. Prove that for all natural number n, 
1

5

1

3

7

15
5 3n n n+ +  is a natural number.

 11. If p > 5 is prime, prove that 30|(p2 - 1) or 30|(p2 - 19).
 12. Prove that for every prime p > 7, p6 - 1 is divisible by 504.

 13. If p is a prime and a b pp p≡  (mod ),  prove that a b pp p≡  (mod ).2

 14. Let k be a positive integer. Find the largest power of 3 which divides 10k - 1.
 15. Find the smallest four consecutive positive integers such that the least is divisible 

by 4, the next by 9, the next by 25 and the greatest by 49.
 16. Solve the system of congruences simultaneously
  2x ≡ 1 (mod 5)
  3x ≡ 9 (mod 6)
  4x ≡ 1 (mod 7)
  5x ≡ 9 (mod 11)
 17. A photographer comes to take a group photograph of the students of the final 

year class in a school. He tries to arrange then in equal rows. But with 2, 3 or 4 
rows, he finds that there is one person left over each time. However, when he puts 
them into 5 equal rows, there is no such problem. What is the smallest number of 
students in the class consistent with this situation?

 18. Here is an ancient Chinese problem. A gang of 17 pirates steal a sack of gold 
coins. When they try to divide the loot equally, there are three coins left over. 
They fight over these extra coins and one pirate is killed. They try to divide the 
coins equally a second time, but now there are 10 left over. Again they fight and 
another of the gang meets an untimely end. Fortunately for the remainder of the 
gang, when they try to divide the loot, a third time an equal distribution results. 
What is the smallest number of coins they can have stolen?

 19. Let Q(n) be the sum of digits of n. Prove that Q(n) = Q(2n) implies 9|n.
 20. (a)  Take any 2222 digit number that is divisible by 9. Let the sum of its digits 

equals to a. The sum of the digits in a equals to b and the sum of the digits in 
b equals c. What does c equal to?
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  (b)  When 44444444 is written in decimal notation the sum of its digits is A. Let B 
be the sum of digits of A. Find sum of digits of B.

 21. For a given positive integer k, denote the square of the sum of its digit by f1(k) and 
fn+1(k) = f1 [fn(k)] Find the value of f1995 (2

1995).
 22. Prove the existence of a positive integer divisible by 1998, the sum of whose 

decimal digits is 1998.

 23. A composite number m that satisfies am− ≡1 1  (mod m) is called a pseudo prime 
to the base a, and if m is pseudo prime to every base a whenever gcd(a, m) = 1, 
the m is called a Carmichael number. Show that 341 is a pseudo prime to the base 
2 and 561 is a Carmichael number. In fact, they are the smallest numbers of their 
respective kind.

 24. (a) Prove that if p|((p − 1)! + 1) and p > 1, then p is prime.

  (b) Prove that ( )! (mod ( ))p p p− ≡ − + + + −1 1 1 2 1 �  if p is a prime.

  (c)  Show that (p – 2)! – 1 = pn has no solution if p is a prime > 5 and n∈�.
  (d)  Show that (n – 1)! + 1 is a power of n if and only if n = 2, 3 or 5.

  (e) If p is a prime and 0 1≤ ≤ −k p ,  prove that    k
p k p−( ) ≡ −1 1( ) (mod ).  

 25. (a)  If n is an even perfect number, then prove that n - ϕ(n) is a square. Where 
even perfect numbers are given, by 2p-1(2p - 1) where p, 2p - 1 being prime 
numbers.

  (b)  Prove that the sum of all positive integers less than or equal to n and co-prime 
to n equals n nφ( ) ./2

  (c) Find all positive integers n such that φ( ) | .n n

  (d) If φ φ( ) ( )m mn=  and n > 1, prove that n = 2 and m is odd.

  (e) For any integers a, m, prove that a a mm m m≡ −φ ( ) (mod ).

6.10 scalEs oF notation

Every natural number that we use is expressed in expanded notation in the form of 
an10n + an-110n-1 + … + a1101 + a0, where 0 ≤ ai ≤ 9 and an ≠ 0 and we can write it as 
(anan-1 … a1a0)10 and call an, an-1,…, a1, a0 as the digits of the number.

Here an means there are ‘an’10n’s in the number and so on.
Thus, we have a place value for every digit. The numbers, that we use, are also called 

number in base 10 or number in decimal system.
Bases other than 10 can also be used to represent numbers. Supposing b > 1 is the 

base, for the different place values we have different non-negative integral powers 
of b.

Thus, every natural number m can be represented in base ‘b’, b >1, b ∈  as given 
below:

m = anb
n + an–1 b

n–1 + … + a1b
1 + a0 where 0 ≤ ai ≤ b – 1 for each i = 0, 1, 2,…, n – 1 

and 1 ≤ an ≤ b - 1.

 1. Here ‘b’ is called the base for the representation.
 2. Usually, we write the above as

 (anan-1 … a1a0)b (1)
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 3. In base b system we use ‘b’ different numerals (0, 1, 2, 3, …, b – 1).
 4. Given any numbers n, (say in base 10) and ‘b’ the base in which the number n 

is to be represented, we can find the number in the form given in Eq. (1) by the 
repeated application of the rule

Dividend = Quotient × Divisor + Remainder.

 5. Base 2, base 8 and base 16 are very often used in computers and they are called 
binary, octal and hexadecimal systems, respectively.

Example 57 Express 2910 in base 2, base 3 and base 5 systems.

Solution: We can write 2910 as

( )

. . . .

( )

29 2 2 2 1

1 2 1 2 1 2 0 2 1

11101

10
4 3 2

4 3 2

2

= + + +

= + + + +

=

or                           

2 29

214 1

2 7 0

2 3 1

21 1

0 1

0

1

2

3

4

,

,

,

,
,

=

=

=

=
=

a

a

a

a

a

                ( ) ( )29 1110110 2=

(29)10 = 33 + 2

           = 1.33 + 0.32 + 0.32 + 2 

           = (1002)3

or 3 29

3 9 2

3 3 0

31 0

0 1

0

1

2

3

,

,

,

,

=

=

=

=

a

a

a

a

\  (29)10 = (1002)3

      (29)10 = 52 + 4 = 1.52 + 0.5 + 4 = (104)5

or 5 29

5 5 4

51 0

0 1

0

1

2

,

,

,

=

=

=

a

a

a

\                     (29)10 = (104)5.

Note that divisor dividend

quotient, remainder
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Example 58 Express (1042)10 in base 12 system.

Solution: In base 12 we have 12 numerals. We take them as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
A, B, where 

A = (10)10

B = (11)10

121042

12 86 10

12 7 2

0 7

0

1

2

,

,

,

=

=

=

a

a

a

\                       (1042)10 = (72A)12

Example 59 A three-digit number in base 11, when ex pressed in base 9, has its digits 
reversed. Find the number.

Solution:              (xyz)11 = (zyx)9

 112x + 11y + z = 92z + 9y + x
⇒ 120x + 2y - 80z = 0
⇒ 60x + y - 40z = 0 
⇒ 40z - 60x = y
⇒ 20(2z - 3x) = y,
So 20 | y, but as 0 ≤ y < 9, y = 0

Therefore, 2z = 3x. As 0 ≤ x, z < 9, the solutions are x = 2, z = 3 and x = 4, z = 6. 
Thus the two possible solutions are (203)11 and (406)11.

Exercise Verify that these numbers when converted to base 9 get reversed.

Example 60 Show that N = (1 2 3 4 3 2 1)b written in base b, b > 4 is a square number 
for all b.

Solution: (1 2 3 4 3 2 1)b in the expanded notation is b6 + 2b5 + 3b4 + 4b3 + 3b2 + 2b 
+ 1, b > 4.

Now, N = (b3 + b2 + b + l)2.
This is true for all real number b and hence, is true for all b > 4, b ∈ N also.

Example 61 If 10025 - 25 is written in decimal notation, find the sum of its digits.

Solution: Since 10025 = (102)25 = 1050 = 10000…0 (50 zeroes) 

10025 - 25 = 1050 - 25

                           

= −

=

10000 00 25

999 9975

50

48

...

...

( )

( )

zeroes

nines

� ��� ���

So the sum of its digits = 48 × 9 + 12 = 432 + 12 = 444.

Example 62 When the numbers from 1 to n are written in decimal notation, it is found 
that the total number of digits in writing all these is 1998. Find n.

Solution: To write the first nine single-digit number from 1 to 9, both inclusive the 
number of digits used = 9.

To write the two-digit numbers from 10 to 99, number of digits used  
= (99 - 9) × 2 = 180.
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So, the number of digits used to write numbers from 1 to 99 is 189.
Total number of digits used in writing up to n is 1998.
 The total number of digits used in writing all the three-digit numbers 
= (999 - 99) × 3 = 2700 > 1998.
So, n should be less than 999.
Number of digits used to write the three-digit numbers up to n is

1998 - 189 = 1809.

In each three-digit number, we use three digits.

So, the number of three-digit numbers in n = 1809

3
 = 603.

Therefore, n = 100 + (603 - 1) . 1 = 702.

Example 63 Find the smallest natural number n, which has the following properties:

 (a) Its decimal representation has 6 as the last digit.
 (b) When its last digit is removed and placed in front of the remaining digits, the 

resulting number is four times the original number.

Solution: If a, b, c, d, …, k are the digits of a number written in decimal system, 
abcd…lk, then

10(abcd…l) + k = abcd…lk = 100(abcd …) + (lk), etc.

Now, let the unit digit of the number be 6 and all the other digits on the left of 6 is 
taken as x, then the number is x6.

When 6 is written in front, the number becomes 6x and it is equal to 4 × x6.

Note: 6x is not 6 × x, here 6 is the extreme left digit of the number.

If 6x is a two-digit number, then 6x = 60 + x, if it is a three-digit number, then x is the 
last two digits of 6x and 6x = 600 + x, because 6 is in the hundreds place.

Similarly, if it is a four-digit number, 6x is 6000 + x and thus, 6x = 60 + x or 600 + x, 
or 6000 + x and so on, according to the number of digits in x (i.e., the place value of 6 
may be 10, 102, 103 or 104 … according to the number of digits of the given number.)

However, x6 = 10x + 6, whatever be the number of digits x has.
Thus, 4 × x6 = 4(10x + 6) = 6x
                     = 6 × 10k + x 

where k is the number of digits in x

 39x = 6 × 10k - 24 

 13x = 2 × 10k - 8.

To find the smallest value for x, we need to find the smallest power k for which 13 | (2 
× 10k - 8),
i.e., 2 × 10k ≡ 8 (mod 13) or 10k ≡ 4 (mod 13)

As   10 ≡ -3 (mod 13) 

⇒ 102 ≡ 9 (mod 13) ≡ -4 (mod 13)

⇒ 104 ≡ 16 (mod 13) ≡ 3 (mod 13)

⇒ 105 ≡ -9 (mod 13) ≡ 4 (mod 13) 

\ 13 | 2 × 105 - 8

So, x has 5 digits and is given by 
200000 8

13

199992

13

−
= = 15384.

\ The given number is 153846. 
Clearly, 615384 = 153846 × 4.
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Build-up Your Understanding 7

 1. Find all perfect squares whose base 9 representation consists only of 1’s.
 2. (a) In base 9, find the greatest perfect square of 4 digits.
  (b) In base 16, find the greatest perfect square of 4 digits.
 3. If the different letters used in the following expressions, denote uniquely a dif-

ferent digit in base 10, and if V × VEXATION = EEEEEEEEE. Find the value of 
V + E + X + A + T + I + O + N.

 4. Find the numerical value of each of the letters in the following expression
  TWO + TWO = FOUR in (a) base 10 and (b) base 7.

 5.  Let a be the integer a b
m m

= … = …111 1 1000 05
times 1zeroes

 and ��� � �� ��
-

  Prove that ab + 1 is a square integer. Express the square root of ab + 1 in the same 
form as a and b are expressed.

 6. Let n be a five digit number (whose first digit is non-zero) and let m be the four 
digit number formed from n by deleting its middle digit. Determine all n such that 

m

n
 is an integer.

 7. For which positive integral bases b is 1367631, will be a perfect cube?
 8. (a)  Find all positive integers with initial digit 6 such that the integer formed by 

deleting this ‘6’ is 
1

25
 of the original integer. 

  (b)  Show that there is no integer such that the deletion of the first digit produces 

a result which is 
1

35
 of the original digit.

 9. 
( )

( )

ab

c a

b

c
10

10 10

= 





  where (a b)10 and (c a)10 are two digit numbers in base ten 

  [i.e., a, b are the digits of the number (a b)10 and c, a are the digits of the number 

(c a)10. We get 
b

c
, by cancelling those digit ‘a’ of the numerator with the unit digit 

‘a’ of the denominator]. Find all such two digit numbers.

  For example, 
64

16

4

1
=  is the correct answer so here a = 6, b = 4, and c = 1.

  In the above problem, having found a, b, c, verify if 
aab

caa

aaab

caaa
, ,…τ  can also give 

the answer 
a

c
 by cancelling the common digits or not.

 10. If a1 a2, …, ak are the digits of the number (a1 a2 … ak)d in base d > 2, show that 
(d - 1) |(a1 a2 … ak)d if and only if (d - 1) | (a1 + a2 + … + ak).

 11. If a1 a2, …, ak are the digits of the number (a1 a2 ... ak)d in base d > 2, show that (d 
+ 1) | (a1 a2 … ak)d if and only if the difference between the sum of the odd ranked 
digits and the sum of the even ranked digits is divisible by (d + 1).

6.11 GrEatEst intEGEr Function

For a given x, an integer k such that k ≤ x < k + 1, k ∈  is called Greatest integer of x.
⎣x⎦ represents the greatest integer less than or equal to x. f (x) = ⎣x⎦ is called the greatest 
integer function or floor function.
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A related concept {x}, the fractional part of x, is defined as {x}= x - ⎣x⎦.

For example, ⎣ 3 ⎦ = 1, ⎣10⎦ = 10, ⎣-π⎦ = - 4 and ⎣-10⎦ = -10. 

{4.7} = 0.7, {3.1} = 0.1, {-7.9} = 0.1, {-6.3} = 0.7.

6.11.1 Properties of Greatest Integer Function

      (i)  ⎣x⎦ ≤ x < ⎣x⎦ + 1 and x - 1 < ⎣x⎦ ≤ x, 0 ≤ x - ⎣x⎦ < 1.

  (ii) If x ≥ 0, ⎣x⎦ = 1
1≤ ≤
∑
i x

  (iii) ⎣x + m⎦ = ⎣x⎦ + m, if m is an integer. 

   (iv) ⎣x⎦ + ⎣y⎦ ≤ ⎣x + y⎦ ≤ ⎣x⎦ + ⎣y⎦ + 1

  (v) ⎣x⎦ + ⎣-x⎦ = 
0

1

,

,

if  is an integer

otherwise

x

−




   (vi)  
x

m

x

m

 







 =







,  if m is a positive integer.

  (vii)  -⎣-x⎦ is the least integer greater than or equal to x. This is denoted as ⎡x⎤ (read 
as ‘ceiling x’). For example, ⎡2.5⎤ = 3, ⎡-2.5⎤ = -2.

(viii)  ⎣x + 0.5⎦ is the nearest integer to x. If x is midway between two integers, ⎣x + 
0.5⎦ represents the even number of the two integers.

   (ix)  The number of positive integers less than or equal to n and divisible by m is 

given by n

m






.

    (x) The number of perfect kth powers form 1 to n is nk

1



 .

    (xi)  If p is a prime number and e is the largest exponent of p such that pe || n!, 

(Read it ‘pe completely divides n!’) then e
n

pi
i

=










=

∞

∑
1

. This formula known as

Legendre formula.

Note: pe || n! ⇒ pe | n! and pe+1 | n!

Example 64 If n and k are positive integers and k > 1, prove that

n

k

n

k

n

k





+

+




≤ 





1 2
.

Solution: Let n = qk + r, 0 ≤ r < k.

Now,
n

k

qk r

k
q

r

k

n

k

qk r

k
q

r

k
=

+
= +

+
=

+ +
= +

+
; ;

1 1 1

        

2 2 2
2

2
0

n

k

qk r

k
q

r

k
r k=

+
= + ≤ <; .

Adrien-Marie Legendre

18 Sep 1752–10 Jan 1833 
Nationality: French

M06_Number Theory_C06.indd   40 8/11/2017   2:19:53 PM



Number Theory  6.41

Thus,
(i) r may be equal to k - 1, or (ii) r may be < k - 1.

If r = k - 1, we have

n

k
q

n

k
q

k

k
q





=

+




= +




= +,

1
1

2
2

2 2
2 1 1

2
1

n

k
q

k

k
q k

k






= +

−




= + > ≤





since , .

So, by adding and equating, we get 

n

k

n

k
q

n

k





+

+




= + = 





1
2 1

2

 (ii) If, r < k - 1 we have

n

k
q

n

k
q





=

+




=,

1

2
2

2
2

n

k
q

r

k
q






= +




≥ .

So, by adding, we get

n

k

n

k

n

k





+

+




≤ 





1 2

Combining (i) and (ii), we get

n

k

n

k

n

k





+

+




≤ 





1 2
.

Note: When k = 2, the above inequality holds as an equality. (verify).

Example 65 Prove that ⎣x⎦ + ⎣y⎦ ≤ ⎣x + y⎦

Solution: 
 x + y = ⎣x⎦ + ⎣y⎦ + {x} + {y} 

⇒ ⎣x + y⎦ = ⎣x⎦ + ⎣y⎦ + ⎣{x}+ {y}⎦ 

⇒ ⎣x + y⎦ ≥ ⎣x⎦ + ⎣y⎦ 

This can be generalized for n numbers: 

⎣x1⎦ + ⎣x2⎦ + … + ⎣xn⎦ ≤ ⎣x1 + x2 + … + xn⎦

Example 66 Prove that ⎣x⎦ + ⎣2x⎦ + ⎣4x⎦ + ⎣8x⎦ + ⎣16x⎦ + ⎣32x⎦ = 12345 has no solution.

Solution: 12345 ≤ x + 2x + 4x + 8x + 6x + 32x = 63x

∴ ≥ =x
12345

63
195

20

21
.

When x = 196, the L.H.S of the given equation becomes 12348 ⇒ x < 196

⇒ ≤ <195
20

21
196x .

Consider x in the interval 195
31

32
196, .







  The LHS expression of the given equation
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 =  195 + 0 + 390 + 1 + 780 + 3 + 1560 + 7 + 3120 + 15 + 6240 + 31 
 = 12342 < 12345

When x <195
31

32
,  the LHS is less than 12342.

\ For no value of x, the given equality will be satisfied.

Example 67 How many zeroes are there at the end of 2000!?

Solution: If k be the highest power of 5 and l be the highest power of 2 contained in 
2000!, then the highest power of 10 contained in 2000! is the minimum of k and l, as 
the highest power of 2 contained in any factorial is greater than the highest power of 
5 contained in it.

For example, consider 10!

10! = 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 10.

So, the highest power of 2 contained in 10! is 2 × 22 × 2 × 23 × 2 of 2, 4, 6, 8, and 10 
of the factors, i.e., 28 = 256 and the highest power of 5 in 10! is 51 × 51 of 5 and 10 
= 52 = 25.

If ⎣x⎦ denote the greatest integer less than or equal to x, then the highest power of 
5 contained in 2000! is

 2000

5

2000

5

2000

5

2000

52 3






+ 




+ 




+ + 





�
n

 (1)

where 5n ≤ 2000, for otherwise, 
2000

5
0

n






=  and hence, the sum in (1) is not an 

infinite sum.
Therefore, k = 400 + 80 + 16 + 3 + 0 + 0 … = 499.
So, the number of zeroes at the end of 2000! is 499.

Example 68 How many zeroes does 6250! end with?

Solution: We need to find the largest e such that 10e | 6250!. But as 10 = 2 × 5, this 
implies that we need to find the largest e such that 5e | 6250! (clearly a larger power of 
2 | 6250!).

But e
i

i

= 




= + + + + =

=

∞

∑ 6250

5
1250 250 50 10 2 1562

1

.

Hence, 6250! ends with 1562 zeroes.

Example 69 If n! has exactly 20 zeroes at the end, find n. How many such n are there?

Solution: If e is the maximum power of 5 in n!, then

e
n n n n n

e

n
n

i
i

i
i

= 




< 






 = + + +

⇒ <
−

=

=

∞

=

∞

∑ ∑
5 5 5 5 5

5

1
1

5
4

1
2 3

1

�

\                                                n > 4e.
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Here e is given to be 20.

\ n ≥ 80. For 80, e = 19.

Therefore, 85 is the required answer. 86, 87, 88, 89 are also valid values of n. If solu-
tion exists for this type of problem, there will be five solutions.

Example 70 Find all n such that n! ends with exactly 497 zeroes. 

Solution: If e = 497, then n ≥ 1988. (As e < 
n

4
 from previous example.)

Consider 1990.

For n = 1990, e = 495. 

For n = 1995, e = 496. But when n = 2000, e jumps to 499 as 2000 is a multiple 
of 125.
\ For no n ∈ , n! ends with exactly 497 zeroes.

Example 71 Find all n such that n! has 1998 zeroes at the end of n! 

Solution: You know that the greatest power of a > 1, a ∈ prime, dividing n is given by 

n

ai
i





=

∞

∑
1

.  (1)

But n

a

n

a
n

ai i
ii






< =

−








=

∞

=

∞

∑∑
11

1

1
 (2)

We want to find n, such that

n
i

i 5
1998

1






=

=

∞

∑

By Eq. (2) 
n

n
n

i
i 5

1

5 1 41






<

−






 =

=

∞

∑ .

So n

4
1998>  ⇒ n > 7992.

By trial and error, we take n = 7995 and then search for the correct value. If n = 
7995, then the number of zeroes at the end of 7995 is by Eq. (1)

7995

5

7995

5

1599 319 63 12 2 1995

2
+ +

= + + + + =

�

.

So true for n = 8000, we get the number of zeroes at the end of 8000! = 1600 + 320 + 
64 + 12 + 2 = 1998.
All such n = 8000, 8001, 8002, 8003, 8004

Note: Corresponding to 1997 zeroes at the end, there exist no n, as 7995! has 1995 
zeroes and the next multiple of 5, i.e., 8000 is a multiple of 125, it adds 3 more zeroes 
to 1995 given 1998 zeroes at the 9 end.
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Build-up Your Understanding 8

 1. Prove that ⎣2x⎦ - 2⎣x⎦ = 0 or 1.

 2. Prove that 2 2x y x y x y  +   ≥   +   + +  .

 3. Prove that for any positive integer n and any real x, 
nx

n
x

 




=   .

 4. For α ∈ ( , ),0 1  prove that x x  − −  =α 1  or 0 according as {x} < a  or {x} > a,
where {x} is the fractional part of x.

 5. Prove that for any positive integer n, 
n n n n n

3

2

6

4

6 2

3

6




+

+




+

+




= 



+

+




.  

 6. Find all the triples (x, y, z) of real numbers, satisfying the three equations

  
x y z x y z x y z+   +{ } = + + =   + + =200 2 200 1 200. , { } [ ] . , { }

 7. Find the number of positive integers x which satisfy: x x

99 101





= 




.

 [RMO, 2001]

 8. Find all real ‘x’ satisfying, 
1 1

2

1

3x x
x

 
+
 

= +{ } .  [RMO, 1997]

 9. For all n ∈ , prove that n n n+ +  = + 1 4 1

 10. If n x∈ ∈� � and  , prove that x x
n

x
n

x
n

n
nx  + +




+ +




+ + +

−




=  

1 2 1
� .

  (This is known as Hermits Identity)

 11. Prove that for n = 1, 2, 3, ..., 
n n n n

n
+




+

+




+

+




+

+




+ =

1

2

2

4

4

8

8

16
�

 12. Determine the number of distinct integers in the following sequence: 

  

1

1999

2

1999

3

1999

1999

1999

2 2 2 2














…







, , , , .

 13. Find the highest power of 7 dividing 1998!.
 14. How many zeroes are at the end of 1005!?
 15. Find n such that there are 300 zeroes at the end of n!?
 16. How many zeros are at the end of (55)!?
 17. Prove that n! for n > 1 cannot be a square or cube or any power of an integer.
 18. Show that the number 4! + 5! + 6! + … + 1998! is divisible by 24 but not by 25.

 19. Show that 1 3 1 1 3
2 2 1

+( ) +



 +( )





+n n
 and  and  are both divisible by 2n+1. Is 

this the highest power of 2 dividing either of the numbers?

 20. Prove that the two numbers an bn   ,  for n = 1, 2, 3, … comprise of all integers 

1, 2, 3, …, without repetition if a and b are positive irrational numbers such that 

1 1
1

a b
+ = .

 21. For positive integers n, defi ne A(n) to be 
( )!

( !)
.

2
2

n

n
 Determine the sets of positive 

integers n for which, (i) A(n) is an even number, (ii) A(n) is a multiple of 4.

Charles Hermite

24 Dec 1887–14 Jan 1901
Nationality: French
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 22. For such integer n ≥ 1, defi ne a
n

n
n =  









 . Find the number of all n in the set 

{1, 2, 3, …, 2010} for which an > an+1.    [RMO, 2010]

 23. Let n be an integer greater than prime p. Show that p divides 
n

p

n

p









 −











 [RMO, 2003]

 24. Let m, n ∈ . Prove that 
( )!( )!

! !( )!

2 2m n

m n m n+
 is an integer. [IMO, 1972]

6.12 dioPhantinE EQuations

An equation of the form f(x1, x2, x3, …, xn) = 0 where f is an n-variable function with n 
≥ 2 is called diophantine equation. If f is polynominal with integral coefficients, then 
it is called algebraic diophantine equation.

An n-tuple (a1, a2, …, an) ∈ n satisfying the equation called a solution to the 
equation.

In diophantine equation we basically concern with solvability of the equation, num-
ber of solution finite or infinite and determining all solutions.

Please observe following examples:

Example 72 Determine the integer n for which n2 + 19n + 92 is a square.

  [RMO, 1992]
Solution: Let n2 + 19n + 92 = x2, where x is a positive integer.

Now, 4(n2 + 19n + 92) = 4x2

⇒ (2n + 19)2 + 7 = 4x2

⇒ (2x)2 - (2n + 19)2 = 7
⇒ (2x + 2n + 19)(2x - 2n - 19) = 7

As x is positive both cannot be negetive.
Hence, both must be positive. There are two possibilities.
          2x + 2n + 19 = 1
   and 2x - 2n - 19 = 7
             ⇒ n = -11
     or 2x + 2n + 19 = 7
   and 2x - 2n - 19 = 1
⇒   n = -8

Hence, n = -8, -11.

Example 73 Find all unordered pairs of natural numbers, the difference of whose 
square is 45.

Solution: Let x and y be the natural numbers such that x2 - y2 = 45, where x > y.

⇒ (x - y)(x + y) = 45

So, both (x - y) and (x + y) are the divisors of 45, and x + y > x - y, where x and y are 
positive integers.

So,  x - y = 1, and x + y = 45 (l)
or x - y = 3, and x + y = 15 (2)
or x - y = 5, and x + y =  9 (3)

Diophantus of Alexandria

AD 201–215 to AD 285–299
Nationality: Greek

His epitaph: This tomb hold Dio-
phantus, Ah, what a marvel! And 
the tomb tells scientifi cally the 
measure of his life. God vouch-
safed that he should be a boy 
for the sixth part of his life; when 
a twelfth was added, his cheeks 
acquired a beard; He kindled for 
him the light of marriage after a 
seventh, and in the fifty year after 
his marriage He granted him a 
son. Alas! Late-begotten and mis-
erable child, when he had reached 
the measure of half his father’s 
life, the chill grave took him. After 
consoling his grief by this science 
of numbers for four years, he 
reached the end of his life.
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Solving (1), (2) and (3), we get
 x = 23, y = 22 and
 x = 9, y = 6 and
 x = 7, y = 2

So, the pairs of numbers satisfying the condition are (23, 22), (9, 6), (7, 2).

Example 74 Find all positive integers n for which n2 + 96 is a perfect square.

Solution: Let n2 + 96 = k2, where k ∈ . 
Then k2 - n2 = 96

(k - n)(k + n) = 96 = 31 × 25.

Clearly k > n and hence, k + n > k - n > 0.
Since 3 is the only odd factor, both k and n are integers. We must have k + n and 

k - n both to be either even or odd. (If one is odd and the other even, then k and n do 
not have integer solutions). Also both k + n and k - n cannot be odd as the product is 
given to be even. So the different possibilities for k + n, k - n are as follows.

 k - n = 2 and k + n = 48 (1)

          or k - n = 4 and k + n = 24 (2)

          or k - n = 6 and k + n = 16 (3)

          or k - n = 8 and k + n = 12 (4)

So, solving separately Eqs. (1), (2), (3) and (4), we get n = 23, 10, 5, 2.
So, there are exactly four values of n for which n2 + 96 is a perfect square.

 n = 23 gives 232 + 96 = 625 = 252

 n = 10 gives 102 + 96 = 196 = 142

 n = 5 gives 52 + 96 = 121 = 112

 n = 2 gives 22 + 96 = 100 = 102

Example 75 Find all the ordered pairs of integers (x, z) such that x3 = z3 + 721.

Solution: Since x3 - z3 = 721

⇒ x3 - z3 = (x - z)(x2 + xz + z2) = 721

For integers x, z; x2 + xz + z2 > 0
⇒ x - z > 0.

So (x - z)(x2 + xz + z2) = 721 = 1 × 721

= 7 × 103 = 103 × 7 = 721 × 1.

Case 1: x - z = 1 ⇒ x = 1 + z
and x2 + xz + z2 = (1 + z)2 + (1 + z)z + z2 = 721

⇒ 3z2 + 3z - 720 = 0

⇒ z2 + z - 240 = 0

⇒ (z + 16)(z - 15) = 0

⇒  z = -16 or z = 15.

Solving, we get

x = -15 or 16.

So (-15, -16) and (16, 15) are two of the ordered pairs.
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Case 2: x - z = 7 or x = 7 - z

and x2 + xz + z2 = 103

⇒ (7 + z)2 + (7 + z)z + z2 = 103

⇒ 3z2 + 21z - 54 = 0

⇒ z2 + 7z - 18 = 0

⇒ (z + 9)(z - 2) = 0

⇒ z = -9 or z = 2.

So, the corresponding values of x are -2 and 9.
So, the other ordered pairs are (-2, -9) and (9, 2).
Corresponding to x - z = 103 and x - z = 721, the values are imaginary and hence, 

there are exactly four ordered pairs of integers (-15, -16), (16, 15), (-2, -9) and 
(9, 2), satisfying the equation x3 = z3 + 721.

Example 76 Let d be any positive integer not equal to 2, 5 or 13. Show that one can 
find distinct a, b in the set {2, 5, 13, d} such that ab -1 is not a square. [IMO, 1986]

Solution: Here we should show that there does not exist any positive integer d, which 
makes (2d - 1), (5d - 1), (13d - 1) to be a square number simultaneously.

Assuming the contrary, 

 2d - 1 = x2 

 5d - 1 = y2

 13d - 1 = z2, 

where x, y and z are positive integers, x2 = 2d - 1 is an odd number, ⇒ x is odd ⇒ x2 
≡ 1 (mod 8).

⇒ 2d - 1 ≡ 1 (mod 8)
⇒ 2d ≡ 2 (mod 8) ⇒ d ≡ 1(mod 4)
hence, d must be odd. Hence, y and z are even.
Now,                                  z2 -  y2 = 8d

⇒ (z - y)(z + y) = 8d.

Therefore, either (z - y) or (z + y) is divisible by 4.
If z - y is divisible by 4, then z + y = (z - y) + 2y is also divisible by 4 because (z - y) 

and 2y are divisible by 4.
Similarly, if z + y is divisible by 4, then z - y = (z + y) - 2y is also divisible by 4.
Thus, (z - y)(z + y) is divisible by 4 × 4 = 16.
Thus, 16 | 8d, where d is an odd number.
This is a contradiction and hence, (2d - 1), (5d - 1) and (13d - 1) cannot simultane-

ously be square integers.

Example 77 Find all the positive integers x, y, and z satisfying

x y z xyzy z xz x y⋅ ⋅ = 5 .

Solution: x, y, and z are integers and 5 is a prime number and given equation is 

x y z xyzy z xz x y⋅ ⋅ = 5 .

Dividing both sides of the equation by xyz

x y zy z xz x y− − −⋅ ⋅ =1 1 1 5
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So, the different possibilities are

x

y

z

x

y

z

x

y

y

z

x

y

z

x

y

z

z

x

y

z

x

y

z

x

−

−

−

−

−

−

−

−

=

=

=

=

=

=

=1

1

1

1

1

1

1

1

5

1

1

1

5

1

1

or or ==

=−

1

51zx y

Taking the first column

x = 5, yz - 1 = 1; yz = 2, y = 2, and z = 1 

and these values are satisfying the other expressions in the first column.
Similarly, from the second column, we get y = 5, z = 2, and x = 1 and from the third 

column, we get z = 5, x = 2, and y = 1.

⇒ (x, y, z) ≡ (5, 2, 1), (2, 1, 5), (1, 5, 2)

Example 78 Find all pairs of integers x, y, such that (xy - 1)2 = (x + 1)2 + (y + 1)2. 

Solution: We have, (xy - 1)2 = (x + l)2 + (y + l)2

⇒ (xy - l)2 - (x + l)2 = (y + l)2

⇒ (xy - x - 2)(xy + x) = (y + l)2

⇒ x(xy - x - 2)(y + 1) = (y + l)2 (1)

⇒ (y + l)[x(xy - x - 2) - (y + 1)] = 0 (2)

If y = -1, then x takes all the values from the set of integers.
Similarly, we also get

 (x + l) [y(xy - y - 2) - (x + 1)] = 0 (3)

If x = -1, then y takes all the values from the set of  integers. 

If x ≠ -1, y ≠ -1, then from Eq. (1)

x(xy - x - 2)( y + 1) = (y + l)2 

⇒ x(xy - x - 2) = (y + 1) ( \ y ≠ -1)

⇒ x2y - x2 - 2x - y - 1 = 0
⇒ y(x - l)(x + 1) = (x + l)2

Since x ≠ -1, we have y(x - 1) = (x + 1) 

⇒ =
+
−

= +
−

⇒ − ⇒ − = ± ±

y
x

x x
x x

1

1
1

2

1
1 2 1 1 2( )| ,

⇒ x = 0, 2, -1, 3
Now, x = 0 ⇒ y = -1

x = 2 ⇒ y = 3
x = 3 ⇒ y = 2

Hence, the solution set is (3, 2), (2, 3), (x, -1), (-1, y).

Example 79 Find all integral solutions of x2 - 3y2 = -1. 

Solution: We have, x2 - 3y2 = -1 
⇒ x2 = 3y2 - 1 ≡ -1 (mod 3)
 ≡ 2 (mod 3)
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But, for any x ∈ Z, x2 ≡ 0 (mod 3), or x2 ≡ 1 (mod 3)

And hence, there is no solution for the given equation.

Example 80 Show that 15x2- 7y2 = 9 has no integral  solutions. 

Solution: Since the RHS is odd, x and y must be opposite parity (i.e., one even and the 
other odd). As 3 | 15 and 3 | 9, 3 must divide 7y2 ⇒ 3 | y.

\ y = 3y1

Substituting and simplifying, we get 5 21 32
1
2x y− = .   

Again, 3 | 5x2, therefore, x = 3x1 leading to the new  equation

15 7 11
2

1
2x y− =

Take mod 3 of the equation, we get 

0 - y1
2  ≡ 1 mod 3

or y1
2  ≡ -1 (mod 3)

But for any number n, n2 ≡ 0, 1 mod 3 which is a contradiction.

Therefore, 15 7 11
2

1
2x y= +

 
has no solution in integers. 

Hence, the given equation has no integral solution.

Example 81 Show that the quadratic equation x2 + 7x - 14(q2 + 1) = 0, where q is an 
integer, has no integral root.

Solution: Assume its contrary that n be an integer root of x2 + 7x - 14(q2 + 1) = 0.

Then, n2 + 7n - 14(q2 + 1) = 0 (1)

⇒ n2 = - 7(n + 2q2 + 2)

⇒ 7 | n2 and hence, 7 | n as 7 is a prime number.

Let,   n = 7n1.
Then, Eq. (1) can be written as

 49 49 14 11
2

1
2n n q+ = +( )

⇒          7 7 2 11
2

1
2n n q+ = +( )

So, 7 | 2(q2 + 1) and hence, 7 | (q2 + 1)

⇒ q2 + 1 ≡ 0(mod 7)

q2 ≡ 6(mod 7)
As q = 0, ±1, ±2, ±3(mod 7)
q2 = 0, 1, 4, 2(mod 7), respectively.
Hence, q2 ≡ 6(mod 7) for any integer.
Therefore, there exists no integral root for the given quadratic equation.

Example 82 Find all the integral solutions of x3 + 5y3 + 25z3 - 15xyz = 0.

Solution: We shall use the identity

a b c abc a b c a b b c c a3 3 3 2 2 23
1

2
+ + − = + + − + − + −( )[( ) ( ) ( ) ]

Writing a = x, b = 51/3y, c = 52/3z in the given equation, it can be written as

x3 + (51/3y)3 + (52/3z)3 - 3 × x × 51/3y × 52/3z = 0
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∴ + +
1

2
5 51 3 2 3( )/ /x y z  × [(x - 51/3y)2 + (51/3 y - 52/3z)2 + (52/3z - x)2] = 0

⇒ (x + 51/3y + 52/3z) = 0

or       [(x - 51/3y)2 + (51/3y - 52/3z)2 + (52/3z - x)2] = 0.

If x + 51/3y + 52/3z = 0, then 51/3y + 52/3z = -x.
Clearly, the left-hand side is irrational, when y and z are integers other than zero, 

and the right-hand side is always an integer.
So, x = y = z = 0 is a solution.
If (x - 51/3y)2 + (51/3y - 52/3z)2 + (52/3z - x)2 = 0, then x = 51/3y, y = 51/3z and x = 52/3z.
Again, this is possible only when x = y = z = 0 as we need integer values for x, y, and z.

Aliter: Number theoretic solution

x3 + 5y3 + 25z3 - 15xyz = 0

⇒ x3 = 5(3xyz - y3 - 5z3) (1)

⇒ 5 | x3 and hence, 5 | x

Let, x = 5x1, then x3 = 125x3 
1

so that the equation becomes

y3 = 5x1yz - 25x1
3 - 5z3

⇒ 5 | y and let y = 5y1

Again, the equation becomes z3 = 15zx1y1 - 5x1
3 - 25y1

3

⇒ 5 | z and taking z = 5z1.

We get,

         x3 
1 + 5y1

 3 + 25z1
 3 - 15x1y1z1 = 0 (2)

This implies that if (x, y, and z) is an integral solution, then x y z

5 5 5
, ,and







  is also an 

integral solution to Eq. (1).

Arguing in the same way, we find

x
x

y
y

z
z

2
1

2
1

2
1

5 5 5
= = =, ,

or x
x

y
y

z
z

2 2 2 2 2 25 5 5
= = =, ,

is also an integral solution and thus, by induction method, we get

x
x

y
y

z
z

n n n n n n
= = =

5 5 5
, ,

is an integral solution for all n ≥ 0.
This means that x, y, and z are multiples of 5n, for all n ∈ N.
This is possible only when x, y, and z are all zero.

Example 83 Find all integers values of ‘a’ such that the quadratic expressions (x + a)
(x + 1991) + 1 can be factored as (x + b)(x + c), where b and c are integers.
  [RMO, 1991]
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Solution: (x + a)(x + 1991) + 1 = (x + b)(x + c)

⇒ 1991 + a = b + c

and 1991a + 1 = bc

\ (b - c)2 = (b + c)2 - 4bc

 = (1991 + a)2 - 4(1991a + 1)

= + − × −( )1991 4 1991 42a a

 = (1991 - a)2 - 4
or (1991 - a)2 - (b - c)2 = 4.

If the difference between two perfect squares is 4, then one of them is 4 and the other 
is zero. (Prove this)

Therefore, 1991 - a = ±2, (b - c)2 = 0

⇒ a = 1991 + 2 = 1993 and b = c
or a = 1991 - 2 = 1989 and b = c.

So, the only two values of a are 1993 and 1989.

Example 84 Find all the integral solutions of y2 = 1 + x + x2.

Solution: If x > 0, then x2 < x2 + 1 + x < x2 + 2x + 1 = (x + 1)2

So x2 + x + 1 lies between the two consecutive square integers and hence, cannot be a 
square.

If x = 0, y2 = 1 + 0 + 0 = 1 is a square number, the solutions in this case are (0, 1), 
(0, -1).

Again if x < -1, then x2 > x2 + x + 1 > x2 + 2x + 1, and hence, there exist no solution.
For x = -1, we have

y2 = 1 - 1 + (-1)2 = 1 

\ y = ±1.

for x ∈ (-1, 0), x2 + x + 1 ∈ 
3

4
1, ,







  hence no such y. 

Thus, the only integral solutions are (0, 1), (0, -1), (-1, 1), (-1, -1).

Example 85 Find all integers x for which x4 + x3 + x2 + x + 1 is a perfect square.

Solution: If x4 + x3 + x2 + x + 1 is a perfect square, then let

y2 = x4 + x3 + x2 + x + 1.

consider x
x

x x
x

x x x x x x

2
2

4 3
2

4 3 2 2

2 4

1
3

4
1

+





 = + +

= + + + + − + +







== − + +y x x2 21

4
3 4 4( )

As the discriminant of 3x2 + 4x + 4 is less than 0, so 3x2 + 4x + 4 is always greater 
than zero.

Thus,

x
x

y2
2

2

2
+






 <  or x

x
y2

2
+ <
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But, x
x

x x2

2

1

2
+ = +






  is non-negative for all x ∈  

\                                     x
x

x
x

y2 2

2 2
+ = + <  

If x is even, then

 
y x

x
≥ + +2

2
1

⇒ ≥ + + + + +y x x x x x2 4 3 2 21
5

4
= +y x2 25

4
Not possible, if x ≠ 0. x = 0 is the only solution when x is even.

If x is odd, then x
x2

2

1

2
+ + is an integer.

So,  y x
x

≥ +





 +

2

2

1

2

In this case, y x x x x
x x2 4 3 2

2

1
4 2

3

2
≥ + + + + + − −











that is, y y
x x

y x x2 2
2

2 2

4 2

3

4

1

4
2 3≥ + − −









 = + − −( )

hence, 
1

4
2 3 02( )x x− − ≤

⇒ x2 - 2x - 3 ≤ 0

⇒ (x - 3)(x + 1) ≤ 0

\  - 1 ≤ x ≤ 3

The odd integral values of x are -1, 1 and 3 of which 1 does not give a perfect square. 
Hence, there are exactly 3 integral values of x, namely, 0, -1 and 3, for which the 

expression is a perfect square.

Aliter: y2 = x4 + x3 + x2 + x + 1, (1)

obviously x = 0 ⇒ y = ±1

Let x ≠ 0

Now, 4 4 4 4 4 4 2 3 4 42 4 3 2 2 2 2y x x x x x x x x= + + + + = + + + +( )

As 3 4 4 0 4 22 2 2 2x x x y x x+ + > ∀ ∈ ⇒ > +� ( )

Also ( ) ( ) ( )2 3 4 4 2 8 4 4 2 22 2 2 2 2 2 2 2x x x x x x x x x x+ + + + < + + + + = + +

⇒ < + +

+ < < + + ⇒ = + +

4 2 2

2 4 2 2 4 2 1

2 2 2

2 2 2 2 2 2 2 2

y x x

x x y x x y x x

( )

( ) ( ) ( ) .As 

Now solving it with Eq. (1) we get x = 1, 3.

Example 86 Find all solutions in positive integers of the equation

1 1 1 7

15x y z
+ + =
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Solution: Without loss of generality, let us assume that x ≤ y ≤ z.

Then  
1 1 1

x y z
≥ ≥  

\ 
1 1 1 1 3

x x y z x
< + + ≤

\ 1 7

15

3 15

7

45

7x x
x< ⇒ <.≤ ≤

\ 3 6≤ ≤x .τ

Hence, x can take values 3, 4, 5 or 6 only. 

Case 1: x = 3, 
1 1 7

15

1

3

2

15y z
+ = − =  

1 1 1 2 1 2

15

2 15

2
15

y y z y y y
y< + ≤ < ≤ ⇒ < ≤and

\ 8 ≤ y ≤ 15

Also 
1 2

15

1

z y
= −

⇒ =
−

z
y

y

15

2 15
.

For y = 8, 9, 10, 12 and 15 we get z = 120, 45, 30, 20 and 15 respectively. For other 
values of y, z is not integer. Thus, the solutions when x = 3 are (3, 8, 120), (3, 9, 45), 
(3, 10, 30), (3, 12, 20) and (3, 15, 15). Similarly for x = 4, we have (4, 5, 60), (4, 6, 20) 
and x = 5 we have (5, 5, 15), (5, 6, 10). For x = 6 no solution.

Example 87 For any positive integer n, let s(n) denote the number of ordered pairs 

(x, y) of positive integers for which
1 1 1

x y n
+ = .

For instance if n = 2, we have s(n) = 3.

For               
1 1 1

2x y
+ =

⇒ + = + = + =
1

4

1

4

1

2

1

3

1

6

1

2

1

6

1

3

1

2
, ,

thus the three ordered pairs are (4, 4), (3, 6), (6, 3) and hence, s(2) = 3. Determine the 
set of positive integers n for which s(n) = 5.

Solution: Let us consider the general case

1 1 1

x y n
+ = .

Here both x and y are greater than n and let

x = n + p and y = n + q.

Therefore, 1 1 1

( ) ( )n p n q n+
+

+
=

⇒ n(n + p) + n(n + q) = (n + p)(n + q) 
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⇒ n (2n + p + q) = n2 + n(p + q) + pq

⇒ n2 = pq.

Here, s(n) = the number of p′s (or q′s) such that n2 = pq and it is easily seen that p 
ranges over the divisors of n2.

Thus s(n) = the number of divisors of n2 = t(n2).
To find n such that s(n) = 5, we note that t(n2) = 5 and 5 is a prime number.

\ n can have only one prime factor (say) p and n = pl (say). 
\ t( p2l) = 2l + 1 = 5

or, l = 2.
The possible values for n such that s(n) = 5 is all squares of primes.

Example 88 The sum of several consecutive positive integers is equal to 1000. Find 
the numbers.

Solution: Let x + (x + 1) + … + (x + (n - 1)) = 1000 (1)

We have to find n and x, hence, the numbers that add up to 1000.
From Eq (1), we have

nx + 1 + 2 + … + (n - 1) = 1000, x, n ∈ , n > 1

⇒ +
−

= + − =nx
n n n

x n
( )

( )
1

2 2
2 1 1000

⇒ + − = = ×

⇒ ×

< + −

n x n

n

n n x n

( ) ( )

( ). ( )

(

2 1 2000 2 5 1

2 5 2

2

4 3

4 3

2

|

Also      11 2000

45 3

)

( )

=
⇒ <n

Case 1: If n is odd, then from (2) and (3)

n = 5, 52

If n = 5, then 2x + 4 = 24 × 52 = 400   (From (1))
⇒ x = 198.

So, in this case the numbers are 198, 199, 200, 201 and 202.

If n = 52 = 25, then 2x + 24 = 24 × 5 = 80 (From (1))

                                     ⇒ x = 28.

So the numbers are 28, 29, …, 52.

Case 2: If n is even, then from (1) n must be divisible by 16 as 2x + n – 1 will be odd.
So, n = 16 (as any other multiple of 16 which satisfies Eq (2) exceeds 45)

\ 16(2x + 15) = 24 × 53

⇒ 2x + 15 = 53 = 125

⇒ 2x = 110  ⇒ x = 55.

So, the consecutive numbers in this case are 55, 56, …, 70.

Example 89 Determine all non-negative integral pairs (x, y) for which (xy - 7)2 = x2 + y2.

Solution: (xy - 7)2 = x2 + y2 is a symmetric equation in x, y. So, whenever (a, b) is a 
solution, (b, a) is also a solution.
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Again, if (a, a) is a solution, then

 (a2 - 7)2 = 2a2

⇒ a4 - 14a2 + 49 = 0

⇒ D = 256 - 196 = 60

is not a perfect square and hence, a is irrational.
So, we will find all solutions (x, y) for which 0 ≤ x < y.

 (xy - 7)2 = x2 + y2 

⇒ x2y2 - 14xy + 49 = x2 + y2 (1)

Dividing Eq. (1) by y2, both the sides we get

x
x

y y

x

y
2

2

2

2
14

49
1= − + +

or < 14 1 + 1  + 1

as we have assumed  <

2x
x

y

x

y

x

2

2

14 1< +








 + ⋅

  .y

⇒ x2 < 16, 

\ x < 4.

It means x can take the values 0, 1, 2 and 3.

x = 0 ⇒ y = 7
x = 1 ⇒ (y - 7)2 = 1 + y2 

 ⇒ -14y = -48

⇒ =y
48

14
, not an integer. 

x = 2 ⇒ (2y - 7)2 - y2 + 4
 ⇒ 3y2 - 28y + 45 = 0
 ⇒ y is irrational because 282 - 4 × 45 is not a perfect square.

x = 3 ⇒ (3y - 7)2 = y2 + 9
 ⇒ 8y2 - 42y + 40 = 0
 ⇒ 4y2 - 21y + 20 = 0
 ⇒ (y - 4)(4y - 5) = 0

 ⇒ y = 4 or y = 5

4
.

Neglecting y =
5

4
,  we get the following pairs (0, 7), (7, 0), (3, 4) and (4, 3) to be the 

only solutions.

Example 90 Find all integers x, y satisfying (x - y)2 + 2y2 = 27.

Solution:  (x - y)2, 2y2 > 0 and since, 2y2 is even, (x - y)2 is odd and hence, (x - y) 
should be odd.

So, the different possibilities for (x - y)2 and y2 are (1, 13), (9, 9), (25, 1) correspond-
ing to y2 = 13. There is no solution as y is an integer. So, taking the other two-ordered 
pairs, we have

M06_Number Theory_C06.indd   55 8/11/2017   2:20:05 PM



6.56  Chapter 6

  x - y = ±3, y = ±3 (1)

 x - y = ±5, y = ±1 (2)

Solving the systems given in (1), we get: (0, 3), (6, 3), (0, -3), (-6, -3).
Solving the systems given in (2), we get: (6, 1), (- 4, 1), (-6, -1), (4, -1).

Example 91 Solve the following systems of equations in natural numbers:

a3 - b3 - c3 = 3abc; a2 = 2(b + c).

Solution: Since, a, b and c are positive integers, a3 - b3 - c3 = 3abc
gives a3 > (b3 + c3) and hence, a3 > b3 also a3 > c3

or a > b and a > c

⇒ 2a > (b + c)

⇒ 4a > 2(b + c) = a2

⇒ 4 > a
or a < 4. But, from second equation, a2 is even and hence, a is even numbers.

So, a = 2. But, b < a and c < a gives b = 1 and c = 1.
The only solution is a = 2, b = c = 1, which satisfied the given system.

Aliter: a3 - b3 - c3 - 3abc = 0

⇒ (a - b - c)(a2 + b2 + c2 + ab - bc + ac) = 0

Now, a2 + b2 + c2 + ab - bc + ac = 
1

2
02 2 2[( ) ( ) ( ) ]a b b c c a+ + − + ≠

⇒ b + c = a

⇒ a2 = 2a

⇒ a = 2

⇒ b = c = 1.

Example 92 A leaf is torn from a paperback novel. The sum of the remaining pages is 
15,000. What are the page numbers on the torn leaf? [RMO, 1994]

Solution: Let the number of pages in the novel be n. Since, the number of pages after 
a leaf is torn is 15,000, the sum of the numbers on all the pages must exceed 15,000.

i.e.,  
n n( )

,
+

>
1

2
15 000

⇒ n(n + 1) > 30,000

\ (n + 1)2 > n(n + 1) > 30,000 > 29929 = 1732

⇒ (n + 1) > 173
⇒ n > 172 (1)

The sum of the numbers on the page torn should be less than or equal to  
(n - 1) + n = 2n - 1.

Hence, (1 + 2 + … + n) - (2n - 1) ≤ 15,000.

⇒ n(n + 1) - 2(2n - 1) ≤ 30,000

⇒ n2 - 3n + 2 ≤ 30,000

⇒ (n - 2)(n - 1) ≤ 30,000

⇒ (n - 2)2 < (n - 2)(n - 1) ≤ 30,000 < 30276 = 1742

⇒ (n - 2) < 174

⇒ n < 176.  
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By Eq. (1) and (2), we get
172 < n < 176.

So, n could be one of 173, 174 or 175.
If n = 173, then

n n( )
,

+
=

×
=

1

2

173 174

2
15 051

Thus, the sum of the numbers on the torn pages = 15,015 - 15,000 = 51, and this 
should be x + (x + 1) = 2x + 1 = 51.

So, the page numbers on the torn pages =
−

=
51 1

2
25  and 

51 1

2
26

+
= .

If n = 174, then
n n( )

, .
+

=
×

=
1

2

174 175

2
15 225

So, the sum of the numbers on the torn pages = 15,225 - 15,000 = 225, and in this case, 

the numbers on torn pages = 
225 1

2
112

−
= and

225 1

2
113

+
= .

But, actually the smaller number on the torn page should be odd and hence, though 
it is theoretically correct, but not acceptable in reality.

If n = 175, then
n n( )

,
+

=
×

=
1

2

175 176

2
15 400  

and the sum of the numbers on the torn page is 400 = (15,400 - 15,000) which is impos-
sible, because the sum should be an odd number. Hence, this value of n also should be 
rejected.

So, the numbers on the torn page should be 25 and 26 and the number of pages 
is 173.

Example 93 Find all primes p for which the quotient 
2 11p

p

− −
 is a square.

  [INMO, 1995]

Solution: If p = 2, 
2 1 1

2

1p

p

− −
= is not even an integer.

Let p be a prime of the form 4k + 1.

Then, if 2 1 2 1

4 1

1 4
2

p k

p k
m

− −
=

−
+

= for some odd integer m then 24k - 1 = (4k + 1)m2.

Since m2 is an odd number, m2 ≡ 1 (mod 4) as all odd squares leave a remainder 1 
when divided by 4 and hence, of the form 4l + 1 (say) then

24k - 1 = (4k + 1)(4l + 1) = 1 (mod 4)

But the left hand side

 24k - 1 = (16k - 1) ≡ -1 (mod 4)
 ≡ 3 (mod 4)

and it is a contradiction and hence, p cannot be of the form 4k + 1.
So, let p be of the form 4k + 3.
Firstly, let us take k = 0, then p = 3

So, 2 1

3

2 1

3
1

1 2p− −
=

−
=  is a square. 

Therefore, p = 3 is one of the solutions.
Let p be 4k + 3 with k > 0.
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2p-1 - 1 = 24k+2 - 1 = (22k+1 - 1)(22k+1 + 1) and 22k+1 - 1 and 22k + 1 + 1 being con-
secutive odd numbers are relatively prime.
So, 2p-1 - 1 = pm2

⇒ (22k+1 - 1)(22k+1 + 1) = (4k + 3)m2 = pm2

So, pm2 could be written as pu2 × v2 where pu2 and v2 are relatively prime.

Case 1: 22k+1 - 1 = pu2 and 22k+1 + 1 = v2

⇒ 22k+1 = v2 - 1 = (v + 1)(v - 1).

So, (v + 1) and (v - 1) are both powers of 2.
Two powers of 2 differ by 2 only if they are 2 and 22. In all other cases, the differ-

ence will be greater than 2.
So, v - 1 = 21 = 2

v + 1 = 22 = 4 ⇒ v = 3
i.e., 22k+1 = 23 = 8.

Hence, k = 1 and p = 4k + 3 = 7.
Therefore, the only other possibility is p = 7.

Thus for p
p

p

=
−

=
−

= =
− −

7
2 1 2 1

7

63

7
9

1 7 1

,  which is a perfect square.

Case 2: 22k+1 - 1 = v2 and 22k+1 + 1 = pu2

As v = odd and k > 1

22k+1 - 1 = v2 ⇒ -1 ≡ 1 (mod 8) Contradiction, not possible.
Thus the only primes satisfying the given conditions are 3 and 7.

Build-up Your Understanding 9

 1. Show that there is no integral solution for the equation 19x3 - 84y2 = 1984.
 2. Prove that the equation 4x3 - 7y3 = 2010 has no solution in integers.
 3. Show that there is no integral solution for the equation x4 - 3y4 = 1994.
 4. Show that x2 + 3xy - 2y2 = 1992 has no solutions in integers.
 5. Show that x2 + 9xy + 4y2 = 1995 has no solutions in integers.
 6. Show that x4 + y4 - z4 = 1993 has no solutions in integers. 
 7. Show that, there are no integers (m, n) such that, m2 + (m + 1)2 = n4 + (n + 1)4.
 8. Determine all non-negative integral solutions (n1, n2,…, n14) if any apart from 

permutations of the Diophantine equation n n n1
4

2
4

14
4 1599+ + + =� .

 9. Prove that the equation x3 - y3 = xy + 1995 has no solution in integers.
 10. Determine all integral solutions of a2 + b2 + c2 = a2b2.
   [USA MO, 1976]

 11. Discover all integers, which can be represented in the form 
( )

.
x y z

xyz

+ + 2

 12. Find all positive integers x such that x(x + 180) is a square.
 13. Find all positive integers n < 200, such that n2 + (n + l)2 is a perfect square.
 14. Find all positive integer ‘n’ such that, (n + 9), (16n + 9), (27n + 9) are all perfect 

squares.
 15. a, b, c are distinct digits. Find all (a, b, c) such that, the 3 digit numbers abc and 

cba are both divisible by 7.
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 16. Prove that the equation x2 + y2 + 2xy - mx - my - m - 1 = 0, m is a positive integer, 
has exactly m solutions (x, y) for which x and y are both positive integers.

 17. The equation a2 + b2 + c2 + d2 = abcd  has the solution (a, b, c, d) = (2, 2, 2, 2). 
Find infinitely many other solutions in positive integers.

 18. In a book with page numbers 1 to 100, some pages are torn off. The sum of the 
numbers on the remaining pages is 4949. How many pages were torn off? 

 [RMO, 2009]

 19. Find all triplets (x, y, z) of positive integers such that 
1 1 1 4

5x y z
+ + = .

 20. Find all solutions of x3 + 2y3 = 4z3 where x, y, z are integers.
 21. Find all integer solution to x2 + 615 = 2n.
 22. Find all integers x, y, z such that 2x + 3y = z2. [INMO, 1992]
 23. Find integers x, y, z such that, x2z + y2z + 4xy = 40 and x2 + y2 + xyz = 20.
 24. Find all positive integer solution of the equation (2x - 1)3 + 16 = y4.
 25. Find all the triples of positive integers (x, y, z) satisfying 2x + 2y + 2z = 2336.
 26. Find all pairs(x, y), where (x, y) are integers, such that x3 + 113 = y3.
 27. Find all integers (x, y, z) such that x2 + y2 = z2, and that (x, y) = (y, z) = (x, z) = 1.
 28. Find the primitive solutions of the equation x2 + 2y2 = z2 in integers.
 29. Find the primitive solution of the equation x2 + 3y2 = z2 in integers.

Solved Problems

Problem 1 What is the three digit number that is equal to 4 times the product of its 
digits?

Solution:

100a + 10b + c = 4abc ⇒ c = 2k, 1 ≤ k ≤ 4 

Then 5(10a + b) = k(4ab – 1) 

⇒ 5|4ab – 1 ⇒ 4ab - 1 ≡ 0 mod 5 ⇒ 4ab ≡ 1 mod 5 ⇒ -ab = 1 mod 5
⇒ ab ≡ 4 (mod)
⇒ There are 16 possible values of (a, b) = (1, 4), (1, 9), (2, 2), (2, 7), (3, 3), (3, 
8), (4, 1), (4, 6), (6, 4), (6, 9), (7, 2), (7, 7), (8, 3), (8, 8), (9, 1), (9, 6).

Out of which only a = 3, b = 8 gives c = 4 which satisfies the given constrains and 
sought number is 384.

Problem 2 On New Year’s day, few kids get together and decide to play a simple math 
game. They write the year 2016 on the blackboard. Every minute they decide to do the 
following: the written number is erased and the product of its digits plus 12 is written 
on its place. What number will be written on the blackboard after 24 hours?

Solution:  The pattern just cycles 12, 14, 16, 18, 20, 12, 14, 16, … with a period of 5 
and 12 being written on the first minute. 

Since 24(60) ≡ 5 (mod 5), the number written on the 24th hour will be the 5th 
number in the sequence, which is 20.

Problem 3 Find the product of

101 × 10001 × 100000001 × … × (1000…01) 

where the last factor has 27 - 1 zeroes between the ones. Find the number of ones in 
the product.
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Solution: Since 101 × 10001 × … × 1000…01

= + + +

= + + +

( )( ) ( )

( )( ) ( ).

10 1 10 1 10 1

10 1 10 1 10 1

2 2 2

2 4 128

1 2 7�

�

Multiply and divide by 102 - 1

( )( )

( )
( )( ) ( )

( )
(

10 1 10 1

10 1
10 1 10 1 10 1

1

10 1
10

2 2

2
4 8 2

2
4

7− +
−

+ + +

=
−

−

�

11 10 1 10 1 10 1

1

10 1
10 1 10 1 10 1

4 8 2

2
8 8 2

7

7

)( )( ) ( )

( )
( )( ) ( )

+ + +

=
−

− + +

�

�

=
−

− =
−

−

=
− +

1

10 1
10 1

10 1

10 1

10 1 10 10

2
2

2 128

2

2 2 127 2

8

( )
( )

[( ) ]

( )[( ) ( )1126 2

2 127 2 126

254 252 2

10 1

99

10 10 1

10 10 10 1

+ + +

= + + +

= + + + +

�

�

�

]

( ) ( ) .

1128

101010 101

terms
� ����� �����

= ... .

(There are 128, 1’s alternating zeroes and there are 127 zeroes in between.)

Problem 4 Show that there exist no rational numbers a, b, c, d such that

( ) ( ) .a b c d+ + + = +2 2 7 5 2100 100

Solution: Any number in the form ( ) ,a b p n+ where p is prime and a and b 

are rational will again be in the form α β+ p where a and b are rational. 

and ( )a b p p a b p pn n+ = + ⇔ − = −α β α β( ) This can be proved by induc-
tion on natural number.

So ( )a b a b+ = +2 2100
1 1  (say) 

then ( ) ,a b a b− = −2 2100
1 1

where both a b1 1 2+ and a b1 1 2− are both greater than zero, as on LHS the power 
is an even number 100.

Similarly, ( )c d c d+ = + >2 2 0100
1 1

and ( ) .c d c d− = − >2 2 0100
1 1

Now,  ( ) ( )

( ) ( )

( ) ( )

a b c d

a b c d

a c b d

+ + +

= + + +

= + + +

= +

2 2

2 2

2

7 5

100 100

1 1 1 1

1 1 1 1

22.

 (1)
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Also ( ) ( )

( ) ( )

a b c d

a c b d

− + −

= + − + >

2 2

2 0

100 100

1 1 1 1

  

 (2)

and taking conjugate of Eq. (1), we get

    ( ) ( ) .a c b d1 1 1 1 2 7 5 2 0+ − + = − <  (3)

But this is a contradiction to Eq. (2) and hence, there do not exist rational numbers a, 
b, c, d to satisfy the given equation.

Problem 5 Prove that log32 is irrational.

Solution: If possible, let log32 be a rational number p

q
,  where p, q are integers, q ≠ 0.

    log32 = 
p

q
 

⇒                                      
3 2p q/ =

⇒ 3p = 2q

3 | 3p but 3 | 2q and also 2 | 2q and 2 | 3p and hence, it is a contradiction.
[or 3p is an odd number and 2q is an even number but an odd number equals to an 

even number is a contradiction.]

Problem 6 Show that any circle with centre ( , )2 3  cannot pass through more than 
one lattice point.

[Lattice points are points in Cartesian plane, whose abscissa and ordinate both are 
integers.]

Solution: If possible, let (a, b), (c, d) be two lattice points on the circle with ( , )2 3

as centre and radius ‘R’.

( ) ( ) ( ) ( )a b R c d− + − = = − + −2 3 2 32 2 2 2 2

⇒ + − − = + − +

= − + −

a b c d a b c d

a c b d

2 2 2 2 2 2 3 2 2 3

2 2 2 3 1

( ) ( )

( ) ( ). ( )

Let a2 + b2 – c2 – d2 = r, 2(a – c) = p
and  2(b – d) = q; p, q, r ∈ 
From Eq (1) we get p q r2 3+ =  (2)

⇒ = − −

⇒ ≠ =
− −

⇒ =

2 6 2 3

0 6
2 3

2

2 2 2

2 2 2

pq r p q

pq
r p q

pq

pq

for contradiction,

00 0 0

2 0

⇒ = =
= = =

p q

p q r

or

using Eq. we get ( )

Hence, a = c, b = d ⇒ Circle cannot pass through more than one lattice point.

Problem 7 Let m1 m2, m3, …, mn be a rearrangement of numbers 1, 2, 3,…, n, suppose 
that n is odd. Prove that (m1 - 1) × (m2 - 2) × … × (mn - n) is an even integer.
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Solution: Since n is odd, there are
n−1

2
even integers and 

n+1

2
odd integers, i.e., there 

is one more odd integer than even integers. Thus, even after pairing of each even inte-

ger m, with an odd integer i there exists an mk and k, both of which are odd integer, so, 
(mk – k) is even and hence, the product is even.

Problem 8 There are n necklaces such that the first necklace contains 5 beads, the 
second contains 7 beads and, in general, the ith necklace contains i beads more than 
the number of beads in (i - 1)th necklace. Find the total number of beads in all the n 
necklaces.

Solution: Let us write the sequence of the number of beads in the 1st, 2nd, 3rd, …, 
nth necklaces

 = 5, 7, 10, 14, 19, …

 =  (4 + 1), (4 + 3), (4 + 6), (4 + 10), (4 + 15), …,   4
1

2
+

+





n n( )

 Sn = Total number of beads in the n necklaces

               

S
n

n n
n = + + +














+ + + + +

+
4 4 4 1 3 6

1

2
�� ��� ��� �

times

( )

        = 4n + Sum of the first n triangular numbers

= + +

= + +( )

= +
+ +




+

∑

∑ ∑

4
1

2

4
1

2

4
1

2

1 2 1

6

1

2

2

2

n n n

n n n

n
n n n n n

( )

( )( ) ( ++

= +
+ +

+
+

= + + +

=

1

2

4
1 2 1

12

1

4

1

12
48 2 1 2

6

)

( )( ) ( )

[ ( )( )]

[

n
n n n n n

n n n n

n
n22 3 26+ +n ].

Problem 9 Show that for f m
m m

( ) = +( ) + −( ) −





+ +1

8
3 2 2 3 2 2 6

2 1 2 1

both f (m) + 1 and  2f (m) + 1 are perfect squares for all m ∈ N by showing that f (m) is an 
integer.

Solution: First let us show that the expression is an integer.

f m m m

m m m

( ) ( ) ( )= + + − −( )

= × ( ) + ( )

+ +

+ + +

1

8
3 2 2 3 2 2 6

1

8
2 3 3

2 1 2 1

0
2 1 2 1

2
2 1 22 1 2

4
2 1 2 3 4

2
2 1 2

2 2 3 2 2

3 2 2 3

m m m

m
m m

− + −

+

⋅
 + ( ) ⋅

+ + ( ) ⋅ − 


( ) ( )

( )�
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All terms in the above expression except 32m + 1 - 3 are multiples of 4, as the even pow-

ers of 2 2  is a multiple of 4. Now 3 3 3 9 12 1m m+ − = −( ) and 9 ≡ 1 (mod 4) ⇒ 9m ≡ 1 
(mod 4) ⇒ 4 | (9m - 1) ⇒ f(m) is an integer.

Now,

f m m m( ) ( ) ( )+ = × + + − −



 +

+ +1
1

8
3 2 2 3 2 2 6 12 1 2 1

= × + + − − +

± = ±

+ +1

8
1 2 1 2 6 8

3 2 2 1 2

2 2 1 2 1 2

2

[{( ) } {( ) } ]

( ( ) )

m m

as

= × + + − ++ +1

8
1 2 1 2 22 1 2 2 1 2[{( ) } {( ) } ]m m

= × + + − − −+ +1

8
1 2 1 2 2 12 1 2 2 1 2[{( ) } {( ) } ( )]m m

= +( ){ } + −( ){ } − × + −










+ +
+ +1

8
1 2 1 2 2 1 2 1 2

2 1 2 2 1 2
2 1 2 1

m m
m m( ) ( )

Since,

( ) ( ) [( )( )]1 2 1 2 1 2 1 22 1 2 1 2 1+ − = + −+ + +m m m = − =−+( ) .1 12 1m

So, the given expression is equal to

( ) ( )1 2 1 2

2 2

2 1 2 1
2

+ − −











+ +m m
which is a perfect square of an integer.

Note that ( ) ( )1 2 1 2

2 2

2 1 2 1+ − −+ +m m
is an integer, as all the left over terms contain 

2 2 as a factor in the  numerator.
Now,

2 1
1

4
3 2 2 3 2 2 6 12 1 2 1f m m m( ) [( ) ( ) ]+ = × + + − − ++ +

                
= × + + − −+ +1

4
3 2 2 3 2 2 22 1 2 1[( ) ( ) ]m m

Since f(m) is shown to be an integer, so 2f(m) + 1 is also an integer. Now, 2f(m) + 1 
can be written as

1

4
1 2 1 2 22 1 2 2 1 2× + + − −+ +[{( ) } {( ) } ]m m

= × + + − + × + −+ + + +1

4
1 2 1 2 2 1 2 1 22 1 2 2 1 2 2 1 2 1[ ]{( ) } {( ) } {( ) ( )}m m m m

=
+ + −












+ +( ) ( )1 2 1 2

2

2 1 2 1
2

m m

which is a perfect square of an integer.
By a similar reasoning, the expression

( ) ( )1 2 1 2

2

2 1 2 1+ + −+ +m m

is an integer. Hence, the result.
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Problem 10 Show that 
1

32
17 12 2 17 12 2[( ) ( )+ + −n n -2] a perfect square of the 

form 
m m( )

,
+1

2
 where m ∈ N, (i.e., the expression is a triangular integer which also 

a square integer.)

Solution: 

As 17 12 2 3 2 2 17 12 2 3 2 22 2+ = + − = −( ) , ( )

and                  ( )( )3 2 2 3 2 2 1+ − =

So, given expression becomes

1

32
3 2 2 3 2 2 2 3 2 22 2× + + − − × +[( ) ( ) ( )n n  ( ]3 2 2−

=
+ − −











( ) ( )3 2 2 3 2 2

4 2

2
n n

=
+ − −











± = ±
{( ) } {( ) }

[ ( ) ]
1 2 1 2

4 2
3 2 2 1 2

2 2
2

n n

∵

=
+ + −












+ − −























( ) ( ) ( ) ( )1 2 1 2

2

1 2 1 2

2 2

n n n n
22

 (1)

Which is clearly a square number.
In the expansion of

1 2 1 2

2

2

2
2 20 2

2

4
4

+( ) + −( )
= + ( ) + +





n n

n n n( ) ( ) ( )( ) �  is clearly an integer.

Similarly 
( ) ( )1 2 1 2

2 2

+ − −
=

n n

 
2

2 2
2 2 21 3

3
5

5( ) ( )( ) ( )( )n n n+ + +



�  is an 

integer also as 2  will get cancelled.

Now we will show the Eq. (1) can be written as
1

2
1m m( ).+  Consider

1

32
17 12 2 17 12 2 2× + + − −[( ) ( ) ]n n

=
+ + −











×

+ − −











( ) ( ) ( ) ( )1 2 1 2

2

1 2 1 2

2 2

2 2
n n n n

=
+ − −{ }

×
+ + −{ }











1

2

1 2 1 2

4

1 2 1 2

4

2 2
( ) ( ) ( ) ( )n n n n
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For all n, we shall show that

{( ) ( ) }
,
{( ) ( ) }1 2 1 2

4

1 2 1 2

4

2 2+ − − + + −n n n n

are consecutive integers.
Now,

(( ) ( ) ) ( ) ( ) ( )1 2 1 2

4

1 2 1 2 2 1

4

2 2 2+ + −
=

+ + − + −n n n n n

 (1)

=
+ + − + −( ) ( ) ( )3 2 2 3 2 2 2 1

4

n n n

 (2)

and similarly,

(( ) ( ) ) ( ) ( ) ( )1 2 1 2

4

3 2 2 3 2 2 2 1

4

2
+ − −

=
+ + − − −n n n n n

 (3)

( ) ( ) ( ) ( ) ( )3 2 2 3 2 2 2 3 3 2 20 2
2 2+ + − = + +





= =

−n n n n n n �

even integer 2kk ( )say

From Eqs. (2) and (3), we find that one of them 2 2

4

k −  and other 2 2

4

k +  or 
1

2
1( )k −  

and 
1

2
1( )k + and both are integers also, they differ by

1

2
1

1

2
1 1( ) ( ) .k k+ − − =

Note that 
1

32
17 12 2 17 12 2 2× + + − −[( ) ( ) ]n n  gives you an infinite family of square 

and triangular numbers.

Problem 11 Show that n m= × + +
1

8
17 12 2 17[( ) ( − +12 2 6) ]m is an integer for all 

m ∈ N and hence, show that both (n - 1) and (2n - 1) are perfect squares for all m ∈ N.

Solution: The terms containing 2 vanishes in the expansion of ( ) (17 12 2 17+ + −m

12 2)m  and integral terms are all multiples of 8 and hence, n is an integer.

n m m− = × + + − + −1
1

8
17 12 2 17 12 2 6 8[( ) ( ) ]

         
= × + + − −

1

8
17 12 2 17 12 2 2[( ) ( ) ]m m

As 17 12 2 3 2 2 2± = ±( ) ,  

again both ( )( )17 12 2 17 12 2+ − and ( )3 2 2+ × −( )3 2 2  are equal to 1.

So,

1

8
17 12 2 17 12 2 2× + + − −[( ) ( ) ]m m
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= × + + −


1

8
3 2 2 3 2 22 2{( ) } {( ) }m m − × + − 

2 3 2 2 3 2 2{( ) ( ) }m m

=
+ − −











( ) ( )3 2 2 3 2 2

2 2

2
m m

and 2 1
1

4
17 12 2 17 12 2 6 4n m m− = × + + − + −[( ) ( ) ]

= × + + − +
1

4
17 12 2 17 12 2 2[( ) ( ) ]m m

=
+ + −











( ) ( )3 2 2 3 2 2

2

2
m m

and hence, the result.

Problem 12 S = 1! + 2! + 3! + 4! + … + 1997!. Find the unit digit and tens digit of S.

Solution: From 5!, all the numbers will have the unit digit zero and from 10!, all the 
unit and tens digit will be zero.

So, the unit digit of the number S is the unit digit of 

1! + 2! + 3! + 4! = 1 + 2 + 6 + 24 = 33.

That is unit digit of S is 3.
The tens digit of S, is the tens digit of

      1! + 2! + 3! + 4! + 5! + 6! + 7! + 8! + 9!
= 33 + 120 + 720 + 5040 + 40320 + 362880.

So to get the tens digit of S, add only the tens digit of
33 + 120 + … + 362880 which is 3 + 2 + 2 + 4 + 2 + 8 = 21

So, the tens digit of S is 1.

Problem 13 Show that the square of an integer cannot be in the form 4n + 3 or  
4n + 2 where n ∈ .

Solution: Let us take the square of an even integer, say, 2a.

   m = 2a 

⇒ m 2 = 2a × 2a = 4a2 

and 4a2 is not in the form of 4n + 3 or 4n + 2.
If m is an odd number, then m = 2a + 1 

and m 2 = (2a + l)2 = 4a2 + 4a + 1

  = 4a(a + 1) + 1 = 4n + 1.

Here again the square is not in the form of 4n + 3 or 4n + 2. 
In other words, any number in the form of 4n + 3 or 4n + 2 cannot be a square 

number.

Note: When m is odd, m 2 = 4a(a + 1) + 1.
As either a or a + 1 is even, m 2 = 8k + 1 for some k ∈ .

\ The square of an odd number is in the form 8k + 1.
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Problem 14 Show that no square number can end with 4 ones or 4 nines.

Solution: Let n ends with 4 ones

i.e.,  n = 10000k + 1111

 = 8l + 7 (as 1111 = 8 × 138 + 7)

Similarly, let n ends with 4 nines,

i.e., n = 10000k + 9999 = 8m + 7

In both the cases, n cannot be a square number, because the square of an odd num-
ber is in the form of 8k + 1.

Note: A perfect square number can have only 0, 1, 4, 5, 6, 9 in its units place.
Similarly, the last two digits of a perfect square number are 00, 01, 21, 41, 61, 81, 

04, 24, 44, 64, 84, 25, 16, 36, 56, 76, 96, 09, 29, 49, 69, 89.
Observe that if last digit is ‘6’ then second last digit can be any odd digit out of 1, 3, 

5, 7, 9, if last digit is a perfect square, i.e., 1, 4, or 9 then second last digit can be any 
even digit out of 0, 2, 4, 6, 8, if last digit 0 then second last digit will be ‘0’ if last digit 
5 then second last digit will be ‘2’.

Problem 15 A four-digit number has the following prop erties:

 (a) It is a perfect square
 (b) The first two digits are equal
 (c) The last two digits are equal 

Find the number. [RMO, 1991]

Solution: Let N = aabb be the representation of such a number.

1 ≤ a ≤ 9, 0 ≤ b ≤ 9.

Then N  = 1000a + 100a + 10b + b = 1100a + 11b  
= 11 (100a + b)

Since N is a perfect square and 11 is a factor of N, 
112|N ⇒ 11|(100a + b) ⇒ 11|(a + b) ⇒ a + b = 11k
But 1 ≤ a + b ≤ 18 ⇒ a + b = 11 ⇒ b = 11 - a ⇒ b > 0

The last two non-zero digits of a perfect square where both the digits are equal is 
only 44. So, b = 4

\ a = 7

\ N = 7744 is the only possibility. 

N = 11 × 704 = 11 × 11 × 64 = 882.

\ This is the only solution.

Problem 16 Prove that the product of four consecutive positive integers increased by 
1 is a perfect square.

Solution: Let the consecutive positive integers be n, n + 1, n + 2 and n + 3.
Consider the expression

 N = n (n + 1)(n + 2)(n + 3) + 1 

 = (n2 + 3n)(n2 + 3n + 2) + 1
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 = (n2 + 3n)2 + 2(n2 + 3n) + 1 

 = [(n2 + 3n) + l]2 = (n2 + 3n + l)2

and hence, the result.

Problem 17 Three consecutive positive integers raised to the first, second and third 
powers, respectively, when added, make a perfect square, the square root of which is 
equal to the sum of the three consecutive integers. Find these integers.

Solution: Let (n - 1), n, (n + 1) be the three positive consecutive integers (n > 1).

Then (n - l)1 + n2 + (n + 1)3 = (n - 1 + n + n +1)2 = (3n)2 = 9n2

⇒ n - 1 + n2 + n3 + 3n2 + 3n + 1 = 9n2

⇒ n3 - 5n2 + 4n = 0
⇒ n(n - 1)(n - 4) = 0
⇒ n = 0 or n = 1 or n = 4,

As n > 1, n = 4, corresponding to which the consecutive integers are 3, 4 and 5.

Problem 18 Prove that the product of 8 consecutive natural numbers is never a per-
fect 4th power of an integer.

Solution: Let, x be the least of the 8 consecutive natural numbers. Let, their product be P.

Then,  P = x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)(x + 6)(x + 7)

 = x(x + 7)(x + 1)(x + 6)(x + 2)(x + 5)(x + 3)(x + 4) 

 = (x2 + 7x)(x2 + 7x + 6)(x2 + 7x + 10)(x2 + 7x + 12) 

Let, x2 + 7x + 6 be a. 
Then,  P = (a - 6) a(a + 4)(a + 6) = (a2 - 36)(a2 + 4a)

 = a4 + 4a 3 - 36a2 - 144a

 = a4 + 4a(a2 - 9a - 36) = a4 + 4a (a + 3)(a - 12)

Now, a = x2 +7x + 6 and x ≥ 1 ⇒ a ≥ 14. ⇒ a - 12 > 0
and hence, P = a4 + 4a(a + 3)(a - 12) > a4.

Again,
(a + l)4 = a4 + 4a3 + 6a2 + 4a + 1 > a4 + 4a3 - 36a2 - 144a.

Thus, a4 < P < (a + l)4 and so, P lies between 4th power of consecutive integers and 
hence, cannot be a perfect 4th power.

Problem 19 Show that a positive integer n good if there are n integers, positive or 
negative and not necessarily distinct, such that their sum and product both equal to n.

Example 8 is good as

 8 = 4 × 2 × 1 . 1 . 1 . 1(-1) . (-1)
 = 4 + 2 + 1 + 1 + 1 + 1 + (-1) + (-1) = 8.
Show that the integers of the form (4k + 1) where k ≥ 0 and 4l(l ≥ 2) are good.

Solution:

Case 1: n = 4k + 1

n k k

k

k

k k= + = + × × −
= + + + + + +

4 1 4 1 1 1

4 1 1 1 1

2

2 2( ) ( ) ( )

( ) ( )�� ��� ���
times

[[( ) ( ) ( )]− + − + + −1 1 1

2

�� ����� �����
k times
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Case 2: n = 4l, in this place there are two cases where (a) l is even with l ≥ 2 and (b) 
l is odd with l ≥ 3 
 (a) n = 4l, l is even. 
  Consider, integers w and v, such that

n l l

l

w

w v= = × × × −
= + + + + + + − + −

4 2 2 1 1

2 2 1 1 1 1 1

( ) ( )

( ) [( ) (�� ��� ���
times

)) ( )]+ + −�� ����� �����1
v times

  Now, by the definition of good integer, we have 2 + w + v = 4l(there are 2 + w + 
v factors).

  ⇒ w + v = 4l - 2 (1)

  Again, since 4l = 2l + 2 + w - v, we get

   w - v = 2l - 2 (2)

  Solving Eqs. (1) and (2), we get w = 3l - 2 and v = l.

  (b) l is odd. With l ≥ 3.
Choose w and v, such that

n l l

l

w

w v= = × − × −
= + − + + + + +

4 2 2 1 1

2 2 1 1 1

( ) ( ) ( ) ( )

( ) ( ) [(�� ��� ���
times

−− + − + + −1 1 1) ( ) ( )]�� ����� �����
v times

  Again, since there are w + v + 2 factors, we have

w + v + 2 = 4l or w + v = 4l - 2
  and 4l = 2l - 2 + w - v (by definition of good integer)

  ⇒ w - v = 2l + 2

  Solving w = 3l and v = l - 2
   Since, l is odd and l ≥ 3 

l - 2 ≥ 1
Now,

times

n l l

l

l

l l= = × − × × −
= + − + + + +

−4 2 2 1 1

2 2 1 1 1

3

3 2( ) ( ) ( )

( ) ( )�� ���� ��� �� ����� �����+ − + − + + −
−

= − + − −

[( ) ( ) ( )]

( )

(

1 1 1

2

2 2 3 1 2

l

l l

times

)) .= 4l

Check Your Understanding 

 1. Show that the number of divisors of an integer is odd if and only if this integer is 
a square.

 2. Represent in all possible ways (a) 1547 and (b) 1768 as difference of two squares.
 3. Prove if a three digit integer n is relatively prime to 10 then 101th power of n ends 

with the same three digits of n.

 4. Find natural numbers x, y such that x y+ = 7 and x y+ =11.

 5.  Prove that a3 - b3 = 2011 has no integer solutions.
 6.  Prove that if integer a is not divisible by 2 or 3 then a2 - 1 is divisible by 24.
 7.  Show that for any natural number n, n2 + 2n + 12 and n2 + 3n + 5, both are not 

divisible by 121.
 8. Show that for any natural number n, n2 - 3n - 19 is not divisible by 289. 

  [RMO, 2009]
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 9. Prove that there is one and only one natural number n such that 28 + 211 + 2n is a 
perfect square.

 10. What is the largest n for which 427 + 41000 + 4n is a perfect square?

 11. Prove that the equation 
x

y

y

z

z

x
+ + =1  has no solution in positive integers x, y, z.

 12. Find all pairs (x, y) of integers such that x3 = y3 + 2y2 + 1. [Bulgarian MO, 1999]
 13. Let m be a 2002 digit number each digit of which is 6. What is the remainder 

obtained when m is divided by 2002?

 14. Show that 2 3+( )





n
 is odd for every positive integer n.

  Note: For any real number x, x   denotes the largest integer less than or equal to x.
 15. Show that there exists no integer n, such that the sum of the digits of n2 is 2000.
 16. Find the number of perfect square divisors of the number 12!
 17. Show that every integer in the infinite sequence 49, 4489, 444889, 44448889, … 

is a square.
 18. Find the number of 2 digit natural numbers, which, when increased by 11, has the 

order of digits reversed.

 19. Prove that 3 33  is irrational. (Do not assume 3  as irrational to prove this.)
 20. Show that, there is no three digit number abc (a ≠ c) such that, abc-cba is a perfect 

square.
 21. N is a natural number, such that it is the product of three distinct prime numbers. 

Find all such prime numbers, so that, the sum of all its composite divisors is equal 
to 2N + 1.

 22. Prove that there exist arbitrarily long sequence of consecutive positive integers, 
none of which is a power of an integer with an integer exponent greater than 1.

 23. Given m and n as relatively prime positive integers greater than one, show that 
log

log
10

10

m

n
 is not a rational number.

 24. The nonzero real numbers (a, b) satisfy the equation a2b2(a2b2 + 4) = 2(a6 + b6); 
Prove a, b cannot both be rational under this condition.

 25. Show that, in the year 1996, no one could claim on his birthday, that his age was 
the sum of the digits of the year, in which, he was born. Find also the last year, 
prior to 1996, which had this property.

 26. If a2 + b2 + c2 = D where a, b are consecutive positive integers and c = ab, show 

that D  is always an odd integer.
 27. Sequences A and B, both contain the same number 95. Find the next number in 

the sequence A which is also in B.

  A: 19, 95, 171, 247, …
  B: 20, 45, 70, 95, …
 28. A sequence is generated, starting with the first term t1, as a 4 digit natural number. 

The second, third and the fourth terms are obtained by squaring the sum of the 
digits of the previous terms; for example, if t1 = 9999, t2 = 362 = 1296, t3 = 182 
= 324, t4 = 92 = 81, and so on. Start with 2012, i.e., let t1 = 2012. Form the se-
quence and find the sum of the first 2013 terms.

 29. A sports meet was organized for 4 days. If on each day, half of the existing 
medals and one more medal was awarded, find the number of medals awarded for 
each day.
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 30. There are two natural numbers, whose product is 192. It is given that the quo-
tient of the AM to the HM of their greatest common measure and least common 

multiple is 
169

48
;  Find these numbers.

 31. Find all integers a, b, c, d satisfying the condition
  (i) 1 ≤ a ≤ b ≤ c ≤ d
  (ii) ab + cd = a + b + c + d + 3 [RMO, 2002]
 32. Does there exist a positive integer whose prime factors include at most the primes 

2, 3, 5 and 7 and which ends in the digits 11? If so, find the smallest such positive 
integer; if not, show why none exists.

 33. Show that if n is a positive integer such that 2n + 1 and 3n + 1 are both squares 
then n is a multiple of 40.

 34. The digital sum D(n) of a positive integer n, expressed in base ten, is defined 
recursively as follows:

  D(n) = n if 1 < n < 9
  D(n) = D(a0 + a1 + a2 +…+ am) if n > 9 (where a0, a1, a2, …, am are all digits of n 

in the scale of 10, i.e., n = am10m + am-110m-1 +…+ a110 + a0.
  For example, D(989) = D(26) = D(8) = 8
  (i) Check whether D((1234)5) = D(5) = 5.
  (iii) Hence prove the result: D((123)5 × (34)5) = D(D((123)5 × D((34)5)).
 35. Show that the cube roots of three distinct prime numbers cannot be the three 

terms (not necessarily consecutive) of an arithmetic progression.
 [USA MO, 1973]
 36. Find the number of 4-digit numbers in base 10, having non-zero digits and which 

are divisible by 4 but not by 8. [RMO, 2010]
 37. Let E(m) denote the number of even digits in m. For example, E(2) = 1; E(19) 

= 0; E(5672) = 2, etc. Prove the following result:
  E(E(101) × E(201) × E (301) ×…× E(2001)) = 1.
 38. In 1930, a correspondent proposed the following question: ‘A man’s age at death, 

was (1/29) of the year of his birth’. How old was he in 1900?
 39. Find the number of triples (x, y, z) such that, when any of these numbers is added 

to the product of the other two, then, the result is 2.
 40. Find all pairs of positive integers (a, b) with a > b, such that, the sum of their sum, 

difference, product and quotient is 36.
 41. Let a, b, c, d, e be consecutive positive integers, such that, (b + c + d) is a perfect 

square and (a + b + c + d + e) is a perfect cube. Find the smallest value of c.
 42. Determine whether integers x, y exist such that, (x + y) and (x2 + y2) are consecu-

tive integers.

 43. Find the number of all integer-sided isosceles obtuse-angled triangles with perim-
eter 2008. [RMO, 2008]

 44. If n1, n2, n3, …, np are ‘p’ positive integers, whose sum is an even number, prove 
that the number of odd integers, among them, cannot be odd.

 45. Show that there do not exist any distinct natural numbers a, b, c, d such that 
a3 + b3 = c3 + d3 and a + b = c + d.

 46. Prove that if the coefficients of the quadratic equation ax2 + bx + c = 0 are odd 
integers, then the roots of the equation cannot be rational numbers.

 47. Prove that x2y2 = x2 + y2 has no integral solution except x = y = 0.
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 48. Prove that the sequence 24 1n+ with n ∈  contains all prime except 2 and 3.

 49. Let A denote a subset of the set { , , , , , , },1 11 21 31 541 551… having the property 
that no two elements of A add up to 552. Prove that A cannot have more than 28 
elements.

 50. Prove that the ten’s digit of any power of 3 is even. [RMO, 1993]
 51. Consider the equation in positive integers x2 + y2 = 2000 with x < y.
       (i) Prove that 31< y < 45
    (ii) Rule out the possibility that, one of x, y even and the other is odd.
  (iii) Rule out the possibility that, both x, y are odd.
   (iv) Prove that, y is a multiple of 4.
     (v) Obtain all solutions to this problem.

 52. N is a 50-digit number (in the decimal notation). All the digits except the 26th 
digit (from the left) are 1. If N is divisible by 13, find the 26th digit.

 [RMO, 1990]
 53. Show that the equation x2 + 3 = 4y(y + 1) has no integral solution.
 54. Show that there exists no positive integers m and n such that both m2 + n2 and m2 

- n2 are perfect squares.
 55. Find three consecutive integers each divisible by a perfect square greater than 1.
 56. Find three consecutive numbers, the first of which is divisible by a square, the 

second by a cube and the third by a fourth power.
 57. Solve the equation y3 = x3 + 8x2 - 6x + 8 for positive integers x and y. 

 [RMO, 2000]

 58. Suppose N is an n-digit positive integer such that (a) all the n-digits are distinct 
and (b) the sum of any three consecutive digits is divisible by 5. Prove that n is at 
most 6. Further, show that starting with any digit one can find a six-digit number 
with these properties. [RMO, 1996]

 59. (i)  Consider two positive integers a and b which are such that aabb is divisible by 
2000. What is the least possible value of the product ab.

  (ii)  Consider two positive integers a and b which are such that abba is divisible by 
2000. What is the least possible value of the product ab. [RMO, 2000]

 60. Prove that if 1
1

2

1

3

1

1
+ + + +

−
�

p
 is expressed as a fraction, where p ≥ 5 is a 

prime, then p2 divides the numerator.

Challenge Your Understanding 

 1. Let a and b be two positive rational numbers, such that, a b3 3+  is rational. 

Prove that a b3 3 and  themselves are rational.   [INMO, 1998]

 2. We call an integer ‘FORTUNATE’ if it can be expressed in the form n = 54x2 
+ 37 y2 for some integers x and y. Prove that, if ‘n’ is ‘fortunate’, then, 1999n is 
also ‘fortunate’. 

 3. We define ‘Funny Numbers’ as follows
    (i) Every single digit prime is ‘Funny’.
  (ii)  A prime number with two or more digits is ‘Funny’ if the numbers obtained 

by deleting either its leading digit or its unit digit are both ‘Funny’. Discover 
all ‘Funny Numbers’ in the set .
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 4. A natural number n is said to be a ‘superstar’ if the number is less than 10 times 
the product of its digits.

    (i) Examine if 10 and 200 are ‘superstar’ numbers.
  (ii) Find the number of ‘superstar’ numbers between 10 and 200.

 5. Show that m m n m n m n mn n5 4 3 2 2 3 4 53 5 15 4 12 33 0+ − − + + − =  has no solution 
in integers m, n.

 6. Find the least natural number whose last digit is 7 such that it becomes 5 times 
larger when this last digit is carried to the beginning of the number.

 7. Consider the set A of numbers 1
1

2

1

3

1

2013
, , , ,…








 we delete two of them, say ‘a’ 

and ‘b’ and in their place, we put only one number (a + b + ab). After performing 
the operation 2012 times, what is the number that is left?

 8. Prove that for every natural number m ≥ 2 there exists m distinct natural numbers 

n n nm1 2, , ,… such that 
1 1 1 1008

20121 2n n nm

+ + + =� .

 9. An integer n will be called ‘good’ if we can write n = a1 + a2 +  … + ak where a1 a2, ..., 

ak are positive integers  (not necessarily distinct) satisfying 
1 1 1

1
1 2a a ak

+ + + =� .

  Given the information that the integers 33 through 73 are good, prove that every 
integer greater than or equal to 33 is good.

 [USA MO, 1978]
 10. Three nonzero real numbers a, b, c are said to be in harmonic progression if 

1 1 2

a c b
+ = .  Find all three-term harmonic progression a, b, c of strictly increasing 

positive integers in which a = 20 and b divides c. [RMO, 2008]

 11. Prove that for every positive integer n there exists a positive integer x such that 

each of the terms of the infinite sequence x x xx x x+ + +1 1 1, , ,… is divisible by n.

 12. Determine the 3-digit numbers, which are equal to eleven times the sum of the 
squares of their digits. [IMO, 1960]

 13. 7-digit numbers are formed by the digits 1, 2, 3, 4, 5, 6, 7. In each number, no 
digit is repeated. Prove that among all these numbers, there is no number, which 
is a multiple of another number.

 14. Prove that among any 39 consecutive natural numbers it is always possible to find 
one whose sum of digits is divisible by 11.

 15. Find one pair of positive integers a, b such that,
  (i) ab(a + b) is not divisible by 7.
  (ii) (a + b)7- a7 - b7 is divisible by 77. [IMO, 1984]
 16. Positive integers are written on all the faces of a cube, one on each. At each cor-

ner (vertex) of the cube, the product of the numbers on the faces that meet the 
corner is written. The sum of the numbers written at all the corners is 2004. If T 
denotes the sum of the numbers on all the faces, find all the possible values of T. 
 [RMO, 2004]

 17. Find all natural numbers n, such that, n + s(n) + s(s(n)) = 2010, where s(n) = sum 
of the digits of n. (Example n = 238; s(n) = 13; s(s(n) = 4.)

 18. Find the smallest n, such that, any sequence a1, a2, a3, …, an whose values 
are relatively prime square-free integers between 2 and 1995, must contain a 
prime.
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 19. What is the smallest perfect square that ends with 9009? 
 20. Let Sn = {1, n, n2, n3, …} where n is an integer greater than 1. Find the smallest 

number k = k(n) such that there is a number which may be expressed as a sum of 
k (possibly repeated) elements of Sn in more than one way. Rearrangements are 
considered the same.

 21. Find all positive integers n, such that n2 + 3n is perfect square.

 22. Prove that there is an infinite number of non-congruent triangles T such that
  (i) the lengths of the sides of T are consecutive integers and 
  (ii) the area of T is an integer.

 23. Prove that the area of a right triangle with integral sides can never be a perfect 
square.

 24. Prove that every even integer can be written in the form (x + y)2 + 3x + y with x, 
y non-negative integers.

 25. Find the positive integers n with exactly 12 divisors 1 = d1 < d2 < d3 < … < d12 
= n such that the divisor with index d4 - 1 (that is dd4 -1) is (d1 + d2 + d4) d8. 
 [Russian MO, 1989]

 26. The geometric mean of any set of m non-negative numbers is the mth root of their 
product.

  (i)  For which positive integers n is there a finite set Sn of n distinct positive 
integers such that the geometric mean of any subset of Sn is an integer?

  (ii)  Is there an infinite set S of distinct positive integers such that the geometric 
mean of any finite subset of S is an integer? 

   [USA MO, 1984]
 27. What is the smallest integer n, greater than 1, for which the root mean square of 

the first n positive integers is an integer?
 [USA MO, 1986] 

 28. Let a and b be the roots of the quadratic equation x2 + mx - 1 = 0, where m is an 
odd integer. Let λ α βn

n n= + , and n ≥ 0. Prove that for n ≥ 0, (a) λn is an integer 

and (b) gcd(λn, λn+1) = 1. [RMO, 2004]

 29. Find the least natural number n such that, if the set An = (1, 2, 3, ..., n) is arbitrarily 
divided into two non-intersecting subsets, then one of the subsets contains 3 dis-
tinct numbers such that the product of two of them equals the third. 
 [IMO Shortlisted Problem, 1988]

 30. For the Fibonacci sequence defined by an+1 = an + an-1 (n ≥ 1), a0 = 0, a1 = a2 = 1 
find the greatest common divisors of 1960th and 1988th terms of the Fibonacci 
sequences. [IMO Shortlisted Problem, 1988]

 31.   (i)  Given any positive integer n, show that there exist distinct positive integers x 
and y such that x + i divides y + j for j = 1,2,3, …, n. 

  (ii)  If for some positive integers x and y, x + j divides y + j for all positive integers 
j, then x = y. [INMO, 1996]

 32. Determine the set of all positive integers n for which 3n+1 divides 23n

 + 1. Prove 

that 3n+2 does not divide 2 13n +  for any positive integer n.  [INMO, 1991]
 33. In any set of 181 square integers, prove that one can always find a subset of 19 

numbers, sum of whose elements is divisible by 19. [INMO, 1994]
 34. Let (a1, a2, …, a2011) be a permutation (that is a rearrangement) of the numbers 1, 

2, …, 2011. Show that there exists two numbers j, k such that 1 2011≤ < ≤j k  

and | | | | .a j a kj k− = −  [RMO, 2011]
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 35. Suppose the integers 1, 2, 3, …, 10 are split into two disjoint collections a1, a2, a3, 
a4, a5 and b1, b2, b3, b4, b5 such that a1 < a2 < a3 < a4 < a5 and b1 > b2 > b3 > b4 > 
b5.

  (i) Show that the larger number in any pair {aj, bj}, 1 ≤ j ≤ 5, is at least 6.

  (ii)  Show that | | | | | | | | | |a b a b a b a b a b1 1 2 2 3 3 4 4 5 5 25− + − + − + − + − =  for every 

such position. [RMO, 2002]

 36. A natural number n is chosen strictly between two consecutive perfect squares. 
The smaller of these two squares is obtained by subtracting k from n and 
the larger is obtained by adding l to n. Prove that n - kl is a perfect square. 
 [RMO, 2011]

 37. Find three distinct positive integers with the least possible sum such that the sum 
of the reciprocals of any two integers among them is an integral multiple of the 
reciprocal of the third integer. [RMO, 2010]

 38. In a group of ten persons, each persons is asked to write a sum of the ages (in 
integers) of all the other 9 persons. If all the ten sums form the 9 element set 
{82, 83, 84, 85, 87, 89, 90, 91, 92} find the individual ages of the persons. 
 [RMO, 1993]

 39. Let A be a set of 16 positive integers with the property that product of any 2 dis-
tinct members of A does not exceed 1994. Show that there are numbers a and b in 
A such that gcd(a, b) > 1. [RMO, 1994]

 40. Prove that there exists infinite sequences an n≥1
 and bn n≥1

 of positive integers 

such that following conditions hold simultaneously, 
  (i) 1 < a1 < a2 < a3 < …;

  (ii) a b an n n< < 2 ,  for all n ≥ 1;

  (iii) an - 1 divides bn - 1, for all n ≥ 1;

  (iv) an
2 1−  divides bn

2 1− , for all n ≥ 1. [RMO, 2008]

 41. Let a, b, c be three natural numbers such that a < b < c and gcd(c - a, c - b) = 1. 
Suppose there exists an integer d such that a + d. b + d, c + d forms the sides of a 
right triangle. Show that there exists integers l, m such that c + d = l2 + m2.

  [RMO, 2007]
 42. Prove that there are infinitely many positive integers n such that n(n + 1) can be 

expressed as sum of squares of two positive integers in at least two different ways. 
(Here a2 + b2 and b2 + a2 are considered as the same representation). 
 [RMO, 2006]

 43. A 6 × 6 square is dissected into 9 rectangles by lines parallel to its sides such that 
all these rectangles have integer sides. Prove that there are always two congruent 
rectangles. [RMO, 2006]

 44. Determine all triples (a, b, c) of positive integers such that a ≤ b ≤ c and a + b + 
c + ab + bc + ca = abc + 1. [RMO, 2005]

 45. Find all triples (a, b, c) of positive integers such that 1
1

1
1

1
1

3+





 +





 +





 =a b c

.

 [RMO, 1996]
 46. Prove that the product of the first 1000 positive even integers differs from the prod-

uct of the first 1000 positive odd integers, by a multiple of 2001. [RMO, 2001]

 47. Consider the set X = {1, 2, 3, …, 9, 10}. Find two disjoint non empty subsets A 
and B of X such that 
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       (i) A ∪ B = X;
     (ii)  prod (A) is divisible by prod (B), where for any finite set of numbers C, prod 

(C) denotes the product of all numbers in C;
  (iii) the quotient prod (A)/prod (B) is as small as possible. [RMO, 2003]
 48. Prove that the only solutions in positive integers of the equation mn = nm are 

m = n and {m, n} = {2, 4}.
 49. 52 is the sum of two squares and 3 less than 52 is also a square. Prove that there 

exist infinitely such numbers, n such that n is the sum of two squares and (n - 3) 
is also a square.

 50. Find the number of quadratic polynomials, ax2 + bx + c, which satisfy the follow-
ing conditions:

  (i) a, b, c are distinct,
  (ii) a, b, c ∈ {1, 2, 3, …, 1999} and
  (iii) x + 1 divides ax2 + bx + c. [RMO, 1999]

 51. Find all solutions in integers m, n of the equation ( ) .m n
mn

m n
− =

+ −
2 4

1
 [RMO, 1999]
 52. If A is a fifty-element subset of the set {1, 2, 3, …, 100} such that no two numbers 

from A add up to 100, show that A contains a square. [RMO, 1996]
 53. Given any positive integer n show that there are two positive rational numbers a 

and b, a ≠ b, which are not integers and which are such that a - b, a2 - b2, a3 - b3, 
…, an - bn are all integers. [RMO, 1996]

 54. Find all natural number n for which every natural number, whose decimal repre-
sentation has (n - 1) digits 1 and one digit 7, is prime.

 55. If 2 2 28 12+ +n  is an integer, prove that it must be a square.
 56. Show that the equation a3 + 2b3 + 4c3 = 9d3 has no non-trivial integer solutions.
 57. Let {xn} and {yn} be two sequences of integers defined as follows:

  x x x x x nn n n0 1 1 11 1 2 1 2 3= = = + = …+ −, , , , , ,  

  y y y y y nn n n0 1 1 11 7 2 3 1 2 3= = = + = …+ −, , , , , ,

  Thus, the first few terms of the sequence are
  x : 1, 1, 3, 5, 11, 21, …
  y = 1, 7, 17, 55, 161, 487, …
  Prove that except for the 1 there is no term which occurs in both the sequences.
   [USA MO, 1973]
 58. Let gcd(a, b) = 1.
       (i)  Show that the equation ax + by = n has no solution in non-negative integers 

x and y if n = ab - a - b, but has a solution if n > ab - a - b.
     (ii)  Show that exactly one of the equations  ax + by = m, ax + by = n has a solu-

tion in non-negative integers x and y if m + n = ab - a - b.

  (iii)  Show that there are 
1

2
1 1( )( )a b− −  positive integers n not, expressible in the 

form ax + by with x, y ∈ 0.

   (iv)  Show that the sum of such integers as in part (iii) is 1
12

1 1( )( )a b− − (2ab - a 
- b - 1).

 59. Find all x ∈  for which the product of the digits d(x) of x, when x is writen in 
decimal notation equals x2 - 10x - 22. 

 60. Prove that y2 = x3 + 7 has no integral solution.
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7.1 Definition of Factorial

The falling product of first n natural numbers is called the “n factorial” and is denoted 
by n! or n.

That is, n! = n(n - 1) (n - 2) … 3 × 2 × 1
For example, 4! = 4 × 3 × 2 × 1 = 24; 5! = 5 × 4 × 3 × 2 × 1 = 120;

( )!

!

( )( )

!

2 1 2 3 2 1 2n

n

n n

n
=

⋅ ⋅ −�
 (by using the definition of factorials)

=
⋅ ⋅ −{ } ⋅ ⋅{ }

=
⋅ ⋅ −{ }1 3 5 2 1 2 4 6 2 1 3 5 2 1 2� � �( )

!

( ) !

!

n n

n

n n

n

n

 (By taking 2 out from all terms of the second factor in Numerator)

= {1 . 3 . 5 … (2n - 1)} 2n

Factorials of proper fractions and of negative integers are not defined. Factorial n is 
defined only for whole numbers.

7.1.1 Properties of Factorial

 (a) 0! = 1 (by defi nition)
 (b) n! = 1 × 2 × … × (n - 1) × n = [1 × 2 × … × (n - 1)] n = (n - 1)! n
  Thus, n! = n ((n - 1)!)
 (c) If two factorials, i.e., x! and y! are equal, then

(x, y) = (0, 1) or (1, 0) or (k, k) ∀ k ∈ 0

 (d) n! ends in 0, for all n > 4. (Number of 5’s in n!, n > 4, is always less than the num-
ber of 2’s. Therefore for every 5, there is a 2. Hence n!, n > 4, ends in 0).

Example 1 If 
n

n

!

!( )!2 2−
 and 

n

n

!

!( )!4 4−
 are in the ratio 2:1, then find the value of n.
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Solution: 

n

n
n

n

n n

n n n

!

!( )!
!

!( )!

! !( )!

!( )! ! ( )

2 2

4 4

2

1

4 4

2 2

2

1

4 3

2

−

−

= ⇒
× −
− ×

= ⇒
×

− ×× −
=

( )n 1

2

1

⇒ (n - 2) (n - 3) = 6 ⇒ n2 - 5n = 0 ⇒ n = 0, 5

But, for n = 0, (n - 2)! and (n - 4)! are not meaningful
So, n = 5.

7.2 Basic Counting Principles

7.2.1 Addition Principle

Let A = { a1, a2, …, an} and B = {b1, b2, …, bm} be sets.
Let A and B be disjoint (or mutually exclusive) set, i.e., A ∩ B = ϕ (the empty set).
Then an element of A or an element of B can be chosen in n + m ways.
It can be extended as
Let a set Ai have ki elements and any two sets Ai’s be disjoint, i = 1, 2, …, n. Then 

any element of A1 or A2 or … or An can be chosen in k1 + k2 + … + kn ways.
In set theoretic notation, the extended form is stated as:
If Ai, i = 1, 2, …, n, are n finite pair-wise disjoint (or mutually exclusive) sets, i.e., 

Ai ∩ Aj = ϕ for i ≠ j; i, j = 1, 2, … n; then

A Ai
i

n

i
i

n

= =
= ∑

1 1
∪

That is, the cardinality of the union of finite number of pair-wise disjoint finite sets is 
the sum of the cardinalities of the individual sets.

Here |Ai| is the number of elements of the set Ai. Other notations for number of ele-
ments of the set Ai are n(Ai) or #(Ai), etc. 

In other words:
If there are

n1 ways for the event E1 to occur
n2 ways for the event E2, to occur
…
…
…
nk ways for the event Ek, to occur
where k ≥ 1, and if these are pair-wise disjoint (or mutually exclusive), then the number 

of ways for at least one of the events E1, E2, …, Ek to occur is  n n n nk i
i

k

1 2
1

+ + + =
=
∑� .

Example 2 There are 15 gates to enter a city from north and 10 gates to enter the city 
from east. In how many ways a person can enter the city?

Solution: Number of ways to enter the city from north = 15.
Number of ways to enter the city from east = 10.

A person can enter the city from north or from east.
So, number of ways to enter the city = 15 + 10 = 25.

Example 3 There are 15 students is a class in which 10 are boys and 5 are girls. The 
class teacher selects either a boy or a girl for monitor of the class. In how many ways 
the class teacher can make this selection?
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Solution: A boy can be selected for the post of monitor in 10 ways.
A girl can be selected for the post of monitor in 5 ways.
Number of ways in which either a boy or a girl can be selected = 10 + 5 = 15.

Example 4 Find the number of two digit numbers (having different digits) which are 
divisible by 5. 

Solution: Any number of required type either ends in 5 or in 0. Number of two digit 
numbers (with different digits) ends with 5 is 8 and that of ends with 0 is 9. 
Hence, by addition principle the required number of numbers is 8 + 9 = 17. 

7.2.2 Multiplication Principle

Let A = {a1, a2, …, an} and B = {b1, b2, …, bm} be sets.
An ordered pair (a, b), where a ∈ A, b ∈ B, can be formed in n × m ways.
It can further be extended as 
Let a set Ai have ki elements, i = 1, 2, …, n. 
An ordered n-tuple (a1, a2, …, an ) where ai ∈ Ai for each i, can be formed in  

k1 × k2 × k3 × … × kn ways.
In set theoretic notation, the above principle is stated as:

i

r

i rA A A A
=
∏ = × × ×

1
1 2 � = {(a1, a2, a3,…, ar) : ai ∈ Ai, i = 1, 2, 3, …, r} denotes the 

cartesian product of the finite sets A1, A2, …, Ar then 
i

r

i
i

r

iA A
= =
∏ ∏=

1 1

.

In other words:
If an event E can be decomposed into r ordered sub events E1, E2, …, Er and if there 
are n1 ways (independent to other sub events) for E1 to occur, n2 ways (independent 
to other sub events) for the event E2 to occur, …, nr ways (independent to other sub 
events) for Er to occur, then the total number of ways for the event E to occur is given 
by n1 × n2 × … × nr.

Example 5 A Hall has 3 gates. In how many ways can a man enter the hall through 
one gate and come out through a different gate?

Solution: Suppose the gates are A, B and C. Now there are 3 ways (A, B or C) of 
entering into the hall. After entering into the hall, the man come out through a dif-
ferent gate in 2 ways. Hence, by the multiplication principle, total number of ways is 
3 × 2 = 6 ways.

Example 6 There are 3 routes to travel from City A to City B and 4 routes to travel 
from City B to City C and 7 routes from C to D. In how many different ways (routes) a 
man can travel from City A to City D via City B and City C.

Solution: 

City A
3 ways 4 ways 7 ways

City B City C City D

The man can perform the task of travelling from City A to City B in ways = 3.
The man can perform task of travelling from City B to City C in ways = 4.
Similarly from City C to City D in ways = 7.

A
B
C

B
A
C

C
A
B
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Using fundamental principle of counting, total routes to travel from A to D via B 
and via C = m × n × p = 3 × 4 × 7 = 84 routes.

Example 7 If S = {a, b, c,…, x, y, z}, find the number of five-letter words that can be 
formed from the elements of the set S, such that the first and the last letters are distinct 
vowels and the remaining three are distinct consonants.

Solution: 

As there are 5 vowels and 21 consonants, position 1 and 5 can be filled in 5 and 4 ways 
respectively and 2, 3, 4 can be filled in 21, 20 and 19 ways respectively. Therefore, the 
total number of ways

= 5 × 4 × 21 × 20 × 19

= 400 × 399 = 159600.

Example 8 A city has 12 gates. In how many ways can a person enter the city through 
one gate and come out through a different gate?

Solution: Since, there are 12 ways to enter into the city. After entering into the city, the 
man can come out through a different gate in 11 ways.
Hence, by the fundamental principle of counting.

Total number of ways is 12 × 11 = 132 ways.

Example 9 A basket contains 12 apples and 10 oranges. Ram takes an apple or an 
orange. Then Shyam takes an apple and an orange. In which case does shyam have 
more choice: When Ram takes an apple or when he takes an orange? (Consider apples 
and similarly oranges are distinguishable.) In how many ways both of them can take 
the fruits?

Solution:

Case 1: Ram takes an apple
Shyam has to take one apple and one orange from 11 apples and 10 oranges.

Number of ways in which Shyam can take his fruits = 11 × 10 = 110.

Case 2: Ram takes an orange
Shyam has to take one apple and one orange from 12 apples and 9 oranges.

Number of ways in which Shyam can take his fruits = 12 × 9 = 108.
Shyam has more choice when Ram takes an apple.
Using addition principle, number of ways in which both can take a fruit 
= 12 × 110 + 10 × 108
= 1320 + 1080 = 1400

Example 10 A number lock has 3 concentric rings on which the digits 0, 1, 2, …, 9 are 
engraved. Only one particular arrangement on the rings, say ABC, against an arrow 
opens the lock. What is the number of unsuccessful attempts to open the lock?

Solution: Total number of numbers formed by the digits 0, 1, 2, …, 9 on the three rings
= 10 × 10 × 10 (by multiplication principle) and number of successful attempts = 1
⇒ Number of unsuccessful attempts = 103 - 1

= 999

Note: Here the method for counting used is called indirect method of counting.)

Example 11 A binary sequence consists of 0’s or 1’s only. Find the number of binary 
sequences having n terms. 

Place:       

Number 
of choices: 5      21   20   19   4
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Solution: Since every term of the binary sequence has two options (0 or 1), therefore 

the number of binary sequences of n terms = 2 2 2 2× × × ×�� ��� ��� 
n times

= 2n (using multiplica-

tion principle).

Example 12 How many (i) 5 digit (ii) 3-digit numbers can be formed using 1, 2, 3, 7, 
9 without any repetition of digits.

Solution:
 (i) 5-digit numbers:

Making a 5 digit number is equivalent to filling 5 places.
 The last place (unit’s place) can be filled in 5 ways using any of the five given 
digits.
The ten’s place can be filled in four ways using any of the remaining 4 digits.
The number of choices for other places can be calculated in the same way.
Number of ways to fill all five places
= 5 × 4 × 3 × 2 × 1 = 5! = 120
⇒ 120 five-digit numbers can be formed.

 (ii) 3-digit numbers:
 Making a three-digit number is equivalent to filling three places (unit’s, ten’s, 
hundred’s).
Number of ways to fill all the three places = 5 × 4 × 3 = 60

⇒ 60 three-digit numbers can be formed.

Example 13 How many 3-letter words can be formed using a, b, c, d, e if:

(i) Repetition is not allowed
(ii) Repetition is allowed?

Solution:

 (i) Repetition is not allowed:
The number of words that can be formed is equal to the number of ways to fill 
the three places.
First place can be filled in five ways using any of the five letters (a, b, c, d, e).
Similarly second and third places can be filled using 4 and 3 letters respectively.
⇒ Total number of ways to fill = 5 × 4 × 3 = 60.
Hence 60 words can be formed.

 (ii) Repetition is allowed:
The number of words that can be formed is equal to the number of ways to fill 
the three places.
First place can be filled in five ways (a, b, c, d, e).
If repetition is allowed, each of the remaining places can be filled in five ways 
using a, b, c, d, e.
Total number of ways to fill = 5 × 5 × 5 = 125.
Hence 125 words can be formed.

Example 14 How many four-digit numbers can be formed using the digits 0, 1, 2, 3, 
4, 5 without repetition?

Solution: For a four-digit number, we have to fill four places and 0 cannot appear in 
the first place (thousand’s place).

Place:             

Number 
of choices:        1      2     3

Place:             

Number 
of choices:        5      4     3

Place:             

Number 
of choices:        5      5     5

Place:      

Number 
of choices: 1      2     3     4     5
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For the first place, there are five choices (1, 2, 3, 4, 5); Second place can then be filled in 
five ways (0 and remaining four-digits); Third place can be filled in four ways (remain-
ing four-digits); Fourth place can be filled in three ways (remaining three-digits).

Total number of ways = 5 × 5 × 4 × 3 = 300
⇒ 300 four-digits numbers can be formed.

Example 15: In how many ways can six persons be arranged in a row?

Solution: Arranging a given set of n different objects is equivalent to fill n places.
So arranging six persons along a row is equivalent to fill 6 places.

Place:                        

Number of choices:     6      5     4     3     2     1

Number of ways to fill all places = 6 × 5 × 4 × 3 × 2 × 1 = 6! = 720.

Example 16 How many 5-digit odd numbers can be formed using digits 0, 1, 2, 3, 4, 
5 without repetition?

Solution: Making a 5-digit number is equivalent to fill 5 places
To make odd numbers, fifth place can be filled by either of 1, 3, 5, i.e., 3 ways.

Number of ways first place can be filled in = 4 (excluding 0 and the odd number 
used for the fifth place).

Similarly second, third and fourth places can be filled in 4, 3, 2 ways respectively.
Using fundamental principle of counting, total number of ways to fill 5 places.
= Total 5-digit odd numbers that can be formed = 4 × 4 × 3 × 2 × 3 = 288 ways.

Example 17 How many 5-digit numbers divisible by 2 can be formed using digits 0, 
1, 2, 3, 4, 5 without repetition.

Solution: To find 5-digit numbers divisible by 2,
We will make 2 cases. In first case, we will find number of numbers divisible by 2 
ending with either 2 or 4. In second case, we will find even numbers ending with 0.

Case 1: Even numbers ending with 2 or 4:
Making a 5 digit number is equivalent to filling 5 places
Fifth place can be filled by 2 or 4, i.e., 2 ways.

First place can be filled in 4 ways (excluding 0 and the digit used to fill fifth place)
Similarly places second, third and fourth can be filled in 4, 3, 2 ways respectively.
Using fundamental principle of counting, total number of ways to fill all 5 places 

together = 4 × 4 × 3 × 2 × 2 = 192. (1)

Case 2: Even numbers ending with 0:
Making a 5-digit number is equivalent to fill 5 place.

Fifth place is filled by 0, hence can be filled in 1 way.
First place can be filled in 5 ways (Using either of 1, 2, 3, 4, 5).
Similarly places second, third and fourth can be filled in 4, 3, 2 ways respectively.
Using fundamental principle of counting, total number of ways to fill 5 places  

= 5 × 4 × 3 × 2 × 1 = 120 (2)
Combining (1) and (2),
Total number of 5 digit numbers divisible by 2 = 192 + 120 = 312.

Place:       

Number 
of choices:  4      4     3     2     3

Place:       

Number 
of choices:  4      4     3     2     2

Place:       

Number 
of choices:  5      4     3     2     1

Place:          

Number 
of choices:     5      5     4     3
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Example 18 How many 5-digit numbers divisible by 4 can be formed using digits 0, 
1, 2, 3, 4, 5 without repetition?

Solution: Making a 5-digit number is equivalent to fill 5 places.
A number would be divisible by 4 if the last 2 places are filled by either of 04, 12, 20, 
24, 32, 40, 52.

Case 1:
Last 2 places are filled by either of 04, 20, 40.

Fourth and fifth places can be filled in 3 ways. (either of 04, 20, 40).
First place can be filled in 4 ways (excluding the digits used to fill fourth and fifth 

place.
Similarly second and third place can be filled in 3 and 2 ways respectively.
 Using fundamental principle of counting, total number of ways to fill 5 places 
= 4 × 3 × 2 × 3 = 72 ways (1)

Case 2:
Last 2 places are filled by either of 12, 24, 32, 52

Fourth and fifth place can be filled in 4 ways (either 12, 24, 32, 52).
First place can be filled in 3 ways (excluding 0 and the digits used to fill fourth and 

fifth place)
Similarly, second and third place can be filled in 3 and 2 ways respectively.
 Using fundamental principle of counting, total number of ways to fill 5 place 
= 3 × 3 × 2 × 4 = 72 ways. (2)
Combining (1) and (2),
Total number of ways to fill 5 places = Total 5-digit numbers divisible by 4
= 72 + 72 = 144.

Example 19 How many six-digit numbers divisible by 25 can be formed using digits 
0, 1, 2, 3, 4, 5 without repetition?

Solution: Numbers divisible by 25 must end with 25 or 50.

Case 1: Number ending with 25

Place:                        

Number of choices:     3     3      2     1    1     1

Using fundamental principle of counting, total 6 digit numbers divisible by 25 ending 
with 25

= 3 × 3 ! = 18 numbers are possible.

Case 2: Number ending with 50

Place:                        

Number of choices:     4     3      2     1    1     1

Using fundamental principle of counting, total 6 digited numbers divisible by 25 end-
ing with 50

= 4! = 24 numbers are possible.
Hence, total numbers of multiples of 25
= 18 + 24 = 42.

Example 20 Find the number of 4-digit numbers greater than 3400, when digits are 
chosen from 1, 2, 3, 4, 5, 6 with repetition allowed.

Place:       

Number 
of choices:  4      3     2        3

Place:       

Number 
of choices:  3      3     2        4
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Solution: To count the number of numbers greater than 3400, we consider the follow-
ing two cases:

Case 1: Thousand’s place filled by 4 or 5 or 6
(That is, thousand’s place can be filled in 3 ways) each digit (of last three digits) has 
6 options (i.e., they can be filled by any of 1, 2, 3, 4, 5, 6). Using multiplication prin-
ciple, the number of such numbers = 3 × 6 × 6 × 6 = 648

Case 2: Thousand’s place filled by 3 and hundred’s place filled by 4 or 5 or 6.
(That is, thousand’s place can be filled in 1 way and hundred’s place can be filled in 
3 ways)

Using multiplication principle, the number of such numbers = 1 × 3 × 6 × 6 = 108
Cases I and II are mutually exclusive (i.e., cannot occur together) and exhaustive 

(i.e., all possibilities are covered) 
∴ Using addition principle, the number of 4-digit numbers greater than 3400, 
(formed by 1, 2, 3, 4, 5, 6) = 648 + 108 = 756.

Example 21 Find the number of odd integers between 30,000 and 80,000 in which no 
digit is repeated.

Solution:
Let abcde be the required odd integers.

a can be chosen from 3, 4, 5, 6 and 7 and e can be chosen from 1, 3, 5, 7, 9. Note 
that 3, 5 and 7 can occupy both the positions a and e.

So, let us consider the case where one of 3, 5, 7 occupies the position a.

Case 1: If a gets one of the values 3, 5, 7, then there are 3  choices for a, but then, e 
has just four choices as repetition is not allowed. Thus, a and e can be chosen in this 
case in 3 × 4 = 12 ways.

The 3 positions b, c, d can be filled from among the remaining 8 digits in 8 × 7 × 6 
ways. Total number of ways in this case = 12 × 8 × 7 × 6 = 4,032.

Case 2: If a takes the values 4 or 6, then there are two choices for a and there are five 
choices for e.

There are again eight choices altogether for the digits b, c, d which could be done 
in 8 × 7 × 6 ways.

Therefore in this case, the total numbers are 2 × 5 × 8 × 7 × 6 = 3,360.
Hence, total number of odd numbers between 30,000 to 80,000, without repetition 

of digits is 4,032 + 3,360 = 7,392.

Example 22 A number of four digits is to be formed from 1, 2, 3, 4, 5 and 6. Find the 
number of 4-digit numbers
 (i) if repetition of a digit is allowed.
 (ii) if no repetition of a digit is allowed.
 (iii) How many of the numbers are divisible by 4, if
  (a) repetition is allowed?
  (b) repetition is not allowed?

Solution:
 (i) Since each digit of a 4 - digit number can be one from 1, 2, 3, 4, 5, 6, therefore us-

ing multiplication principle, the number of 4 digit numbers (repetition is allowed) 
= 6 × 6 × 6 × 6 = 64

 (ii) Using multiplication principle, the number of 4-digit numbers (repetition is not 
allowed) = 6 × 5 × 4 × 3 = 360

Place:          

Number 
of choices:     3      6     6     6

Place:          3

Number 
of choices:     1      3     6     6
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 (iii) If a number is divisible by 4, then the last two digits must form one of the follow-
ing numbers :

  12, 16, 24, 32, 36, 44, 52, 56, 64 ( 9 in all)
  (a)  Number of numbers, divisible by 4 (repetition is allowed) = 6 × 6 × 9 = 324
  (b)  Number of numbers, divisible by 4 (repetition is not allowed) = 4 × 3 × 8 = 96
Note that in (a), to fill the places of last two digits (considered it as one 2-digit number) 
9 options are available as stated above.

Note that in (b), since repetition is not allowed, so the number formed by the last 
two digits cannot be 44. So it can be one from the remaining 8 options.

Example 23 Find the sum of all five-digit numbers that can be formed using digits 1, 
2, 3, 4, 5 if repetition is not allowed?

Solution: There are 5! = 120 five digit numbers and there are 5 digits. Hence by sym-
metry or otherwise we can see that each digit will appear in any place (unit’s or ten’s 

or …) 
5

5

!
times.

Let               X = Sum of digits in any place

⇒ = × + × + × + × + ×X
5

5
5

5

5
4

5

5
3

5

5
2

5

5
1

! ! ! ! !

⇒ = × + + + + = = ×X
5

5
5 4 3 2 1

5

5
15 5 3

!
( )

!
( ) !

⇒ The sum of the all numbers = X + 10X + 100X + 1000X + 10000X

= X (1 + 10 + 100 + 1000 + 10000)

= 5! × 3 (1 + 10 + 100 + 1000 + 10000)

= 120 × 3 (11111) = 3999960.

Example 24 Find the sum of the four digit numbers obtained in all possible permuta-
tions of the digits 1, 2, 3, 4. 

Solution: There are 4! (= 24) 4-digit numbers made up of 1, 2, 3, 4. In these 24 num-
bers, in unit place all 1, 2, 3, 4 appear 3! (=6) times. Similarly, in the ten’s, hundred’s, 
thousand’s places too, they appear 6 times. 

Sum = 6(4+3+2+1) + 10 × 6 (4+3+2+1)+100 × 6(4+3+2+1)+1000 × 6(4+3+2+1) 
= 60 + 600 + 6000 + 60000 = 66, 660

Example 25 Find the sum of 5-digit numbers obtained by permuting 0, 1, 2, 3, 4.

Solution: There are 5! (= 120) 5-digit numbers made up of 0, 1, 2, 3, 4. In all these 
120 numbers in unit’s place all 0, 1, 2, 3, 4 appear 4! (= 24) times. Similarly in ten’s, 
hundred’s, thousand’s and ten thousand’s places too they appear 24 times.

Sum of 5-digit numbers made up of 0, 1, 2, 3, 4

= 24(1 + 2 + 3 + 4) + 10 × 24(1 + 2 + 3 + 4) + 100 × 24(1 + 2 + 3 + 4)
        + 1000 × 24 (1 + 2 + 3 + 4) + 10000 × 24(1 + 2 + 3 + 4)
= 240 + 2400 + 24000 + 240000 + 2400000 = 26,66,640.

Required sum =  Sum of 5-digit numbers made up of 0, 1, 2, 3, 4 - sum of 4 digit num-
bers made up of 1, 2, 3, 4

= 26,66,640 - 66660 {Obtained from previous example}
= 25,99,980.
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Example 26 Find the sum of all four digit numbers that can be formed using the digits 
0, 1, 2, 3, 4, no digits being repeated in any number.

Solution: Required sum of numbers = [Sum of four digit numbers using 0, 1, 2, 3, 4, 
allowing 0 in first place] - [Sum of three digit numbers using 1, 2, 3, 4].

= 
5

5

!
[0 + 1 + 2 + 3 + 4] [1 + 10 + 102 + 103] - 4

4

! (1 + 2 + 3 + 4) (1 + 10 + 102)

= 24 × 10 × 1111 - 6 × 10 × 111 = 259980.

Example 27 Let S be the set of natural numbers whose digits are chosen from {1, 2, 
3, 4} such that

 (i) When no digits are repeated, find n(S ) and the sum of all numbers in S.
 (ii) When S is the set of up to 4-digit numbers where digits are repeated. Find | S | and 

also find the sum of all the numbers in S.

Solution:
 (i) S consists of single-digit numbers, two-digit numbers, three-digit numbers and 

four-digit numbers.
Total number of single-digit numbers = 4
Total number of two-digit numbers = 4 × 3 = 12
(Since repetition is not allowed, there are four choices for tens place and three 
choices for units place.)
Total number of three-digit numbers = 4 × 3 × 2 = 24
Total number of four-digit numbers = 4 × 3 × 2 × 1 = 24
∴           n(S ) = 4 + 12 + 24 + 24 = 64.
Now, for the sum of these 64 numbers, sum of all the single-digit numbers =  
1 + 2 + 3 + 4 = 10.
(Since there are exactly 4 digits 1, 2, 3, 4 and their numbers are 1, 2, 3 and 4.)
Now,
The total number of two-digit numbers is 12.
The digits used in units place are 1, 2, 3 and 4.

In the 12 numbers, each of 1, 2, 3 and 4 occurs thrice in units digit 12

4
3=






 .

Again in tens place, each of these digits occurs thrice.
So, sum of these 12 numbers

= 30 × (1 + 2 + 3 + 4) + 3 × (1 + 2 + 3 + 4)
= 300 + 30 = 330.

The number of three-digit numbers is 24.
So, the number of times each of 1, 2, 3, 4 occurs in each of units, tens and hun-

dreds place is 
24

4
6= .

So, the sum of all these three-digit numbers is
100 × 6(1 + 2 + 3 + 4) + 10 × 6(1 + 2 + 3 + 4) + 1 × 6(1 + 2 + 3 + 4)  
= 6,000 + 600 + 60 = 6,660.
Similarly, for the four-digit numbers, the sum is computed as
1000 × 6(1 + 2 + 3 + 4) + 100 × 6(1 + 2 + 3 + 4) + 10 × 6(1 + 2 + 3 + 4)  
+ 1 × 6(1 + 2 + 3 + 4) = 60,000 + 6,000 + 600 + 60 = 66,660

[Since there are 24 four-digit numbers, each of 1, 2, 3, 4 occurs in each of the four 

digits in
24

4
6= times.]
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So, the sum of all the single-digit, two-digit, three-digit and four-digit numbers = 
10 + 330 + 6,660 + 66,660 = 73,660.

 (ii) (a)  There are just four single-digit numbers 1, 2, 3 and 4.
(b)  There are 4 × 4 = 16 two-digit numbers, as digits can be repeated.
(c) There are 4 × 4 × 4 = 64 three-digit numbers.
(d) There are 4 × 4 × 4 × 4 = 256 four-digit numbers.

So, total number of numbers up to four-digit numbers that could be formed using 
the digits 1, 2, 3 and 4 is 4 + 16 + 64 + 256 = 340. Sum of the 4 single-digit num-
bers = 1 + 2 + 3 + 4 = 10. To find the sum of 16 two-digit numbers each of 1, 2, 

3, 4 occur in each of units and tens place = =
16

4
4 times.

So, the sum of all these 16 numbers is

= 10 × 4(1 + 2 + 3 + 4) + 4(1 + 2 + 3 + 4)

= 400 + 40 = 440.

Similarly, the sum of all the 64 three-digit numbers

= × × + + + + × × + + + + × × + + +100
64

4
1 2 3 4 10

64

4
1 2 3 4 1

64

4
1 2 3 4( ) ( ) ( )

= + + =16 000 1 600 160 17 760, , , .

Again the sum of all the 256 four-digit numbers

= × × + + + + × × + + +

+ × × + + + +

1000
256

4
1 2 3 4 100

256

4
1 2 3 4

10
256

4
1 2 3 4

( ) ( )

( ) 11
256

4
1 2 3 4× × + + +( )

= + + + =6 40 000 64 000 6 400 640 7 11 040, , , , , ,

Therefore, the sum of all the numbers is
=10 + 440 + 17,760 + 7,11,040 = 7,29,250.

Build-up Your Understanding 1

 1. How many four digit numbers can be made by using the digits 1, 2, 3, 7, 8, 9 when
   (i) repetition of a digit is allowed?
  (ii) repetition of a digit is not allowed?
 2. Find the total number of 9-digit numbers of different digits.
 3. Find the total number of 4 digit number that are greater than 3000, that can 

be formed by using the digits 1, 2, 3, 4, 5, 6 (no digit is being repeated in any 
 number). 

 4. How many numbers greater than 1000 or equal to, but not greater than 4000 can 
be formed with the digits 0, 1, 2, 3, 4, repetition of digits being allowed?

 5. How many numbers between 400 and 1000 (both exclusive) which can be made 
with the digits 2,3,4,5,6,0 if 

  (i) repetition of digits not allowed?
  (ii) repetition of digits is allowed?
 6. A variable name in a certain computer language must be either an alphabet or a 

alphabet followed by a decimal digit. Find the total number of different variable 
names that can exist in that language.
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 7. Tanya typed a six-digit number, but the two 1’s she typed did not show. What ap-
peared was 2006. Find the number of different 6-digit numbers she would have 
typed.

 8. A letter lock consists of three rings each marked with fifteen different letters. It is 
found that a man could open the lock only after he makes half the number of pos-
sible unsuccessful attempts to open the lock . If each attempt takes 10 seconds. 
Then find the minimum time he must have spent.

 9. Find the number of 6-digit numbers that can be formed using 1, 2, 3, 4, 5, 6, 7 so 
that digits do not repeat and terminal digits are even.

 10. Find the total number of numbers that can be formed by using all the digits 1, 2, 
3, 4, 3, 2, 1 so that the odd digits always occupy the odd places.

 11. Find the number of 6-digit numbers which have 3 digits even and 3 digits odd, if 
each digit is to be used atmost once.

 12. Find the number of 4-digits numbers that can be made with the digits 1, 2, 3, 4 
and 5 in which at least two digits are identical.

 13. Find the number of 5-digit telephone numbers having atleast one of their digits is 
repeated.

 14. Find the number of 3-digit numbers having only two consecutive digits identical.
 15. Find the number of different matrices that can be formed with elements 0, 1, 2 or 

3, each matrix having 4 elements.
 16. Find the number of 6-digit numbers in which sum of the digits is even.
 17. Find the number of 5-digit numbers divisible by 3 which can be formed using 0, 

1, 2, 3, 4, 5 if repetition of digits is not allowed.
 18. Find the number of 4-digit numbers divisible by 3 that can be formed by four dif-

ferent even digits.
 19. Find the number of 5-digit numbers divisible by 6 which can be formed using 0, 

1, 2, 3, 4, 5 if repetition of digits is not allowed.
 20. Find the number of 5-digit numbers divisible by 4 which can be formed using 0, 

1, 2, 3, 4, 5, when the repetition of digits is allowed
 21. Natural numbers less than 104 and divisible by 4 and consisting of only the digits 

0, 1, 2, 3, 4 and 5 (no repetition) are formed . Find the number of ways of forma-
tion of such number.

 22. Find the number of natural numbers less than 1000 and divisible by 5 which can be 
formed with the ten digits, each digit not occurring more than once in each number.

 23. Two numbers are chosen from 1, 3, 5, 7, …, 147, 149 and 151 and multiplied 
together. Find the number of ways which will give us the product a multiple of 5.

 24. A 7-digit number divisible by 9 is to be formed by using 7 digits out of digits 1, 
2, 3, 4, 5, 6, 7, 8, 9. Find the number of ways in which this can be done.

 25. Find the number of 9-digits numbers divisible by nine using the digits from 0 to 
9 if each digit is used atmost once.

 26. Among 9! permutations of the digits 1, 2, 3, …, 9. Consider those arrangements 
which have the property that if we take any five consecutive positions, the product of 
the digits in those positions is divisible by 7. Find the number of such arrangements.

 27. Find the number of distinct results which can be obtained when n distinct coins 
are tossed together.

 28. Three distinct dice are rolled. Find the number of possible outcomes in which at 
least one die shows 5. 

 29. A telegraph has ‘m’ arms and each arm is capable of ‘n’ distinct positions includ-
ing the position of rest. Find the total number of signals that can be made. 

 30. Find the number of possible outcomes in a throw of n distinct dice in which at 
least one of the dice shows an odd number.
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 31. Find the number of times the digit 5 will be written when listing integers from 1 
to 1000.

 32. Find the number of times of the digits 3 will be written when listing the integer 
from 1 to 1000.

 33. If 33! is divisible by 2n, then find the maximum value of n.

 34. Let E = +




+ +




+ +




+

1

3

1

50

1

3

2

50

1

3

3

50
�  upto 50 terms, then find the expo-

nent of 2 in (E)!.
 35. 3-digit numbers in which the middle one is a perfect square are formed using the 

digits 1 to 9 . Find their sum.
 36. Find the sum of all the 4-digit even numbers which can be formed by using the digits  

0, 1, 2, 3, 4 and 5 if repetition of digits is allowed. 
 37. Find sum of 5-digit numbers that can be formed using 0, 0, 1, 2, 3, 4.
 38. Find sum of 5-digit numbers that can be formed using 0, 0, 1, 1, 2, 3.
 39. The integers from 1 to 1000 are written in order around a circle. Starting at 1, 

every fifteenth number is marked (that is 1, 16, 31, etc.) This process is continued 
until a number is reached which has already been marked, then find the all un-
marked numbers.

 40. Let S be {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Find the number of subsets A of S such that.
  x A x S x A∈ ∈ ⇒ ∈and 2 2 .

7.3 Combinations

7.3.1 Definition of Combination

Let A, B, C, D be four distinct objects. The number of ways in which we can select two 
objects out of A, B, C and D is six and these are AB, AC, AD, BC, BD and CD.

These ways of selection of two objects from four different objects are also known 
as combinations of A, B, C and D taken two at a time or we can say grouping of A, B, 
C and D taken two at a time.

Similarly {a, b, c}, {b, c, d}, {a, c, d}, {a, b, d} are all the selections of 3 objects 
from a, b, c, d. So we say that the number of ways of selecting 3 objects out of given 
4 objects is 4 or the number of combinations of 3 objects out of given 4 objects is 4.

Note: 
By changing the relative positions of objects, we do not get any new combinations. 
Combination (selection or group) of objects A, B is same as combination of objects 
B, A. Thus we treat AB and BA as same combination (selection or group). Formally 

A combination of objects is merely a selection (suppress order) from a given lot 
of objects, i.e., a combination is just a set, elements of which are not arranged in a 
 particular way.

7.3.2 Theorem

The number of selections of r objects at a time out of n distinct, is 
n

r n r

 
 

!

!( )!
.

−

This number is denoted as nCr or C(n, r) or 
n

r








 .

Proof:

n

r −








1

 represents the number of selections of r - 1 objects out of n distinct objects. 
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Number of ways to select rth object from remaining n - (r - 1) objects is n - (r - 1).
By multiplication principle, the number of ways to select r objects out of n distinct 

objects is apparently 
n

r








 ⋅ (n - r + 1).

However, each selection is counted r times. Note that we are aiming at counting the 
unordered selections. 

For example, {a, b, c} or {b, a, c} or {c, a, b} are to be considered as one selection 
(not 3 selections)

Therefore nCr = nCr - 1 
n r

r

− +1
.  (recurrence relation)

 nCr - 1 = nCr - 2. 
n r

r

− − +
−

( )1 1

1
= nCr - 2

n r

r

− +
−

2

1

 nCr - 2 = nCr - 3 ⋅
− +
−

n r

r

3

2
, etc. 

 ∴ nCr = nC1
⋅

− − − +
− ⋅

( )( ) ( )

( )

n n n r

r r

1 2 1

1 2 1

 
  

�
�

 =
− − − +

− ⋅
n n n n r

r r

( )( ) ( )

( )

1 2 1

1 2 1

�
�

 (Note that nC1 = n) 

 =
− − + − − − ⋅
− ⋅ − − −

n n n r n r n r

r r n r n r

( ) ( )( )( )

( ( ) )(( )( )

1 1 1 2 1

1 2 1 1 2

� �
� � ⋅⋅1)

 nCr =
n

r n r!( )!−

In general 
n

r

n

r n r
r n r n

r r n n r








 = −

≤ ≤ ∈

< > ∈ ∈






!

!( )!
, ; ,

, ; ,

0

0 0

0

0

�

� �for or

Note: 
0

0








 is defined as 1.

7.3.3 Properties of 
n
r

⎛
⎜
⎝

⎛
⎜
⎝

; 0 ≤ r ≤ n; r, n ∈0

 (i) 
n n

n0
1








 =








 =

 (ii) 
n

r

n

n r








 = −











 (iii) If 
n

r

n

k








 =








  then r = k or n - r = k

 (iv) 
n

r

n

r

n

r








 =

−
−









 +

−









1

1

1

 (v) 
n

r

n

r

n

r
r

n

r
n

n

r








 =

−
−


















 =

−
−











1

1

1

1
or

 (vi) 
1

1

1

1

1

1r

n

r n

n

r+







 = +

+
+
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 (vii) 
n

r

n r

r

n

r

n

r

n

r

n r

r








 =

− +
−




















−










=
− +1

1

1

1
or

 (viii) 
n

r

n

n r

n

r








 = −

−









1

 (ix) (a) If n is even,
n

r








  is greatest for r = 

n

2
.

   (b) If n is odd, 
n

r








  is greatest for r

n n
=

− +1

2

1

2
, .

In general 
n

r








  is maximum at r

n n= 







2 2

,

Combinatorial proof of (v):
Consider a group of n people. A committee of r people is to be selected, out of these 
selected r people one chairperson is nominated.

This can be done in following two ways:
 (i) Select r people from n people and select one person for chairperson from se-

lected r people. 

  This can be done in
n

r

r






×







1

 ways. 

 (ii) Another alternative is to select one person as the chairperson from n people and 
select remaining (r - 1) people from remaining (n - 1) people. 

  This can be done in
n n

r1

1

1








×

−
−









  ways.

  ⇒







 =

−
−









r

n

r
n

n

r

1

1

Students are advised to develop the combinatorials proofs of the remaining  properties.

Example 28 If  nCr - 1 = 36, nCr = 84 and nCr + 1 = 126, then find r. 

Solution:
n

r
n

r

C

C −
=

1

84

36

 ⇒
− +

=
n r

r

1 7

3
  ∵

n
r

n
r

C

C

n r

r−
=

− +









1

1

⇒ + =3 3 3 7n r r–

        ⇒ =10 3 3r n–  (1) 

and  
n

r
n

r

C

C

n r

r
+ =

− + +
+

=1 1 1

1

126

84

( )

( )
 ∵

n
r

n
r

C

C

n r

r−
=

− +









1

1

⇒
−
+

=
n r

r 1

3

2
⇒ = +2 2 3 3n r r–

  ⇒ =5 2 3r n– – ⇒ =10 4 6r n– –  (2)

Subtracting Eq. (2) from Eq. (1), we get n = 9 

10r - 27 = 3 10 ⇒ = ⇒ =r r30 3
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Example 29 There were some men and two women participating in a chess tournament. 
Every participant played two games with every other participant. The number of games 
that the men played among themselves exceed by 66 that of the games which the men 
played with the two women. What was the total number of participants? How many 
games were played in all?

Solution: Let the number of men participants be m.

The number of games which men have played among themselves is 2
2

1
m

m m








 = −( ).

The number of games which the men played with each of the two women is 2m × 2.
[m men played 2 × m game with the first woman and another 2 × m game with the 

second woman.]
According to the data given

 m(m − 1) − 2 × 2m = 66
 ⇒ m2 - 5m - 66 = 0
 ⇒ (m - 11)(m + 6) = 0
 ⇒ m = 11(m = -6 is not acceptable)

So, there are totally 11 + 2 = 13 players.

The number of games played is 2 × 13C2 = ×
×

=2
13 12

1 2
156

.
.

7.3.4 Some Applications of Combinations

7.3.4.1 Always Including p Particular Objects in the Selection

The number of ways to select r objects from n distinct objects where p particular 
objects should always be included in the selection = n - pCr - p.

Logic:
We can select p particular objects in 1 way. Now from remaining (n - p) objects we 
select remaining (r - p) objects in n - pCr - p ways.

Using fundamental principle of counting, number of ways to select r objects where 
p particular objects are always included

= 1 × n - pCr - p = n - pCr - p.

Example 30 In how many ways a team of 11 players be selected from a list of 16 play-
ers where two particular players should always be included in the team.

Solution: Number of ways to make a team of 11 players from 16 players always includ-
ing 2 particular players = 16 - 2C11 - 2 = 14C9.

7.3.4.2 Always Excluding p Particular Objects in the Selection

The number of ways to select r objects from n different objects where p particular 
objects should never be included in the selection = n - pCr .

Logic:
As p particular objects are never to be selected, selection should be made from remain-
ing n - p objects. Therefore r objects can be selected from (n - p) different objects in 
n - pCr ways.

Example 31 In how many ways a team of 11 players can be selected from a list of 16 
players such that 2 particular players should never be included in the selection.
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Solution: The number of ways to select a team of 11 players from a list of 16 players, 
always excluding 2 particular players = (16 - 2)C11 = 14C11.

Example 32 A mixed doubles tennis game is to be arranged from 5 married couples. 
In how many ways the game can be arranged if no husband and wife pair is included 
in the same game?

Solution: To arrange the game we have to do the following operations.
 (i) Select two men from from 5 men in 5C2 ways.
 (ii) Select two women from 3 women excluding the wives of the men already se-

lected. This can be done in 3C2 ways.
 (iii) Arrange the 4 selected persons in two teams. If the selected men are M1 and M2 

and the selected women are W3 and W4, this can be done in 2 ways :
  M1W3 play against M2W4
  M2W3 play against M1W4

  Hence the number of ways to arrange the game

  = 5C2 
3C2 (2) = 10 × 3 × 2 = 60.

7.3.4.3 Exactly or Atleast or Atmost Constraint in the Selection

There are problems in which constraints are to select exactly or minimum (atleast) or 
maximum (atmost) number of objects in the selection. In these problems, we should 
always make cases to select objects. If we do not make cases, we will get wrong answer. 
Following illustrations will show you how to make cases to solve problems of this type.

Example 33 In how many ways can a cricket team be selected from a group of 25 
players containing 10 batsmen, 8 bowlers, 5 all-rounders and 2 wicketkeepers? 
Assume that the team of 11 players requires 5 batsmen, 3 all-rounders, 2-bowlers and 
1 wicketkeeper.

Solution: Divide the selection of team into four operations.

 (i) Selection of batsman can be done (5 from 10) in 10C5 ways.
 (ii) Selection of bowlers can be done (2 from 8) in 8C2 ways.
 (iii) Selection of all-rounders can be done (3 from 5) in 5C3 ways.
 (iv) Selection of wicketkeeper can be done (1 from 2) in 2C1 ways.

⇒ The team can be selected in 10C5 × 8C2 × 5C3 × 2C1 ways =
× × × ×

=
10 8 7 10 2

5 5 2
141120

!

! ! !
.

Example 34 In a group of 80 persons of an  association, a chairman, a secretary and 
three members are to be  elected for the executive committee. Find in how many ways 
this could be done.

Solution: This would be done in:
Chairman can be elected in 80C1 ways,

Secretary can be elected in 79C1 ways and the three members can be elected in 78C3 
ways.

So, the total number of ways in which this executive committee can be selected is

80
1

79
1

78
3 80 79

78 77 76

1 2 3
C C C× × = × ×

× ×
× ×

 

= 80 × 79 × 13 × 77 × 76
= 800,320 ways.
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Example 35 A box contains 5 distinct red and 6 distinct white balls. In how many ways 
can 6 balls be selected so that there are at least two balls of each colour?

Solution: The selection of balls from 5 red and 6 white balls will consist of any of the 
following possibilities.

Red Balls (out of 5) 2 3 4

White Balls (out of 6) 4 3 2

If the selection contains 2 red and 4 white balls, then it can be done in 5C2 
6C4 ways.

If the selection contains 3 red and 3 white balls then it can be done in 5C3 
6C3 ways.

If the selection contains 4 red and 2 white balls then it can be done in 5C4 
6C2 ways.

Any one of the above three cases can occur. Hence the total number of ways to 
select the balls.

= 5C2 
6C4 + 5C3 

6C3 + 5C4 
6C2

= 10(15) + 10(20) + 5(15)
= 425.

Example 36 In how many ways a team of 5 members can be selected from 4 ladies and 
8 gentlemen such that selection includes at least 2 ladies?

Solution: As the selection includes ‘atleast’ constraint, we make cases to find total 
number of teams.

Ladies in the team Gentlemen in the team Number of ways to select team

2 3 4C2 × 8C3

3 2 4C3 × 8C2

4 1 4C4 × 8C1

Combining all cases shown in the table, total number of ways to select a team of 5 
members

= 4C2 × 8C3 + 4C3 × 8C2 + 4C2 × 8C1 = 456.

Example 37 In a company there are 12 job vacancies. Out of 12, 3 are reserved for 
‘reserved category’ candidates and rest 9 are open for all. In how many ways these 
12 vacancies can be filled by 5 from ‘reserved category’ and 10 from general category 
candidates?

Solution: There are 12 vacancies. As 3 are reserved for ‘reserved category’ candi-
dates, it means we have to select 12 candidates (to fill 12 vacancies) such that selection 
should include at least 3 candidates from ‘reserved category’. As rest 9 vacancies are 
open for all, it means ‘reserved category’ candidates can also take these vacancies.

As selection includes atleast constraint, we need to make following cases:

Reserved category General category candidates Number of ways to select

3 9 5C3 × 10C9

4 8 5C4 × 10C8

5 7 5C5 × 10C7

Combining all cases shown above, we get, number of ways to fill 2 vacancies

= 5C3 × 10C9 + 5C4 × 10C8 + 5C5 × 10C7

= 100 + 225 + 120 = 445 ways.
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Example 38 A man has 7 relatives, 4 of them ladies and 3 gentlemen; his wife has 7 
relatives, 3 of them are ladies and 4 gentlemen. In how many ways they can invite a 
dinner party of 3 ladies and 3 gentlemen so that there are 3 of man’s relatives and 3 
of wife’s relatives?

Solution: The possible ways of selecting 3 ladies and 3 gentleman for the party can be 
analysed with the help of the following table.

Man’s relative Wife’s relative

Ladies (4) Gentleman (3) Ladies (3) Gentleman (4) Number of ways

3 0 0 3 4C3
3C0 

3C0 
4C3 = 16

2 1 1 2    4C2
3C1 

3C1 
4C2 = 324

1 2 2 1    4C1
3C2 

3C2 
4C1 = 144

0 3 3 0          4C0
3C3 

3C3 
4C0 = 1

Total number of ways to invite = 16 + 324 + 144 + 1 = 485.

7.3.4.4 Selection of One or More Objects

7.3.4.4.1 From n Distinct Objects
The number of ways to select one or more objects from n different objects or we can 
say, selection of at least one object from n different objects = 2n - 1.

Logic:
The number of ways to select 1 object from n different objects = nC1

The number of ways to select 2 objects from n different objects = nC2

  …  …  …
  …  …  …
  …  …  …

The number of ways to select n objects from n different objects = nCn

Combining all above cases, we get the number of ways to select at least one (one or 
more) object from n different objects

= nC1 + nC2 + nC3 + nC4 + … + nCn

= 2n - 1 [Using sum of binomial coefficients in the expansion of (1 + x)n = 2n]

Alternate logic:
Let us assume a1, a2, a3, …, an be n distinct objects.

We have to make our selection from these n objects.
We can make out selection from a1 object in 2 ways.
This is because either we will choose a1 or we would not choose a1. Similarly selec-

tion of a2, a3, …, an can be done in 2 ways each.
Using fundamental principle of counting, the total number of ways to make selec-

tion from a1, a2, ..., an

= 2 × 2 × 2 × 2 … n times
= 2n

But the above selection includes a case where we have not selected any object. On 
subtracting this case from 2n we get, the number of ways to select atleast one (one or 
more) object from n different objects = 2n - 1

Objects a1 a2 a3 a4 … an

Ways 2 2 2 2 … 2
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Notes:
 1. The number of ways to select 0 or more objects from n distinct objects = 2n

 2. The number of ways to select at least 2 objects from n distinct objects  
= 2n - 1 - nC1

 3. The number of ways to select at least r objects from n distinct objects
= 2n - 1 - nC1 - nC2 - nC3 - … - nCr - 1 or nCr + nCr + 1 + nCr + 2 + … + nCn.

7.3.4.4.2 From n Identical Objects
The number of ways to select one or more objects (or at least one object) from n identi-
cal object = n.

Logic:

To select r objects from n identical objects, we cannot use 
n

r








  formula here, as all 

objects are not distinct. In fact, all objects are identical. It means we cannot choose 
objects. It does not matter which r objects we take as all objects are identical.

The number of ways to select 1 object from n identical objects = 1
The number of ways to select 2 object from n identical objects = 1
  …  …  …
  …  …  …
  …  …  …
The number of ways to select n objects from n identical objects = 1.
Combining all above cases, we get
Total number of ways to select 1 or more objects fron n identical objects

= 1 + 1 + … n times = n

Notes:
 1. The number of ways to select r objects from n identical objects is 1.
 2. The number of ways to select 0 or more objects from n identical objects = n + 1.
 3. The number of ways to select at least 2 objects from n identical objects = n - 1.
 4. The number of ways to select atleast r objects from n identical objects is 

n - (r - 1) = n - r + 1
 5. The total number of selections of some or all out of (p + q + r) objects where p are 

alike of one kind, q are alike of second kind and rest r are alike of third kind is
  (p + 1) (q + 1) (r + 1) - 1. [Using fundamental principle of counting]

7.3.4.4.3 From Objects Which are not All Distinct from Each Other
The number of ways to select one or more objects from (p + q + r … + n) objects where 
p objects are alike of one kind, q are alike of second kind, r are alike of third kind, … 
and remaining n are distinct from each other 

= [(p + 1) (q + 1) (r + 1) … 2n] - 1.

Logic:
The numbers of ways to select 0 or more objects from p alike objects of one kind = p + 1

The number of ways to select 0 or more objects from q alike objects of second kind 
= q + 1

The number of ways to select 0 or more objects from r alike objects of third kind 
= r + 1

  …  …  …
  …  …  …
  …  …  …
The number of ways to select 0 or more objects from n distinct objects = 2n
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Combining all cases and using fundamental principle of counting, we get:
Total number of ways to select 0 or more objects

 = [(p + 1) (q + 1) (r + 1) … ]2n (1)

But above selection includes a case where we have not selected any object. So we 
need to subtract 1 from the above result if we want to select at least one object.

Therefore, the total number of ways to select one or more objects (at least one) from 
p alike of one kind, q alike of another kind, r alike to third kind … and n distinct objects

= [(p + 1) (q + 1) (r + 1) … ]2n - 1

Notes:
 1. The number of ways to select 0 or more objects from p alike of one kind, q 

alike of second kind, r alike of third kind and n distinct objects = (p + 1) (q + 1) 
(r + 1) 2n.

 2. The number of ways to select objects from p alike of one kind, q alike of second 
kind and r alike of third kind and n distinct objects such that selection includes at 
least one object each of first, second, and third kind and atleast one object from n 
different kind = pqr(2n - 1).

 3. The number of ways to select objects from p alike of one kind, q alike of second 
kind and r alike of third kind and n distinct objects such that selection includes at 
least one object of each kind = pqr. 

Example 39 A man has 5 friends. In how many ways can he invite one or more of them 
to a party?

Solution: If he invites one person to the party, number of ways = 5C1

If he invites two persons to the party, number of ways = 5C2

Proceeding on the similar pattern, total number of ways to invite

= 5C1 + 5C2 + 5C3 + 5C4 + 5C5

= 5 + 10 + 10 + 5 + 1 = 31

Alternate Method:
To invite one or more friends to the party, he has to take 5 decisions, one for every 
friend.

Each decision can be taken in two ways, invited or not invited.
Hence, the number of ways to invite one or more

= (number of ways to make 5 decisions - 1)
= 2 × 2 × 2 × 2 × 2 - 1 = 25 - 1 = 31

Note that we have to subtract 1 to exclude the case, when all are not invited.

Example 40 Prove that there are 2(2n-1 - 1) ways of dealing n distinct cards to two 
persons. (The players may receive unequal number of cards and each one receiving at 
least one card).

Solution: Let us number the cards for the moment. Let us accept the case where all the 
cards go to one of the two players, also with just two cards, we have the possibilities,

  AA AB BA BB (1)

Here, AA means A gets card 1 and also card 2,
AB means A gets card 1 and B gets card 2,
BA means B gets card 1 and A gets card 2,
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BB means B gets card 1 and also card 2.
Thus, for two cards we have four possibilities.
For three cards

  AAA, ABA, BAA, BBA, AAB, ABB, BAB, BBB (2)

That is, for three cards there are 23 = 8 possibilities. Here, if the third card goes to A, 
then, in Eq. (1) annex A at the end, thus getting

AAA, ABA, BAA, BBA.

Thus, the possibilities doubled, when a new card (third card) is included.
In fact just with one card it may either go to A or B.
By annexing the second card, it may give

AA BA giving (1)

AB BB

Thus, every new card doubles the existing number of possibilities of distributing the 
cards.

Hence, the number of possibilities with n cards is 2n. But this includes the 2 distri-
butions where one of them gets all the cards, and the other none.

So, total number of possibilities is 2n − 2 = 2(2n - 1 - 1).

Note: We can look at the same problem in the following way. The above distribution 
of cards is the same as number of possible n-digit numbers where only two digits 1 
and 2 are used, and each digit must be used at least once. This is 2n - 2 = 2(2n - 1 - 1).

Aliter: Since n cards are dealt with and each player must get at least one card, player 
1 can get r cards and player 2 get (n - r) cards where 1 ≤ r ≤ n - 1. Now, player 1 can 
get r cards in C(n, r) ways. Total number of ways of dealing cards to players 1 and 2

= = − − = −
==

−

∑∑C n r C n r C n C n n
r

n

r

n
n( , ) ( , ) ( , ) ( , ) .    

01

1

0 2 2

Example 41 Find the number of ways in which one or more letters can be selected 
from the letters:
A A A A B B B C D E

Solution: The given letters can be divided into five following categories: (AAAA), 
(BBB), C, D, E
To select at least one letter, we have to take five decisions—one for every category. 
Selections from (AAAA) can be made in 5 ways: include no A, include one A, include 
AA, include AAA, include AAAA.

Similarly, selections from (BBB) can be made in 4 ways, and selections from C, D, 
E can be made in 2 × 2 × 2 ways.

⇒ Total number of selections = 5 × 4 × (2 × 2 × 2) - 1 = 159
(excluding the case when no letter is selected).

Example 42 The question paper in the examination contains three sections: A, B, C. 
There are 6, 4, 3 questions in sections A, B, C respectively. A student has the freedom 
to answer any number of questions attempting at least one from each section. In how 
many ways can the paper be attempted by a student?

Solution: There are three possible cases:

Case 1: Section A contains 6 questions. The student can select at least one from these 
in 26 - 1 ways.

M07_Combinatorics_C07.indd   22 8/11/2017   2:27:52 PM



Combinatorics  7.23

Case 2: Section B contains 4 questions. The student can select at least one from these 
in 24 - 1 ways.

Case 3: Section C can similarly be attempted in 23 - 1 ways.
Hence, total number of ways to attempt the paper

= (26 - 1) (24 - 1) (23 - 1)
= 63 × 15 × 7 = 6615.

Example 43 Find the number of factors (excluding 1 and the expression itself) of the 
product of a7 b4 c3 d e f where a, b, c, d, e, f are all prime numbers.

Solution: A factor of expression a7 b4 c3 d e f is simply the result of selecting none or 
one or more letters from 7 a’s, 4 b’s, 3 c’s, d, e, f
The collection of letters can be observed as a collection of 17 objects out of which 7 
are alike of one kind (a’s), 4 are of second kind (b’s), 3 are of third kind (c’s) and 3 are 
distinct (d, e, f  ).

The number of selections = (1 + 7) (1 + 4) (1 + 3) 23 = 8 × 5 × 4 × 8 = 1280.
But we have to exclude two cases :
(i) When no letter is selected,  (ii) When all letters are selected.
Hence the number of factors = 1280 - 2 = 1278.

Example 44 Find the number of positive divisors of n = p p pk k
r
kr

1 2
1 2⋅ � , where p1, 

p2,…, pr are distinct prime numbers and k1, k2,…, kr are positive integers.

Solution: A divisor d of n is of the form

d p p pl l
r
lr= ⋅1 2

1 2 � where 0 ≤ li ≤ ki, i = 1, 2, …, r.

Associate each divisor d of n with an r tuple (l1, l2, …, lr) such that 0 ≤ li ≤ ki. There-
fore, the number of divisors is the same as the number of r tuples (l1, l2, …, lr), 0 ≤ li 
≤ ki, i = 1, 2, …, r.

Since l1, can have k1 + 1 possible values 0, 1, 2, …, k1 similarly l2, can have k2 + 1 
values and so on. The number of r-triples (l1, l2, …, lr) is

(k1 + 1) × (k2 + 1) × (k3 + 1) × … × (kr + 1) = 
i

r

ik
=
∏ +

1

1( )

That is the total number of divisors of

n p p p k k k kk k
r
k

r i
i

r
r= ⋅ + + + = +

=
∏1 2 1 2

1

1 2 1 1 1 1� � is ( )( ) ( ) ( ).

Note: Also refer article 6.6 on page 6.13 of number theory chapter.

7.3.4.5 Selection of r Objects from n  Objects 
when All n Objects are not Distinct

In this problem type we will discuss how to select r objects from n objects when all n 
objects are not distinct.

For example, selection of 3 letters from letters AABBBC.
To find number of ways to select, it is possible to derive a formula that can be 

applied in all such cases.
Instead of formula, we will discuss a method (procedure) that should be applied to 

find selections.
The method involves making cases based on alike items in the selection. You should 

go through the following examples to learn how to apply this ‘method of cases’ to find 
selections of r objects from n objects when all n objects are not distinct.
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Example 45 In how many ways 3 letters can be selected from letters AABBBC.

Solution: The given letters include AA, BBB, C, i.e., 2A letters, 3B letters and 1C 
letter.
To find number of selections, we will make the following cases based on alike letters 
we choose in the selection.

Case 1: All 3 letters are alike
3 alike letters can be selected from given letters in only 1 way, i.e., BBB.

⇒ The number of selections with all 3 letters alike = 1 (1)

Case 2: 2 alike and 1 distinct letter
2 alike letters can be selected from 2 sets of alike letters (AA, BB) in 2C1 ways.

1 distinct letter (distinct from selected alike letters) can be selected from remaining 
letters in 2C1 ways. (either A or B).

Using fundamental principle of counting, total number of selections with 2 alike 
and 1 distinct letter 

          = 2C1 × 2C1 = 4 ways (2)

Case 3: All letters distinct
All 3 letters distinct can be selected from 3 distinct letters (A, B, C) in 1 way.

⇒ Total number of ways to select 3 distinct letters is 1 way (3)
Combining (1), (2) and (3).
Total number of ways to select 3 letters from given letters = 1 + 4 + 1 = 6.

Example 46 In how many ways 4 letters can be selected from the letters of the word 
INEFFECTIVE?

Solution: INEFFECTIVE contains 11 letters: EEE, FF, II, C, T, N, V
We will make following cases to select 4 letters.

Case 1: 3 alike and 1 distinct
3 alike letters can be selected from 1 set of 3 alike letters (EEE) in 1 way.

⇒ The number of ways to select 3 alike letters = 1
⇒ The number of ways to select 1 distinct letters = 6 
⇒ Total ways = 6 × 1 = 6 (1)

Case 2: 2 alike and 2 alike
‘2 alike and 2 alike’ means we have to select 2 groups of 2 alike letters (EE, FF, II) in 
3C2 ways.

⇒ The number of ways to select ‘2 alike and 2 alike’ letters = 3C2 = 3. (2)

Case 3: 2 alike and 2 distinct
1 group of 2 alike letters can be selected from 3 sets of 2 alike letters (EE, FF, II) in 
3C1 ways.

2 distinct letters can be selected from 6 distinct letters (C, T, N, V, remaining 2 sets 
of two letters alike) in 6C2 ways.

The number of ways to select ‘2 alike and 2 distinct letters’
 3C1 × 6C2 = 3 × 15 = 45 (3)

Case 4: All distinct letters
All distinct letters can be selected from 7 distinct letters (I, E, F, N, C, T, V) in 7C4 
ways.

⇒ The number of ways to select all distinct letters = 7C4 = 35 (4)
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Combining (1), (2), (3), and (4), we get,
Total number of ways to select 4 letters from the letter of the word ‘ INEFFECTIVE’ 

= 6 + 3 + 45 + 35 = 89.

Example 47 In how many ways a child can select 5 balls from 5 red, 4 black, 3 white, 
2 green, 1 yellow balls? (Assume balls of the same colour are identical)

Solution: It is given that child can select 5 balls from RRRRR BBBB WWW GG Y 
balls. We will make following cases:

 (i) All alike:
  There is one group of all alike balls (5 red balls)
  ⇒ Number of ways to choose 1 group = 1C1 = 1
 (ii) 4 alike and 1 distinct:
  There are 2 groups of 4 alike balls (4 red balls, 4 black balls) and after selecting 

one group, there are 4 distinct balls left from where we require to choose one ball.
  ⇒ Number of ways to select ‘4 alike and 1 distinct’ = 2C1 × 4C1 = 8
 (iii) 3 alike and 2 alike:
  Select 3 alike balls from 3 groups of 3 alike balls (RRR, BBB, WWW) in 3C1 ways. 

Then select 2 alike balls from remaining 3 groups of 2 alike balls in 3C1 ways.
  ⇒ Number of ways to select ‘3 alike and 2 alike’
  = 3C1 × 3C1 = 9
 (iv) 3 alike and 2 distinct:
  Select one group of 3-alike balls from 3 groups of 3-alike balls in 3C1 ways. Se-

lect 2 balls from remaining 4 distinct balls in 4C2 ways.
  ⇒ Number of ways to select ‘3 alike and 2 distinct’
  = 3C1 × 4C2 = 18
 (v) 2 alike, 2 alike and 1 distinct:
  Select 2 groups of 2-alike balls from 4 groups of 2-alike balls in 4C2 ways. Fur-

ther select 1 ball from remaining 3 distinct balls in 3C1 ways.
  ⇒ Number of way to select ‘2 alike, 2 alike and 1 distinct’
  = 4C2 × 3C1 = 18
 (vi) 2 alike and 3 distinct:
  Select one group of 2-alike balls from 4 groups of 2-alike balls in 4C1 ways. Then 

select 3 balls from remaining 4 distinct balls in 4C3 ways.
  ⇒ Number of ways to select ‘2 alike and 3 distinct’
  = 4C1 × 4C3 = 16
 (vii) All distinct:
  Select 5 distinct balls from 5 distinct balls (R, B, W, G, Y) in 5C5 ways.
  ⇒ Number of ways to select ‘All distinct’
  = 5C5 = 1.
  Combining all above cases, total number of ways in which child can select 5 balls 
  = 1 + 8 + 9 + 18 + 18 + 16 + 1 = 71 ways.

7.3.4.6 Occurrence of Order in Selection

If n objects are chosen as ‘first (n - 1) objects are chosen and then nth object’ or ‘n 
objects are chosen one by one’ then always ordered selections are made and hence the 
repetitions. So in the final count, these repetitions are to be deleted.

Example 48 In how many ways we can select two unit square on an ordinary chess 
board such that both square neither in same row nor in same column.
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Solution: First square is selected in 64 ways.
After selection of first, we can’t select any of the remaining 7 squares which are in the 
same row with first square and similarly we cannot select any of remaining 7 squares 
which are in the same column with first square. So number of choices for second 
square is 64 - 1 - 7 - 7 = 49.

Hence, apparently, by multiplication principle, number of ways = 64 × 49.
But in this count, repetitions occurred. In fact, each selection is counted twice.

So final answer =
×

=
64 49

2
1568  ways.

Example 49 Find the number of pairings of a set of 2n elements [e.g., {(1, 2), (3, 4), 
(5, 6)} {(1, 3), (2, 4), (5, 6)} are two pairings of the set {1, 2, 3, 4, 5, 6}].

Solution: Let A = {1, 2, 3, 4, …, 2n - 1, 2n}.
A pair having 1 as one element (out of the two elements) can be obtained in (2n - 1) 
ways. Say, selected element is k (Assuming k ≠ 2). Similarly a pair having 2 as one 
element (out of two elements), can be obtained in 2n - 3 ways, etc.

Number of pairings = (2n - 1)(2n - 3) (2n - 5) … 3 . 1

Aliter: First pair can be obtained in 2nC2 ways. Second pair can be obtained in 2n - 2C2 
ways. 

Third pair can be obtained in 2n - 4C2 ways.…

nth pair can be obtained in 2C2 ways. 
Apparently, by multiplication principle, 
number of pairings = 2nC2 . 

2n - 2C2 … 2C2 . 
But in this count, too many repetitions have been counted. In fact, each pairing is 

counted n! times. 

Required number = 
2

2
2 2

2
4

2
2

2
n nC C C C

n

⋅ ⋅− �
 !

(Verify this number is same as (2n - 1) (2n - 3) (2n - 5) … 3 . 1)

7.3.4.7 Points of Intersection between Geometrical Figures

We can use nCr (number of ways to select r objects from n different objects) to find 
points of intersection between geometrical figures.

For example:

 1. Number of points of intersection of ‘n’ non-concurrent and non parallel lines is nC2.
Logic: When two lines intersect, we get a point of intersection. Two lines from n 
distinct lines can be selected in nC2 ways. Therefore, number of points of intersec-
tion is nC2.

 2. Number of lines that can be drawn, passing though any 2 points out of n given 
points in which no three of them are collinear, is nC2.
Logic: A line can be drawn through two points. Two points can be selected from 
n distinct points in nC2 ways. Therefore, number of lines that can be drawn is nC2.

 3. Number of triangles that can formed, by joining any three points out of n given 
points in which no three of them are collinear is nC3.
Logic: A triangle is formed using 3 different points. Three points can be selected 
from n distinct points in nC3 ways. Therefore, we can form nC3 triangles using n 
distinct points.
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 4. Number of diagonals that can be drawn in a ‘n’ sided polygon is 
n n( )

.
−3

2
Logic: There are n vertices in a n sided polygon. When two vertices are joined 
(excluding the adjacent vertices), we get a diagonal. The number of ways to select 
2 vertices from n vertices is nC2. But this also includes n sides (when adjacent 
vertices are selected). Therefore number of diagonals

= − =
−

− =
−nC n

n n
n

n n
2

1

2

3

2

( ) ( )
.

Aliter: n - 3 diagonals emerge from each vertex. For example, from vertex named 1,
n - 3 diagonals emerge whose other ends are vertices 3, 4, …, n - 1.

Number of diagonals apparently, by multiplication principle, is n(n - 3) but each 
diagonal is counted twice.

Required number =
−n n( )

.
3

2

Verify that is same as,
( )

.nC n
n n

2
3

2
−

−







Example 50 How many triangles can be formed by joining the vertices of a hexagon?

Solution: Let A1, A2, A3, …, A6 be the vertices of the hexagon. One triangle is formed 
by selecting a group of 3 points from 6 given vertices.
Number of triangles = Number of groups of 3 each from 6 points.

= = =6
3

6

3 3
20C

!

! !
.

Example 51 There are 10 points in a plane, no three of which are in the same straight 
line, except 4 points, which are collinear. Find the 
 (i) number of straight lines obtained from the pairs of these points;
 (ii) number of triangles that can be formed with the vertices as these points.

Solution:
 (i) Number of straight lines formed joining the 10 points, taking 2 at a time 

= = =10
2

10

2 8
45C

!

! !

  Number of straight lines formed by joining the four points (which are collinear), 

taking 2 at a time = = =4
2

4

2 2
6C

!

! !
  But, 4 collinear points, when joined pairwise give only one line.
  So, required number of straight lines = 45 - 6 + 1 = 40.
 (ii) Number of triangles formed by joining the points, taking 3 at a time 

= = =10
3

10

3 7
120C

!

! !
Number of triangles formed by joining the 4 points (which are collinear), taken 

3 at a time = 4C3 = 4.
But, 4 collinear points cannot form a triangle when taken 3 at a time.
So, required number of triangles = 120 - 4 = 116.

Example 52 There are 12 points in a plane, 5 of which are concyclic and out of 
remaining 7 points, no three are collinear and none concylic with previous 5 points. 
Find the number of circles passing through at least 3 points out of 12 given points.

1

n

2

3
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Solution: Consider Set A consists of 5 concyclic points. Set B consists of remaining 
7 points.

Case 1: Circle passes through 3 points of set B
Number of circles = 7C3

Case 2: Circle passes through 2 points of set B and one point of set A
Number of circles = 7C2 . 

5C1

Case 3: Circle passes through 1 point of set B and two points of set A
Number of circles = 7C1 . 

5C2

Case 4: Circle passes through no point from set B.
Number of circles = 1

All 4 cases are exhaustive and mutually exclusive.
So, total number of circles

= 7C3 + 7C2 . 
5C1 + 7C1 . 

5C2 + 1

= + + +
7 !

3 ! 4 !
7 !

2 ! 5 !
 . 5  7 . 5 !

2 ! 3 !
 1

= + + +
7. 6. 5
1. 2. 3

7. 6
1. 2

 . 5 7.  5. 4
1. 2

1

= 35 + 105 + 70 + 1

= 211.

Aliter: Select three points out of 12 in 12C3 ways. This number includes the number 
of circles obtained from 3 points out of 5 concyclic points. Note that we get the same 
circle by selecting any three points out of 5 concyclic points but we count it 5C3 times. 

Required number = 12C3 - 5C3 +1 
= 211.

Example 53 In a plane there are 37 straight lines, of which 13 pass through the point 
A and 11 pass through the point B. Besides, no three lines pass through one point, no 
line passes through both points A and B, and no two are parallel. Find the number of 
points of intersection of the straight lines.

Solution: The number of points of intersection of 37 straight lines is 37C2. But 13 
straight lines out of the given 37 straight lines pass through the same point A. There-
fore instead of getting 13C2 points, we get merely one point A. Similarly, 11 straight 
lines out of the given 37 straight lines intersect at point B. Therefore instead of getting 
11C2 points, we get only one point B. Hence, the number of intersection points of the 
lines is 37C2 - 13C2 - 11C2 + 2 = 535.

Example 54 l1 and l2 are two parallel lines; m and n are the points on ll and l2, respec-
tively. Find the number of triangles that could be constructed using these points as 
vertices.

Solution: Any two points on l1 and a point on l2 form a triangle; again any two points 
on l2 and a point on l1 also form a triangle.
2 points can be chosen in mC2 ways from m points of l1 and we have n choices for a 
point on l2 and similarly, 2 points can be chosen in nC2 ways from n points of l2 and in 
m ways we can choose a point on l1,
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Therefore, the number of triangles formed is given by

mC2 × n + nC2 × m = ×
−

+ ×
−

= + −n
m m

m
n n mn

m n
( ) ( )

( ).
1

2

1

2 2
2

Example 55 If m parallel lines in plane are intersected by a family of n parallel lines. 
Find the number of parallelogram formed.

Solution: A parallelogram is formed by choosing two straight lines from the set of m 
parallel lines and two straight lines from the set of n parallel lines.
Two straight lines from the set of m parallel lines can be chosen in mC2 ways and two 
straight lines from the set of n parallel lines can be chosen in nC2 ways. Hence, the 
number of parallelograms formed.

= × =
−

×
−

=
− −m nC C

m m n n mn m n
2 2

1

2

1

2

1 1

4

( ) ( ) ( ) ( )

Example 56 In a plane, a set of 8 parallel lines intersects a set of n other parallel 
lines, giving rise to 420 parallelograms (many of them overlap with one another). Find 
the value of n.

Solution: If two lines which are parallel to one another (in one direction) intersect 
another two lines which are parallel, we get one parallelogram. Thus, we can choose 
C(8, 2) pairs of parallel lines in one direction and the number of parallel lines intersect-
ing there will be C(n, 2) pairs.

So, the number of parallelograms thus obtained is

C(n, 2) × C(8, 2) = 420

⇒ n n( )

. .

−
×

×
=

1

1 2

8 7

1 2
420

⇒ n(n - 1) = 30
⇒ n = 6 (or n = -5, which is not admissible)

Thus n = 6 is the solution.

Example 57 Prove that, if each of the m points in one straight line be joined to each of 
the n points by straight lines terminated by the points then excluding the given points, 

these lines will intersect in 
1

4
mn (m - 1)(n - 1) points.

Solution: Two straight lines intersect in one point.
So to get one point of intersection, we require two points on the first line (l1) and 

two points on the second line (l2).
For joining A of l1 to C and D of l2, they intersect in A, which is not counted as the 
required point. However, AD and CB intersect at the point P1, AC and BD intersect only 
when extended which is also not counted as the required point. Thus to get an intersec-
tion, other than the points in l1 and l2, we should take two points from each of l1 and l2 
and joined them in cross pattern.

The number of ways we can choose two points from l1 in which m points are plotted, 
is mC2. Similarly, we can choose two points from l2 in nC2 ways. For each pair of points 
from l1 and l2, we get one point of intersection.

So, the total number of points when there are mC2 pairs from l1 and nC2 pairs from 
l2 is

1

1
2

2
3

mth
nth

3
…

…

P1

D

l1

l2
C

B

m points

n points

A

…

…
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m nC C
m m n n

2 2
1

1 2

1

1 2
× =

−
×

−( )

.

( )

.

 = − −
1

4
1 1mn m n( )( ).

Example 58 Let there be n concurrent lines and another line parallel to one of them. 
Find the number of different triangles that will be formed by the (n + 1) lines.

Solution: The number of triangles = Number of selections of 2 lines from the (n - 1) 
lines which are cut by the last line

= =
−
−

=
− −−n C

n

n

n n1
2

1

2 3

1 2

2

( )!

!( )!

( ) ( )
.

Example 59 Out of 18 points in a plane no three are in the same straight line except 
five points which are collinear. Find the number of straight lines that can be formed by 
joining any two of them.

Solution: The number of straight lines = 18C2 - (5C2 - 1) = 144.

Example 60 There are p points in a plane, no three of which are in the same straight 
line with the exception of q, which are all in the same straight line. Find the number of 

 (i) straight lines
 (ii) triangles which can be formed by joining them.

Solution:
 (i) If no three of the p points were collinear, the number of straight lines = Number 

of groups of two that can be formed from p points = pC2.
  Due to the q points being collinear, there is a loss of qC2 lines that could be 

formed from these points.
  But these points are giving exactly one straight line passing through all of them.
  Hence, the number of straight lines = pC2

 - qC2 + 1.
 (ii) If no three points were collinear, the number of triangles = pC3
  But there is a loss of qC3 triangles that could be formed from the group of col-

linear points.
  Hence the number of triangles formed = pC3 - qC3.

Example 61 The sides AB, BC and CA of a triangle ABC have a, b and c interior 
points on them respectively then find the number of triangles that can be constructed 
using these interior points as vertices.

Solution: Required number of triangles
= Total number of ways choosing 3 points
- Number of ways of choosing all the 3 points either from AB or BC or CA
= a + b + cC3 - (aC3 + bC3 + cC3)

Example 62 Let Ai, i = 1, 2, …, 21 be the vertices of a 21-sided regular polygon 
inscribed in a circle with centre O. Triangles are formed by joining the vertices of 
the 21-sided polygon. How many of them are acute-angled triangles? How many of 
them are right-angled triangles? How many of them are obtuse-angled triangles? How 
many of them are equilateral? How many of them are isosceles?

Solution: Since this is a regular polygon with odd number of vertices, no two of the 
vertices are placed diagonally opposite, so there is no right-angled triangle. Hence 

1

3
2

1

32

3

2

1

A

C
b

B

a

c …

…

…
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number of right-angled triangle is zero. Let A be the number of acute-angled triangles. 
To form a triangle we need to choose 3 vertices out of the 21 vertices which can 

be done in C( , )21 3
21 20 19

6
1330=

× ×
= ways. Since the triangles are either acute or 

obtuse, we get A + O = 1330.
Let us find O, the number of obtuse angled triangles first.
Draw one diameter say passing through A1. Now let us count all obtuse angle triangle 
on right side of the diameter and having one verfex at A1. For these triangles we need 

two more vertex out of A2 to A11. Which can be seleted in 
10

2









  ways.

Hence total number of obtuse angle triangles is 21 ⋅ 
10

2









  = 945

Now acute angle triangles
A = 1330 - 945
    = 385

A triangle Ai Aj Ak is equilateral if Ai, Aj, Ak are equally spaced.
Out of A1, …, A21, we have only 7 such triplets
A1 A8 A15, A2A9A16, …, A7A14A21. Therefore, there are only 7 equilateral triangles.
Consider the diameter A1OB where B is the point where A1O meets the circle. If 

we have an isosceles triangle A1 as its vertex then A1B is the altitude and the base is 
bisected by A1B. This means that the other two vertices, Aj and Ak, are equally spaced 
from B.

We have 10 such pairs, so we have 10 isosceles triangles with A1 as vertex of which 
one is equilateral.

Because proper isosceles triangles with A1, as vertex (non-equilateral) are 9, with 
each vertex Ai, i = 1, 2, …, 21 we have 9 such isosceles triangles.

So, total number of isosceles but non-equilateral triangles are 9 × 21 = 189. But the 
7 equilateral triangles are also to be considered as isosceles.
∴ The total number of isosceles triangles is 189 + 7 = 196.

Note: This problem can be generalized to a regular polygon having n vertices. Find 
the number of acute, obtuse, right, isosceles, equilateral and scalene triangles.

7.3.4.8 Formation of Subsets

In these type of problems, we select elements from a given set to form subsets. We are 
supposed to form subsets under constraints. For example, two subsets P and Q are to 
be formed such that P ∪ Q has all elements, P ∩ Q has no elements, etc. To understand 
the problems based on this type, read the following examples carefully.

P ∪ Q

P Q

X

     

X

P Q

P ∩ Q

Example 63 Let X be a set containing n elements. A subset P of set X is chosen 
at random. The set X is then reconstructed by replacing the elements of set P and 
another set Q is chosen at random then find the number of ways to form sets such 
that P ∪ Q = X.

A1

A8
A9

A10A11
A12

A13

A14

A3

A4

A5

A6

A7

A21
A20

A19

A18

A17

A16

A15

A2

O
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Solution: As P ∪ Q = X, it means every element would be either included in P or in Q 
or both so for every element, there are 3 choices.
⇒ Number of ways to select P and Q such that (P ∪ Q = X) = 3n.

Example 64 Let X be a set containing n elements. A subset P of set X is chosen at 
random. The set X is then reconstructed by replacing the elements of set P and another 
set Q is chosen at random. Find number of ways to choose P and Q such that P ∪ Q 
contains exactly r elements.

Solution: P ∪ Q has r elements. It means r elements out of n elements should be pres-
ent in either P or in Q or in both. r elements out of n elements can be selected in nCr 

ways.
Each of these r elements has 3 choices

⇒ Number of ways to select elements of P and Q = 3r

Each of remaining (n - r) elements has 1 choice, i.e., neither belongs to P nor 
belongs to Q ⇒ Number of ways = 1n - r.

⇒ Number of ways to select P and Q such that P ∪ Q has exactly r elements 

= nCr3
r (1)n-r = nCr3

r.

Example 65 Let X be a set containing n elements. A subset P of set X is chosen at 
random . The set X then reconstructed by replacing the elements of set P and another 
set Q is chosen at random. Find number of ways to select P and Q such that P ∩ Q is 
empty, i.e., P ∩ Q = ϕ.

Solution: P ∩ Q = ϕ. It means P and Q should be disjoint sets. That is there is no ele-
ment common in P and Q.
⇒ For every elements in set X there are 3 choices. Either it is selected in P but not in 
Q or selected in Q but not in P or not selected in both P and Q.

⇒ Number of ways to select P and Q such that P ∩ Q is ϕ = 3n.

Example 66 Let X be a set containing n elements. A subset P of set X is chosen 
at random. The set X is then reconstructed by replacing the elements of set P and 
another set Q is chosen at random. Find number of ways to select P and Q such that 
P = Q.

Solution: P Q=  or QC. It means P and Q are complementary sets, i.e., every element 
present in X is either present in P or Q.
⇒ For every element there are 2 choices to select. Either it will be selected for P or it 
will be selected for Q.

⇒ Number of ways to select = 2n

Example 67  Let X be a set containing n elements. A subset P1 is chosen at random 
and then set X is reconstructed by replacing the elements of set P1. A subset P2 of X is 
now chosen at random and again set X is reconstructed by replacing the elements of 
P2. This process is continued to choose subsets P3, P4, P5, …, Pm where m ≥ 2. Find 
numbers of ways to select sets such that:

 (i) Pi ∩ Pj = ϕ for i ≠ j and i, j = 1, 2, …, m.

 (ii) P1 ∩ P2 ∩ P3∩ … ∩ Pm = ϕ.

X
QP

X

P Q

X

P Q
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Solution:

 (i) Pi ∩ Pj = ϕ ∀ i ≠ j
  Every element in X has (m + 1) choices because either it can be selected for P1 or 

P2 or P3 or … or Pm or not get selected in any of the sets.
  ⇒ Number of favourable ways = (m + 1) (m + 1) … n times = (m + 1)n

 (ii) P1 ∩ P2 ∩ P3 … ∩ Pm = ϕ.
  This means there is no element to be common to all sets P1, P2, P3 … Pm.
  For each element out of a1, a2, … an there are (2m - 1) choices to get selected. It 

can be selected in any sets but not for all sets together so we subtract 1 from 2m.
  Total ways to select P1, P2, P3, …, Pm such that P1 ∩ P2 … ∩ Pm = ϕ is (2m - 1)n.

7.4 The Bijection Principle

Let A = { a1, a2, …, an } and B = {b1, b2, …, bm }.
If f : A → B is an injective function then n ≤ m.
If f : A → B is a surjective function then n ≥ m.
If f : A → B is injective and surjective then f is known to be a bijective function. For 

a bijective function, n = m.

Example 68 What is the total number of subsets of a set containing exactly n elements?

Solution: It is a well known result, number of subsets = 2n.
Let S = {a1, a2, a3, …, an } be a set of exactly n elements.
Let P be the set of all subsets of S and Q be the set of all binary sequences of n ele-
ments. 

Let A ∈ P. Let f : P → Q be a function that associates a binary sequence with A as 
follows:

ai ∈ A, iff ith term of the sequence is 1.
For example, subset {a2, a4, an - 1 } corresponds to binary sequence

0   1   0    1    0    0 . . . 0    1    0
      ̄           ̄                           ̄

      2nd
place

   4th
place

                 (n -1)th
place.

Observe that, for every subset A, there is a binary sequence of n terms and for every 
binary sequence of n terms as stated above, there is a subset A of S.

Therefore f is a bijection between P and Q. 

Hence, the number of subsets = number of binary sequences = 2n.

Example 69 Consider a network as shown in the figure. Paths from 
A to B consists of the horizontal or vertical line segments. 

No diagonal movement is allowed. We can only move left to right or down to up. 
One sample path from A to B is shown.
 (i) How many paths are there from A to B?
 (ii) How many paths go via C?
 (iii) How many paths go via CD?

Solution: Assign 0 for horizontal line segment of one unit. Assign 1 for vertical line 
segment of one unit. For example, corresponding to the path shown in the figure, we 
can write one binary sequence as 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1.

X

PmP2P1 …

A

C D

B
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Note that there are 7 horizontal and 6 vertical line segments, of one unit each, in every 
path from A to B.
 (i) Since, for every path between A and B, there is a binary sequence of 7, 0’s and 

6, 1’s and for every sequence we can have corresponding one path made up of 
horizontal and vertical lines. Therefore there is bijection between the set of all 
paths from A to B and the set of all binary sequences of 7, 0’s and 6, 1’s.

  ⇒Number of paths between A and B = Number of binary sequences 

  = Number of ways to select 7 places to put 0 out of 13 different places =










13

7

  =
13 !
7 ! 6 !

 (ii) Number of paths through C
  = (Number of paths from A to C) × (Number of paths from C to B)
  =  Number of ways to select 4 places to put 0 out of first 8 different places  

× Number of ways to select 3 places to put 0 out of next 5 different places

  =







×









8

4

5

3

  =
8 !

4 ! 4 !
5 !

3 !  2 !
×

  (Note that there are 4 horizontal and 4 vertical line segments of one unit each, 
in every path from A to C. There are 3 horizontal and 2 vertical line segments of 
one unit each in every path between C and B.)

 (iii) Similarly number of paths from D to B =
4 !

2 !  2 !×
  (as there are 2 horizontal and 2 vertical line segments of one unit each in every 

path between B and D.)

  Number of paths containing CD =
8 !

4 !  4 !
4 !

2 !  2 !×
×

×
.

Note: If a problem, similar to street network, but in three dimensions, is to be solved, 
we define ternary sequences consisting of 0’s, 1’s and 2’s.
For example, number of paths between (0, 0, 0) and (3, 4, 6), consisting of line seg-

ments of one unit each in positive directions of the co-ordinate axes =
13 !

3! 4! 6!
.

7.5 Combinations with Repetitions Allowed

Here we will discuss combinations of n different objects taken r at a time when each 
object can be repeated any number of times in a combination.

Suppose three different objects A, B, C are given. We have to select two objects 
from A, B, C and in our selection we can include A, B, C repeatedly any number of 
times. This selection can be done in following ways.

AA, BB, CC, AB, AC, BC, i.e., 6 ways.
This number 6 cannot be obtained using formula nCr as here repetition of objects is 

allowed. To find answer to this type of problem, where repetition of objects is allowed, 
we use the following formula:

Number of ways to select r objects from n different objects where each object can 
be selected any number of times is nHr.

A

C D

B

A

C D

B
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n
rH

n r

r
=

+ −









1

Logic:
Let n different objects be numbered as 1, 2, 3, …, n. 

And selected numbers be a1, a2, a3, …, ar, such that

  ⋅ ≤ ≤ ≤ ≤ ≤ ≤1 1 2 3a a a a nr�  (1)

Here we allowed weak inequalities between ai’s, as numbers may be repeated which 
will correspond to repetition of objects.

Now consider another sequence,

  a a a a rr1 2 31 2 1, , , ,+ + + −�  (2)

 We can observe following properties in sequence (2):
 1. Sequence is strictly increasing
 2. Minimum and Maximum element in the sequence can be 1 and n + r -1 respec-

tively.

 3. There are
n r

r

+ −









1
 such sequence 

(As any r numbers can be selected from 1 to n + r - 1) 
Now there is a Bijection between sequence (1) and sequence (2)

Hence total number of sequence (1) is also 
n r

r

+ −









1
.

Example 70 In how many ways a person can buy 5 icecreams from a shop in which 
four different flavours of icecreams are available.

Solution: Here person can buy all five icecreams of same flavour or in any other com-
bination, i.e., any flavour can be taken 0 or 1 or 2 … or 5 times. 
Hence our current problem is selection of 5 icecreams from 4 flavours with repetition 
allowed, so answer is

4
5

4 5 1

5

8

5
56H =

+ −







 =








 = .

Build-up Your Understanding 2

 1. (a)  Find ‘n’ if (i) 2nC3 : 
nC2 = 12 : 1    (ii) 25Cn + 5 = 25C2n - 1 

  (b) Prove that n-1C3 + n-1C4 > nC3 if n > 7. 
 2. Find the number of positive integers satisfying the inequality

  n + 1Cn - 2 - n + 1Cn - 1 ≤ 100.
 3. There are 20 questions in a questions paper. If no two students solve the same 

combination of questions but solve equal number of questions then find the maxi-
mum number of students who appeared in the examination.

 4. In how many ways can 5 colours be selected out of 8 different colours including 
red, blue, and green

  (i) if blue and green are always to be included,
  (ii) if red is always excluded,
  (iii) if red and blue are always included but green excluded?
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 5. The kindergarten teacher has 25 kids in her class. She takes 5 of them at a time, 
to zoological garden as often as she can, without taking the same 5 kids more 
than once. Find the number of visits, the teacher makes to the garden and also the 
number of of visits every kid makes.

 6. A teacher takes 3 children from her class to the zoo at a time as often as she can, 
but does not take the same three children to the zoo more than once. She finds 
that she goes to the zoo 84 more than a particular child goes to the zoo. Find the 
number of children in her class. 

 7. A team of four students is to be selected from a total of 12 students. Find the total 
number of ways in which team can be selected such that two particular students 
refuse to be together and other two particular students wish to be together only.

 8. A women has 11 close friends. Find the number of ways in which she can invite 
5 of them to dinner, if two particular of them are not on speaking terms and will 
not attend together.

 9. Four couples (husband and wife) decide to form a committee of four members. 
Find the number of different committees that can be formed in which no couple 
finds a place. 

 10. Find the number of ways in which a mixed double tennis game can be arranged 
from amongst 9 married couple if no husband and wife plays in the same game. 

 11. Find the number of ways of choosing a committee of 2 women and 3 men from 5 
women and 6 men, if Mr. A refuses to serve on the committee if Mr. B is a mem-
ber and Mr. B can only serve, if Miss C is the member of the committee. 

 12. Find the number of ways in which we can choose 3 squares on a chess board such 
that one of the squares has its two sides common to other two squares.

 13. Find the number of ways of selecting three squares on a chessboard so that all the 
three be on a diagonal line of the board or parallel to it.

 14. 5 Indian and 5 American couples meet at a party and shake hands. If no wife 
shakes hands with her husband and no Indian wife shakes hands with a male, then 
find the number of hand shakes that takes place in the party.

 15. A person predicts the outcome of 20 cricket matches of his home team. Each 
match can result either in a win, loss or tie for the home team. Find the total num-
ber of ways in which he can make the predictions so that exactly 10 predictions 
are correct.

 16. A forecast is to be made of the results of five cricket matches, each of which can 
be a win, a draw or a loss for Indian team. Find 

   (i) the number of different possible forecasts.
  (ii) the number of forecasts containing 0, 1, 2, 3, 4 and 5 errors respectively.
 17. A forecast is to be made of the results of five cricket matches, each of which can 

be a win or a draw or a loss for Indian team.
  Let p = Number of forecasts with exactly 1 error
  q = Number of forecasts with exactly 3 errors and
  r = Number of forecasts with all five errors 
  then prove that 2q = 5r, 8p = q, and 2(p + r) > q.
 18. In a club election the number of contestants is one more than the number of maxi-

mum candidates for which a voter can vote. If the total number of ways is which 
a voter can vote be 62, then find the number of candidates.

 19. Every one of the 10 available lamps can be switched on to illuminate certain Hall. 
Find the total number of ways in which the hall can be illuminated.

 20. In a unique hockey series between India and Pakistan, they decide to play on till 
a team wins 5 matches . Find the number of ways in which the series can be won 
by India, if no match ends in a draw. 
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 21. There are n different books and p copies of each in a library. Find the number of 
ways in which one or more books can be selected.

  22. A class has n students. We have to form a team of the students by including atleast 
two students and also by excluding atleast two students. Find the number of ways 
of forming the team. 

 23. If the (n + 1) numbers a1, a2, a3, …, an+1, be all different and each of them 
is a prime number, then find the number of different factors (other than 1) of 
a a a am

n1 2 3 1⋅ ⋅ +� .
 24. In a certain algebraical exercise book there are 4 examples on arithmetical pro-

gressions, 5 examples on permutation-combination and 6 examples on binomial 
theorem. Find the number of ways a teacher can select for his pupils atleast one 
but not more than 2 examples from each of these sets.

 25. Find the number of straight lines that can be drawn through any two points out of 
10 points, of which 7 are collinear. 

 26. n lines are drawn in a plane such that no two of them are parallel and no three of 
them are concurrent. Find the number of different points at which these lines will 
cut each other.

 27. Eight straight lines are drawn in the plane such that no two lines are parallel and 
no three lines are concurrent. Find The number of parts into which these lines 
divides the plane.

 28. In a polygon no three diagonals are concurrent. If the total number of points of 
intersection of diagonals interior to the polygon be 70 then find the number of 
diagonals of the polygon.

 29. In a plane there are two families of lines y = x + r, y = -x + r, where r ∈ {0, 1, 2, 3, 
4}. Find the number of squares of diagonals of the length 2 formed by the lines.

 30. Find the number of triangles whose vertices are at the vertices of an octagon but 
none of whose side happen to come from the sides of the octagon. 

 31. Let there be 9 fixed points on the circumference of a circle . Each of these points 
is joined to every one of the remaining 8 points by a straight line and the points 
are so positioned on the circumference that atmost 2 straight lines meet in any 
interior point of the circle. Find the number of such interior intersection points. 

 32. A bag contains 2 Apples, 3 Oranges and 4 Bananas. Find the number of ways in 
which 3 fruits can be selected if atleast one banana is always in the combination 
(Assume fruit of same species to be alike).

 33. Find the number of selections of four letters from the letters of the word ASSAS-
SINATION.

 34. Find the number of ways to select 2 numbers from {0, 1, 2, 3, 4} such that the sum 
of the squares of the selected numbers is divisible by 5 (repetition of numbers is 
allowed).

 35. Find the number of ways in which we can choose 2 distinct integers from 1 to 100 
such that difference between them is at most 10.

 36. If a set A has m elements and another set B has n elements then find the number 
of functions from A to B.

 37. Let A = {x : x is a prime number and x < 30}. Find the number of different rational 
numbers whose numerator and denominator belongs to A.

 38. Find the number of all three elements subsets of the set {a1, a2, a3, . . ., an} which 
contain a3. 

 39. If the total number of m-element subsets of the set A = {a1, a2, a3, …, an} is k 
times the number of m-elements subsets containing a4, then find n.

 40. A set contains (2n + 1) elements. Find the number of subsets of the set which 
contains at most n elements.
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 41. Find the number of subsets of the set A = {a1, a2, …, an} which contain even 
number of elements.

 42. ‘A’ is a set containing ‘ n ‘ distinct elements. A subset P of ‘A’ is chosen. The set 
‘A’ is reconstructed by replacing the elements of P. A subset ‘Q’ of ‘A’ is again 
chosen. Find the number of ways of choosing P and Q so that P ∩ Q contains 
exactly two elements.

 43. Find the number of ways of choosing triplets (x, y, z) such that z ≥ max {x, y} and 
x, y, z ∈ {1, 2, …, n, n + 1}.

 44. Find the number of ways in which the number 94864 can be resolved as a product 
of two factors. 

 45. Find the sum of the divisors of 25 . 34  . 52. 
 46. In the decimal system of numeration, find the number of 6-digits numbers in 

which the digit in any place is greater than the digit to the left to it.
 47. Find the number of 3-digit numbers of the form xyz such that x < y and z ≤ y. 
 48. Find the total number of 6-digit numbers x1 x2 x3 x4 x5 x6 having the property 

x1 < x2 ≤ x3 < x4 < x5 ≤ x6.
 49. The streets of a city are arranged like the lines of a chess board. There are m 

streets running North to South and ‘n’ streets running East to West. Find the num-
ber of ways in which a man can travel from NW to SE corner going the shortest 
possible distance.

 50. Let there be n ≥ 3 circles in a plane. Find the value of n for which the number of 
radical centres, is equal to the number of radical axes. (Assume that all radical 
axes and radical centre exist and are different)

 51. Rajdhani express going from Bombay to Delhi stops at 4 intermediate stations. 10 
passengers enter the train during the journey (including Bombay and 4 intermedi-
ate stations) with ten distinct tickets of two classes. Find the number of different 
sets of tickets they may have. 

 52. Find the number of functions f from the set A = {0, 1, 2} into the set B = {0, 1, 2, 
3, 4, 5, 6, 7} such that f (i) ≤ f ( j) for i < j and, i, j ∈ A.

 53. Show that the number of ways of selecting n-objects out of 3n-objects, n of which 

are alike and rest different is 2
2 1

1
2 1n n

n
− +

−
−









 .  

 54. Use a combinatorial argument to prove that:
  (i) 2nC2 = 2 . nC2 + n2  (ii) r . nCr = n n -1Cr -1 
 55. Prove (combinatorially) that 
   nC1 + 2 nC2 + 3 nC3 + … + n nCn = n 2n-1.
 56. Prove (combinatorially) that 
   rCr + r +1Cr + r+2Cr + … + nCr = n+1Cr+1, r ≤ n.
 57. In a chess tournament, each participant was supposed to play exactly one game 

with each of the others. However, two participants withdraw after having played 
exactly 3 games each, but not with each other. The total number of games played 
in the tournament was 84. How many participants were there in all?

 58. A positive integer n is called strictly ascending if its digits are in the increasing 
order. For example, 2368 and 147 are strictly ascending but 43679 is not. Find the 
number of strictly ascending numbers < 109.

 59. The given figure shows 8 clay targets, arranged in 3 columns, to be shot by 8 bul-
lets. Find the number of ways in which they can be shot, such that no target is shot 
before all the targets below it, if any, are first shot.

 60. How many hexagons can be constructed by joining the vertices of a quindecagon 
(15 sides) if none of the sides of the hexagon is also the side of the 15-gon.
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7.6 Definition of Permutation (Arrangements)

A permutation of given objects is an arrangement of the objects in a line or row, unless 
specified otherwise. These arrangements can be generated by changing the relative 
positions of objects in the row. Every possible relative order between the objects is 
taken into account.

For example, if 3 objects are represented as A, B, C, then permutations (arrangements 
or orders) of A, B, C in a row can be done in the following ways:

ABC, BAC, CAB, ACB, BCA, CBA
It can be observed that these permutations of A, B, C in a row are made by changing 

relative positions of A, B, C among themselves.
The permutations of A, B, C can also be made by taking not all A, B, C at a time but 

by just taking 2 objects at a time. This can be done in the following ways;
AB, BA, BC, CB, CA, AC
It can be observed that first, 2 objects are selected and then they are permutated 

(ordered or arranged) in the row by changing their relative positions among themselves.
Similarly (2, 1, 3, 4, 5), (5, 2, 1, 4, 3), (1, 2, 5, 4, 3), etc. are permutations of 1, 2, 

3, 4, 5.

7.6.1 Theorem 1

(Number of Permutations (arrangements, order) of n distinct objects taken all at a 
time)

The total number of permutations of n distinct objects = n!

Proof:
Let us consider that we have n distinct objects say a1, a2, a3, …, an. We have to find 
total number of different permutations (arrangements or orders) of these objects along 
a row.

Every permutation of n objects is equivalent to fill n boxes (which are in a line) 
with these objects.

Let us consider n boxes

                 1         2        3        4       5        n - 1    n

Boxes:    …
Ways:       n      n - 1  n - 2  n - 3 n - 4        2       1

Box-1 can be filled in n ways by any of the n objects a1, a2, a3 …, an.
Box-2 can be filled in (n - 1) ways by any of the remaining (n - 1) objects (exclud-

ing the object that has been used to fill Box-1).
Similarly, Box-3, Box-4, …, Box-n can be filled in (n - 2), (n - 3), …, 1 ways 

respectively.
Using fundamental principle of counting, total number of different ways to fill n 

boxes
= n (n - 1) (n - 2) … 3 . 2 . 1
= n!

Hence, total number of permutation of n distinct objects is n!

Example 71 Find number of different words which can be formed using all the letters 
of the word ‘HISTORY’.
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Solution: Every way of arranging letters of the HISTORY will give us a word.
Therefore total number of ways to permutate letters H, I, S, T, O, R, Y, in a row

= Total number of words that can be formed using all letters together = 7!
= 7 × 6 × 5 × 4 × 3 × 2 × 1
= 5040.

Example 72 In how many way 5 distinct red balls, 3 distinct black balls and 2 distinct 
white balls can be arranged along a row?

Solution: Total number of ways to arrange 10 balls along a row
= Number of permutations of 10 distinct objects in a row
= 10.

Example 73 In how many ways can the letters of the word ‘DELHI’ be arranged so 
that the vowels occupy only even places?

Solution: All the letters in the word ‘DELHI’ are distinct with 2 vowels (E, I) and 3 
consonants (D, L, H).
In five letter words, two even places can occupy ‘E’ and ‘I’ in 2! ways and remaining 3 
places can occupy consonants D, L, H in 3! ways. So, number of words = (3!) × (2!) = 12.

Example 74

 (i) How many words can be made by using letters of the word COMBINE all at 
a time?

 (ii) How many of these words begin and end with a vowel?
 (iii) In how many of these words do the vowels and the consonants occupy the same 

relative positions as in COMBINE?

Solution:
 (i) The total number of words = arrangements of seven letters taken all at a time = 7! 

= 5040.
 (ii) The corresponding choices for all the places are as follows:

Place vowel vowel

Number 
of choices

3 5 4 3 2 1 2

  As there are three vowels (O, I, E), first place can be filled in three ways and the 
last place can be filled in two ways. The rest of the places can be filled in 5! ways 
by five remaining letters.

  Number of words = 3 × 5! × 2 = 720.
 (iii) Vowels should be at second, fifth and seventh positions.
  They can be arranged in 3! ways.
  Consonants should be at first, third, fourth and sixth positions.
  They can be arranged here in 4! ways.
  Total number of words = 3! × 4! = 144.

Example 75
 (i) How many words can be formed using letters of the word EQUATION taken all at 

a time?
 (ii) How many of these begin with E and end with N?
 (iii) How many of these end and begin with a consonants?
 (iv) In how many of these, vowels occupy the first, third, fourth, sixth and seventh 

positions?
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Solution:
 (i) Number of arrangements taken all at a time = 8! = 40320
  ⇒ 40320 words can be formed.
 (ii) Places: E _  _  _  _  _  _  N
  Choices: 1  6  5  4  3  2  1  1
  Number of words = 1 × (6 × 5 × 4 × 3 × 2 × 1) × 1
     = 6! = 720 words can be formed.
 (iii) There are three consonants and five vowels.
  Places: _  _  _  _  _  _  _  _
  Choices: 3  6  5  4  3  2  1  2

 • First place can be filled in three ways, using any of the three consonants (T, Q, N).
 • Last place can be filled in two ways, using any of the remaining two consonants.
 • Remaining places can be filled by using remaining six letters

  Number of words = 3 × (6 × 5 × 4 × 3 × 2 × 1) × 2
            = 3 × (6!) × 2 = 4320 words.
 (iv) Let v: vowels and c: constants
  Places: v  c  v  v  c  v  v  c
  Choices: 5  3  4  3  2  2  1  1

 • First, put the vowels in the corresponding places in 5 × 4 × 3 × 2 × 1 = 5! ways
 • Put the consonants in remaining three places in 3 × 2 × 1 = 3! ways

  ⇒ Number of words = 5! 3! = 120 × 6 = 720.

Example 76 2n people (including A and B) are to be seated across a table, n people on 
each side (as shown in the figure). Find the number of arrangements so that A, B are 
neither next to each other nor directly opposite each other.

Solution:

Case 1: ‘A’ at a corner seat
Options available for A = 4

Options available for B = 2n - 3
Number of arrangements = 4 × (2n - 3) × (2n - 2) !
(Note that remaining 2n - 2 people in the remaining seats can be seated in (2n - 2)! 

ways)

Case 2: ‘A’ not in a corner seat
Options available for A = 2n - 4 

Options available for B = 2n - 4
Number of arrangements = (2n - 4) × (2n - 4) × (2n - 2)!
Using addition principle, total number of arrangements
= 4 × (2n - 3) × (2n - 2)! + (2n - 4)2 (2n - 2)!
= (4n2 - 8n + 4) (2n - 2)!
= 4(n - 1)2 (2n - 2)!

7.6.2 Theorem 2

(Number of Permutations (arrangements, order) of n distinct objects taken r at a time)

The total numbers of permutations of r objects, out of n distinct objects, is 
n

n r

!

( )!
,

−
 

1 ≤ r ≤ n.
This number is denoted as nPr or P(n, r) or nAr or A(n, r)

n

n1 2 3

1 2 3
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Proof:
Let us consider that we have n different objects say a1, a2, a3, …, an. We have to find 
number of different permutations (arrangements or orders) of these objects taken only 
r at a time. (i.e., we have to select r objects and arrange them).

Every arrangement of n objects taken r at a time is equivalent to fill r boxes.
Let us consider r boxes as shown in the figure:

                 1         2        3        4       5            r

Boxes:    … 
Ways:       n      n - 1  n - 2  n - 3 n - 4   n - (r - 1)

Box-1 can be filled in n ways by any of the n objects a1, a2, a3, …, an.

Box-2 can be filled in (n - 1) ways by any of the remaining (n - 1) objects (excluding 
the one that is used to fill Box-1).
Similarly, boxes 3, 4, 5, …, rth can be filled in (n - 2), (n - 3), …, n - (r - 1) ways 
respectively.

Using fundamental principle of counting, total number of ways to fill r boxes
= n (n - 1) (n - 2) (n - 3) … (n - r + 1)
Multiply and divide by n r−  to get,
Number of ways to permutate n things taken r at a time

=
− − − − + −

−
n n n n n r n r

n r

( )( )( ) ( ))1 2 3 1�

=
− − − + − − − ⋅ ⋅

−
n n n n r n r n r

n r

( )( ) ( )( )( )1 2 1 1 3 2 1� �

=
−
n

n r
  Using  : ( ) ( )n r n r n r− = − − − ⋅ ⋅{ }1 3 2 1�

= nPr   [read it as ‘n P r’]

Alternatively, number of permutation of r objects, out of n distinct objects is equiva-

lent to selecting r objects first out of n distinct which can be selected in 
n

r








  ways and 

then arranging them in a line in r! ways so total ways is 
n

r
r








× !

⇒ =







×

=
−

×

=
−

n
rp

n

r
r

n

r n r
r

n

n r

!

!

!( )!
!

!

( )!

Example 77 If 56Pr + 6 : 
54Pr + 3 = 30800 : 1, find rP2. 

Solution: We have 

56
6

54
3

30800

1

P

P
r

r

+

+
=
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⇒
−

×
−

=
56

50

51

54

30800

1

!

( )!

( )!

!r

r

⇒ − = ⇒ =56 55 51 30800 41. ( )r r  

⇒ rP2 = 41P2 = 41 . 40 = 1640. 

Example 78 Prove that nPr = n - 1Pr + r . n- 1Pr - 1.

Solution: RHS = n - 1Pr + r n - 1Pr - 1

=
−

− −
+

−
− − +

=
−

− −
+

−
−

( )!

( )!

( )!

( )!

( )!

( )!

( )!n

n r
r

n

n r

n

n r

r n

n

1

1

1

1 1

1

1

1

rr( )!

=
−
−

− +[ ] =
−

( )!

( )!

!

( )!

n

n r
n r r

n

n r

1

= nPr = LHS. 

Aliter (Combinatorial): nPr denotes the number of ways of arranging r-objects out 
of n-objects, in a line. This work can be done in the following way also. Suppose 
the objects are a1, a2, …, an. First we find the number of permutations, in which a1 
does not appear. Number of such permutations is n - 1Pr. Further we consider those 
arrangements, in which a1 necessarily appears. Number of such permutation is  
r . n- 1Pr - 1, (as we can arrange (r - 1) objects out of (n - 1) objects in n - 1Pr- 1 ways, 
and then in any such permutation we can fix the position of a1 in r ways). Now using 
the principle of addition, the required number is n - 1Pr + r . n - 1Pr - 1.

Example 79 Find number of different 4 letter words which can be formed using the 
letters of the word ‘HISTORY’.

Solution: Making a 4-letter word is equivalent to permutation of letters of the word 
‘HISTORY’ taken 4 at a time.

⇒ Number of 4-letter words using letters of the word ‘HISTORY’
= Number of permutation of letters H, I, S, T, O, R, Y taken only 4 at a time

= =
−

=7
4

7

7 4

7

3
P

=
× × × ×

= × × × =
7 6 5 4 3

3
7 6 5 4 840.

Example 80 In how many ways 5 distinct red balls, 3 distinct black balls and 2 distinct 
white balls can be placed in 3 distinct boxes such that each box contains only 1 ball.

Solution: Total number of balls = 10. All balls are distinct.
The placement of 10 balls in 3 distinct boxes is equivalent to permutations of 10 dis-
tinct balls taken 3 at a time. This is because every arrangement of 3 balls will give a 
different way of placing 3 balls in 3 distinct boxes.

Therefore, total number of ways to place 10 distinct balls in 3 distinct boxes
= Number of permutations of 10 distinct balls taken 3 at a time

= =
−

= =
× × ×10

3
10

10 3

10

7

10 9 8 7

7
P

= 10 × 9 × 8 = 720 ways.
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Example 81 In a railway train compartment there are two rows of facing seats, five in 
each. Out of 10 passengers, 4 wish to sit looking forward and 3 looking towards rear 
of the train. The other three are indifferent. In how many ways can the passengers take 
seats?

Solution:  (Forward) (Row A, say)
 (Rear) (Row B, say)

4 people, in row A, can sit in 5P4 ways =
−
5 !

(5 4) !
 = 5 × 4 × 3 × 2 ways

3 people, in row B, can sit in 5P3 ways =
−
5 !

(5 3) !
= 5 × 4 × 3 ways

3 (indifferent) people in remaining 3 seats can sit in 3P3 ways 
= 3! = 3 × 2 × 1
By multiplication principle, the total number of ways in which 10 people can sit in 

rows A and B
= (5 × 4 × 3 × 2) × (5 × 4 × 3) × (3 × 2 × 1)
= (5!)2 × 3
= 43, 200 ways

Example 82 A tea party is arranged for 16 people along two sides of a long table with 
8 chairs on each side. Four men wish to sit on one particular side and two on the other 
side. In how many ways can they be seated?

Solution: Let A1, A2, A3, …, A16 be the sixteen persons. Assume that A1, A2, A3, A4 
want to sit on side 1 and A5, A6 want to sit on side 2.
The persons can be made to sit if we complete the following operations:
 (i) Select 4 chairs from the side 1 in 8C4 ways and allot these chairs to A1, A2, A3, 

A4 in 4! ways.
 (ii) Select two chairs from side 2 in 8C2 ways and allot these two chairs to A5, A6 in 

2! ways.
 (iii) Arrange the remaining 10 persons in remaining 10 chairs in 10! ways.
  ⇒ Hence the total number of ways in which the persons can be arranged

= ( !)( !)( !)8
4

8
24 2 10C C

= × =
8

4 4
4

8 2

2 6
10

8 8 10

4 6

!

! !
!

! !

! !
!

! ! !

! !
.

Note: It is advised to use 
n

r
r








× !  instead of n

rP  directly as after selecting r objects 

you can always decide that whether you have to arrange them or not!

7.6.3 Theorem 3 

(Permutation of  Objects when not all objects are distinct)
Let there be n1 A1s, n2 A2s, …, nk Ak’s. Then the number of permutations 

=
+ + +( )!

! !... !

n n n

n n n
k

k

1 2

1 2

� 
  

 (This number is known as a multinomial coefficient.)

Numerator of the above formula is factorial of total number of items. Each terms in 
denominator is factorial of number of objects which are of same type and identical to 
each other. In earlier sections, we discussed how to permutate n different objects either 
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taking all at a time or just r at a time. In this section, we will discuss how to arrange 
objects taken all at a time when all object are not distinct from each other.

For example, if we have to permutate A, A, B (Two A letters are identical) then 
number of permutations would not be same as permutations of 3 distinct objects say A, 
B, C. This is because two A letters cannot be permutated among themselves. Following 
are the ways to permutate A, A, B.

AAB, ABA, BAA, i.e., 3 ways. This is not equal to 3.
So we need to re define the formula we use to arrange n distinct objects.
For a case when all objects are not distinct. The redefined formula is given in theo-

rem 3.

Proof: Total places we need to arrange all Ai’s is n1 + n2 + n3 +…+ nk = n (say)

Let us first select n1 place out of n places to arrange n1 A1’s this can be done in 
n

n1









  

ways and there is only one way to arrange A1 on these places. Now select n2 places for 
A2’s out of remaining n - n1 places.

This can be done in 
n n

n

−









1

2

 ways and arrange A2’s at these places in 1 way only 

and so on

⇒ =








 ⋅

−







 ⋅









 ⋅

=

Total ways
n

n

n n

n

n

n

n

n n

k

k1

1

2

1 2

1 1 1�

!

! !! !�nk

Example 83 How many different words can be formed by permuting all the letters of 
the word MATHEMATICS.

Solution: In the word MATHEMATICS, total letters are 11
Number of ‘M’ letters = 2

Number of ‘A’ letters = 2
Number of ‘T’ letters = 2
Number of different letters = 5 (H, E, I, C, S)
Number of ways to arrange letters of the word ‘MATHEMATICS’

=
11

2 2 2
[using the formula given in Theorem 3]

Example 84 How many different words can be formed by permuting all the letters of 
the word MISSISSIPPI? 

Solution: The word MISSISSIPPI is formed by 4S’s, 4I’s, 2P’s and 1 M. Required 

number of different words =
11!

4! 4! 2! 1!
(using theorem 3).

Example 85 How many n-term binary sequences can be formed of r 0’s and (n - r) 
1’ s?

Solution: Number of binary sequences having n terms (r 0’s, (n - r) 1’s ) =
−

n

r n r

!

!( )!
This number known as a binomial coefficient.
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Example 86 How many 9-letter words can be formed by using the letters of the words
 (i) EQUATIONS (ii) ALLAHABAD?

Solution:
 (i) All 9-letters in the word EQUATIONS are different.
  Hence number of words = 9! = 362880.
 (ii) ALLAHABAD contains LL, AAAA, H, B, D

  Number of words = =
× × × ×

=
9

2 4

9 8 7 6 5

2
7560

!

! !
.

Example 87 How many anagrams (rearrangements) can be formed of the word 
‘ PRIYANKA’? 

Solution: Here total letters are 8, in which 2 A’s, but the rest are different. Hence the 

number of words formed = 
8

2

!

!
 = 20160. 

As we have to count rearrangements, so remove one word that is ‘PRIYANkA’
Hence number of anagrams =20160 - 1= 20159.

Example 88 Find the number of permutations of 1, 2, …, 6, in which
 (i) 1 occurs before 2, 
 (ii) 3 occurs before 4,
 (iii) 5 occurs before 6.

For example, 3 5 1 4 2 6

Solution: Let us use the following terms.
A permutation has property P1 if 1 occurs before 2. A permutation has property P2 if 3 
occurs before 4. A permutation has property P3 if 5 occurs before 6.

P1
C ⇔ not P1

P2
C ⇔ not P2

P3
C ⇔ not P3.

So there are 8 possibilities, e.g., P1 P2
C P3, P1

C P2 P3
C, etc.

Number of P1 P2 P3 = Number of P1
C P2 P3 = . . . = Number of P1 P2 P3

C

⇒ Number of permutations having P1 P2 P3 = =
6

8
90

!
.

Aliter 1: Assume 1 and 2 as a, a, 3, 4 as b, b, 5, 6 as c,c now arrange a, a, b, b, c, c in 

a line. This can be done in 6

2 2 2

!

! ! !
 ways = 90.

Now starting from left first a replaced by 1 and second a replaced by 2, similarly b 
and c, we will get the desired permutation.

Aliter 2: Arrange 1 and 2 in 6 places in 6C2 ways.
Now, to arrange 3 and 4 we have 4C2 ways and to arrange 5, 6 we have only one way.

Finally by Multiplication Principle total number of ways 6C2 
4C2= 

6

8
90

!
. .=
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7.6.3.1 Permutations of n Objects Taken r at a Time when 
All n Objects are not Distinct

In this section we will discuss how to arrange (permutate) n objects taken r at a time 
where all n objects are not distinct. 

For example, arrangements of letters AABBBC taken 3 at a time.
To find such arrangements, it is not possible to derive a formula that can be applied 

in all such cases.
So, we will discuss a method (or procedure) that should be applied to find arrange-

ments. The method involves making cases based on alike items that we choose in 
the arrangement. You should read the following examples to learn how to apply this 
‘method of cases’ to find arrangements of n objects taken r at a time when all objects 
are not different.

Example 89 Find the number of 4-letter words, that can be formed from the letters of 
the word ‘ALLAHABAD’.

Solution: We have four A, two L, and one each of H, B and D. 
Four letters from the letters of the word ALLAHABAD would be one of the following 
types; (i) all same (ii) three same, one distinct (iii) two same, two same (iv) two same, 
two distinct and (v) all four distinct

Now number of words of type (i) is 1 

Number of words of type (ii) is 4
1

4

3
16C × =

!

!

Number of words of type (iii) is 
4

2 2
6

!

! !
=

Number of words of type (iv) is 2C1
4C2 × =

4

2
144

!

!
Number of words of type (v) is 5C4 4! = 120 
Thus the required number = 1 + 16 + 6 + 144 + 120 = 287.

Example 90 Find in how many ways we can arrange letters AABBBC taken 3 at a 
time.

Solution: The given letters include AA, BBB, C, i.e., 2 A letters, 3 B letters and 1 C 
letters.
To find arrangements of 3 letters, we will make following cases based on alike letters 
we choose in the arrangement.

Case 1: All 3 letters are alike
3 alike letters can be selected from given letters in only 1 way, i.e., BBB.

Further 3 selected letters can be arranged among themselves in 
3

3
1=  way.

⇒ Total number of arrangement with all letters alike = 1 (1)

Case 2: 2 alike and 1 distinct
2 alike letters can be selected from 2 sets of alike letters (AA, BB) in 2C1 ways.

1 distinct letter (distinct from selected alike letters) can be selected from remaining 
letters in 2C1 ways. (C, A or B either).

Further 2 alike and 1 distinct selected letters can be arranged among themselves in
3

2
ways.
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⇒ Total number of arrangements with ‘2 alike and 1 distinct letter’

  = × × = × × =2
1

2
1

3

2
2 2 3 12C C  (2)

Case 3: All distinct letters
All 3 letters distinct can be selected from 3 distinct letters (A, B, C) in 1 way.

Further 3 distinct letters can be arranged among themselves in 3 ways.

⇒ Total number of arrangements with all 3 letters distinct = × = =1 3 3 6  (3)

Combining (1), (2) and (3)
Total number of permutations of AABBBC taken 3 at a time = 1 + 12 + 6 = 19.

Example 91 How many 4-letters words can be formed using the letters of the word 
INEFFECTIVE?

Solution: INEFFECTIVE contains 11 letters: EEE, FF, II, C, T, N, V.
As all letters are not distinct, we cannot use nPr. The 4-letter words will be among any 
one of the following cases:

1. 3 alike letters, 1 distinct letter.  3. 2 alike letters, 2 distinct letters.
2. 2 alike letters, 2 alike letters.   4. All distinct letters.

Case 1: 3 alike, 1 distinct
  3 alike can be selected in one way, i.e., EEE.
  Distinct letters can be selected from F, I, T, N, V, C in 6C1 ways.

  ⇒ Number of groups = 1 × 6C1 = 6 ⇒ Number of words = = ×
×

=6
4

3 1
24

!

! !
.

Case 2: 2 alike, 2 alike
  Two sets of 2 alike can be selected from 3 sets (EE, II, FF) in 3C2 ways.

  ⇒ Number of words = ×
×

=3
2

4

2 2
18C

!

! !

Case 3: 2 alike, 2 distinct

  ⇒ Number of groups = (3C1) × (6C2) = 45 ⇒ Number of words = 45
4

2
540× =

!

!

Case 4: All distinct
  ⇒ Number of groups = 7C4 (out of E, F, I, T, N, V, C)
  ⇒ Number of words = 7C4 × 4! = 840
  Hence total 4-letter words = 24 + 18 + 540 + 840 = 1422. 

7.6.4 Theorem 4 

(Arrangement of n distinct  objects with repetition of objects)
Total number of ways to permutate n distinct things taken r at a time when objects can 
be repeated any number of times is nr.

Proof:
Here we have to arrange n distinct objects in a row taken only r at a time when objects 
can be repeated any number of times, i.e., repetition of objects is allowed.

Permutation of n objects in a row taken r at a time is equivalent to filling r boxes. 
Let us consider r boxes as shown in the figure:
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                 1         2        3        4           r

Boxes:    … 
Ways:       n         n        n         n           n

Box-1 can be filled in n ways by any of the n objects.
Box-2 can also be filled in n ways as any of the n objects can be used to fill Box-2. 

This is because, we can reuse the object used to fill Box-1 to fill Box-2 as repetition 
of objects is allowed.

Similarly Box-3, Box-4, …, Box-r each one can be fill in n ways each.
Using fundamental principle of counting, total number of way to fill n boxes
= n × n × n … r times = nr.

Example 92 A child has four pockets and three different marbles. In how many ways 
can the child put the marbles in his pockets? 

Solution: The first marble can be put into the pocket in 4 ways, so the second can also 
be put in the pocket in 4 ways so can the third . Thus, the number of ways in which the 
child can put the marbles = 4 × 4 × 4 = 64 ways. 

Example 93 In how many ways can 5 letters be posted in 4 letter boxes?

Solution: Since each letter can be posted in any one of the four letter boxes. So, a let-
ter can be posted in 4 ways. Since there are 5 letters and each letter can be posted in 4 
ways. So, total number of ways in which all the five letters can be posted = 4 × 4 × 4 
× 4 × 4 = 45.

Example 94 Five person entered the lift cabin on the ground floor of an 8-floor house. 
Suppose each of them can leave the cabin independently at any floor beginning with 
the first. Find the total number of ways in which each of the five persons can leave the 
cabin

(i) at any one of the 7 floors (ii) at different floors.

Solution: Suppose A1, A2, A3, A4, A5 are five persons.
 (i) A1 can leave the cabin at any of the seven floors. So, A1 can leave the cabin in 7 

ways. Similarly, each of A2, A3, A4, A5 can leave the cabin in 7 ways. Thus, the 
total number of ways in which each of the five persons can leave the cabin at any 
of the seven floors is 7 × 7 × 7 × 7 × 7 = 75.

 (ii) A1 can leave the cabin at any of the seven floors. So, A1 can leave the cabin in 7 
ways. Now, A2 can leave the cabin at any of the remaining 6 floors. So, A2 can 
leave the cabin in 6 ways. Similarly, A3, A4 and A5 can leave the cabin in 5, 4 
and 3 ways respectively. Thus, the total number of ways in which each of the 
five persons can leave the cabin at different floors is 7 × 6 × 5 × 4 × 3 = 2520.

Example 95 There are 6 single choice questions in an examination. How many 
sequence of answers are possible, if the first three questions have 4 choices each and 
the next three have 5 each?

Solution: Here we have to perform 6 jobs of answering 6 multiple choice questions. 
Each one of the first three questions can be answered in 4 ways and each one of the 
next three can be answered in 5 different ways.
So, the total number of different sequences = 4 × 4 × 4 × 5 × 5 × 5 = 8000.
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Example 96 Three tourist want to stay in five different hotels. In how many ways can 
they do so if:

 (i) each hotel can not accommodate more than one tourist?
 (ii) each hotel can accommodate any number of tourists?

Solution:
 (i) Three tourists are to be placed in 3 different hotels out of 5. This can be done as:
  Place first tourist in 5 ways
  Place second in 4 ways
  Place third in 3 ways
  ⇒ Required number of placements = 5 × 4 × 3 = 60
 (ii) To place the tourists we have to do following three operations.
  (a) Place first tourist in any of the hotels in 5 ways.
  (b) Place second tourist in any of the hotels in 5 ways.
  (c) Place third tourist in any of the hotels in 5 ways.
  ⇒ the required number of placements = 5 × 5 × 5 = 125.

7.6.5 Some Miscellaneous Applications of Permutations 

7.6.5.1 Always Including p Particular Objects in the Arrangement

The number of ways to select and arrange (permutate) r objects from n distinct objects 
such that arrangement should always include p particular objects = n - pCr - p × r!.

Logic: First select p particular objects which should always be included in 1 way (1)
Then select remaining (r - p) objects from remaining (n - p) objects in n - pCr - p 

ways. (2)
Finally arrange r selected objects in r! ways (3)
Using fundamental principle of counting, operations (1), (2) and (3) can be per-

formed together in ways
= 1 × n - pCr - p × r! ways.

7.6.5.2 Always Excluding p Particular Objects in the Arrangement

The number of ways to select and arrange r objects from n distinct objects such that p 
particular objects are always excluded in the selection = n - pCr × r!.

Logic: First exclude p particular objects from n different objects.
Then select r objects from (n - p) different objects in n - pCr ways. (1)
Then permutate r selected objects in r! ways. (2)
Using fundamental principle of counting, operations (1) and (2)can be performed 

together in n - pCr × r! ways.

Example 97 How many three letter words can be made using the letters of the words 
SOCIETY, so that
 (i) S is included in each word?  (ii) S is not included in any word?

Solution:
 (i) To include S in every word, we will use following steps.

Step 1: Select the remaining two letters from remaining 6 letters, i.e.,

O, C, I, E, T, Y in 6C2 ways.
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Step 2: Include S in each group and then arrange each group of three in 3! ways.
⇒ Number of words = 6C2 3! = 90.

 (ii) If S is not to be included, then we have to make all the three words from the re-
maining 6.
⇒ Number of words = 6C3 3! = 120.

7.6.5.3 ‘p’ Particular Objects Always Together in the Arrangement

The number of ways to arrange n distinct objects such that p particular objects remain 
together in the arrangement ( )! !n p p− +1

Logic: Make a group of p particular objects that should remain together. Arrange this 
group of p particular objects and remaining (n - p) objects in (n - p + 1)! ways. (1)

Finally arrange p particular objects among themselves in p! ways. (2)
Using fundamental principle of counting operations (1) and (2) can be performed 

together in (n - p + 1)! × p! ways

Example 98 How many words can be formed using the letters of the word TRIANGLE 
so that
 (i) A and N are always together?  (ii) T, R, I are always together?

Solution:
 (i) Assume (AN) as a single letter. Now there are seven letters in all:
  (AN), T, R, I, G, L, E
  Seven letters can be arranged in 7! ways.
  All these 7! words will contain A and N together. A and N can now be arranged 

among themselves in 2! ways (AN and NA).
  Hence total number of words = 7! 2! = 10080.
 (ii) Assume (TRI) as a single letter.
  The letters: (TRI), A, N, G, L, E can be rearranged in 6! ways.
  TRI can be arranged among themselves in 3! ways.
  Total number of words = 6! 3! = 4320.

Example 99 How many 5-letter words containing 3 vowels and 2 consonants can be 
formed using the letters of the word EQUATIONS so that the two consonants occur 
together in every word?

Solution: There are 5 vowels and 3 consonants in EQUATION. To form the words we 
will use following steps:

Step 1: Select vowels (3 from 5) in 5C3 ways.

Step 2: Select consonants (2 from 3) in 3C2 ways.

Step 3: Arrange the selected letters (3 vowels and 2 consonants (always together)) in 
4! × 2! ways.
Hence the number of words = 5C3 

3C2 4! 2! = 10 × 3 × 24 × 2 = 1440.

7.6.5.4 ‘p’ Particular Objects Always Separated in the Arrangement

The number of ways to arrange n different objects such that p particular objects are 
always separated

= × − ×− +n p
pC n p p1 ( )! !
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Logic: First arrange n - p objects in (n - p)! ways. Now we have to place p particular 
objects between (n - p) remaining objects so that all p particular objects must be sepa-
rated from each other.

From figure we can see there are (n - p + 1) gaps (including before and after) 
between (n - p) objects where we can place p particular objects such that p objects are 
separated from each other.

Select p gaps from (n - p + 1) gaps for p particular objects in n - p + 1Cp ways.
Now place and arrange p objects in p selected gaps in p! ways. Using fundamental prin-
ciple of counting, all operations can be performed together in n p

pC n p p− + × − ×1 ( )! !
ways.

Example 100 There are 9 candidates for an examination out of which 3 are appear-
ing in Mathematics and remaining 6 are appearing in different subjects. In how many 
ways can they be seated in a row so that no two Mathematics candidates are together?

Solution: Divide the work in two steps.

Step 1: First, arrange the remaining candidates in 6! ways.

Step 2: Place the three Mathematics candidates in the row of six other candidates so 
that no two of them are together.

x: Places available for Mathematics candidates.
o: Others.

x o x o x o x o x o x o x

In any arrangement of 6 other candidates (o), there are seven places available for 
Mathematics candidate so that they are not together. Now 3 Mathematics candidates 

can be placed in these 7 places in 
7

3
3








 !

 ways.

Hence total number of arrangements

=







 = × =6

7

3
3 720

7

4
151200! !

!

!
.

Example 101 In how many ways can 7 plus (+) signs and 5 minus (-) signs be arranged 
in a row so that no two minus (-) signs are together?

Solution:

Step 1: The plus signs can be arranged in one way (because all are identical).

+ + + + + + +

A blank box shows available spaces for the minus signs.

Step 2: The 5 minus (-) signs are now to be placed in the 8 available spaces so that no 
two of them are together.

 (i) Select 5 places for minus signs in 8C5 ways.
 (ii) Arrange the minus signs in the selected places in 1 way (all signs being identical).

Hence number of possible arrangements = 1 × 8C5 × 1 = 56.

Example 102 There are 20 stations between stations A and B. In how many ways a 
train moving from station A to station B can stop at 3 stations between A and B such 
that no two stopping stations are together?

Solution: We have to select 3 stations from 20 stations between A and B so that train 
can stop at these stations.

…

…

1 2 3 (n − p + 1)th gap

(n − p) remaining objects
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According to the question:
There are 3 stopping stations that should be separated from each other, i.e., even no 
two of them are together.

First separate out 3 stations to the selected from 20 stations, i.e., 17 station left.
Now, we select 3 positions between 17 stations so that we can place 3 stopping 

stations. There are 18 positions between 17 stations where we can place 3 stopping 
stations.

Position to place
stopping stations

1

A S1 S2 S3 S4 S17 B

2 3 4 18

…

Therefore, number of ways to select 3 stations where train can stop
= number of ways to place 3 stopping stations between remaining 17 stations
= 18C3.

7.6.5.5 Rank of a Word in the Dictionary

In these type of problems, dictionary of words is formed by using all the arrange-
ment of all letters at a time of the given word. The dictionary format means words are 
arranged in the alphabetical order. You will be supposed to find the rank (position) of 
the given word or some other word in the dictionary.

Following examples will help you learn how to find the rank in the dictionary.

Example 103 Find the rank of the word MOTHER in the dictionary order of the words 
formed by  M, T, H, O, E, R.

Solution: Number of words starting with E, having other letters M, T, H, O, R = 5 ! = 
120
Number of words starting with H, having other letters M, T, E, O, R = 5 ! = 120

Number of words having first two letters M,E and other letters O, T, H, R = 4 ! = 24
Number of words having first two letters M,H and other letters T, E, O, R = 4 ! = 24
Number of words having first three letters M,O,E and other letters H, T, R = 3 ! = 6
Number of words having first three letters M,O,H and other letters T, E, R = 3 ! = 6
Number of words having first three letters M,O,R and other letters T, H, E = 3 ! = 6
Number of words having first four letters M,O,T,E and other letters H, R = 2 ! = 2
Total number of words, before MOTHER, in the dictionary order made up of 
M, O, E, T, H, R = 120 + 120 + 24 + 24 + 6 + 6 + 6 + 2 = 308
∴ Rank of the word MOTHER = 309.

Example 104 If all the letters of the word RANDOM are written in all possible orders 
and these words are written out as in a dictionary, then find the rank of the word RAN-
DOM in the dictionary.

Solution: In a dictionary the words at each stage are arranged in alphabetical order. In 
the given problem, we must therefore consider the words beginning with A, D, M, N, 
O, R in order. A will occur in the first place as often as there are ways of arranging the 
remaining 5 letters all at a time, i.e., A will occur 5! times. D, M, N, O will occur in the 
first place the same number of times.
Number of words starting with A = 5! = 120

Number of words starting with D = 5! = 120
Number of word starting with M = 5! = 120
Number of words starting with N = 5! = 120
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Numbers of words starting with O = 5! = 120
After this, words beginning with RA must follow.
Number of words beginning with RAD or RAM = 3!
Now the words beginning with RAN must follow.
First one is RANDMO and the next one is RANDOM.
∴ Rank of RANDOM = 5(5!) + 2(3!) + 2 = 614.

Example 105 Find the rank of the word ‘TTEERL’ in the dictionary of words formed 
by using the letters of the word ‘LETTER’.

Solution: In the dictionary of words formed, we need to count words before the word 
‘TTEERL’ in the dictionary. To count such words, we need to first count words start-
ing with E, L, R, TE, TL, TR and then add 2 to the count for words ‘TTEELR’ and 
‘TTEERL’.

Number of words starting with E = Arrangement of letter E, T, T, R, L =
5

2

Number of words starting with L = Arrangement of letters E, T, T, E, R =
5

2 2

Number of words starting with R = Arrangement of letters E, T, T, E, L =
5

2 2

Number of words starting with TE = Arrangement of letters T, E, R, L = 4

Number of words starting with TL = Arrangement of letters E, T, E, R =
4

2

Number of words starting with TR = Arrangement of letters T, E, E, L =
4

2

Rank of TTEERL = + + + + + + =
5

2

5

2 2

5

2 2
4

4

2

4

2
2 170

 (Now, try to find the rank of the word COCHIN, in the list, in the dictionary order, 
of the words made up of C, C, H, I, O, N. Your answer should be 97).

Build-up Your Understanding 3

 1. Find the value of r in following equations:
  (i) 5Pr = 6Pr-1 (ii) 10Pr = 720 (iii) 20Pr = 13 × 20Pr-1 
 2. In a railway compartment 6 seats are vacant on a berth. Find the number of ways 

in which 3 passengers sit on them.
 3. Three men have 6 different trousers, 5 different shirts and 4 different caps. Find 

the number of different ways in which they can wear them.
 4. Find the number of words of four letters containing equal number of vowels and 

consonants (repetition not allowed).
 5. Find the number of words that can be formed using 6 consonants and 3 vowels out 

of 10 consonants and 4 vowels. 
 6. Find the number of ways in which the letters of the word ARRANGE can be made 

such that both R’s do not come together.
 7. Find the number of arrangements of the letters of the word BANANA is which the 

two ‘N’s do not appear adjacently. 
 8. We are required to form different words with the help of the letters of the word 

INTEGER. Let m1 be the number of words in which I and N are never together and 
m2 be the number of words which begin with I and end with R, then find m1/m2.
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 9. Find the number of arrangements that can be made with the letters of the word MATH-
EMATICS and also find the number of them, in which the vowels occur together. 

 10. Find the number of ways in which letters of the word VALEDICTORY be ar-
ranged so that the vowels may never be separated.

 11. Find the number of different words which can be formed from the letters of the 
word LUCkNOW when 

    (i) all the letters are taken.
   (ii) all the letters are taken and words begin with L.
  (iii)  all the letters are taken and the letters L and W respectively occupy the first 

and last places.
  (iv) all the letters are taken and the vowels are always together.
 12. Find the number of permutations of the word AUROBIND in which vowels ap-

pear in an alphabetical order.
 13. If as many more words as possible be formed out of the letters of the word DOG-

MATIC then find the number of words in which the relative position of vowels 
and consonants remain unchanged. 

 14. Find the number of words which can be formed using all letters of the word 
‘Pataliputra’ without changing the relative order of the vowels and consonants.

 15. Find the total numbers of words that can be made by writing all letters of the word 
PARAMETER so that no vowel is between two consonants.

 16. Find the total number of permutation of n(n > 1) distinct things taken not more than 
r at a time and atleast 1, when each thing may be repeated any number of times.

 17. Find the number of permutations of n distinct objects taken 
   (i) atleast r objects at a time 
  (ii) atmost r objects at a time 
  (Where repetition of the objects is allowed)
 18. If the number of arrangements of n - 1 things from n distinct things is k times the 

number of arrangements of n - 1 things taken from n things in which two things 
are identical then find the value of k. 

 19. Find the number of different 7-digit numbers that can be written using only the three 
digits 1, 2 and 3 with the condition that the digit 2 occurs twice in each number.

 20. Six identical coins are arranged in a row. Find the total number of ways in which 
the number of heads is equal to the number of tails.

 21. There are n distinct white and n distinct black balls. Find the number of ways in which 
we can arrange these balls in a row so that neighboring balls are of different colours. 

 22. Find number of ways in which 6 girls and 6 boys can be arranged in a line if no 
two boys or no two girls are together.

 23. Find the number of ways in which 3 boys and 3 girls (all are of different heights) 
can be arranged in a line so that boys as well as girls among themselves are in 
decreasing order of height (from left to right).

 24. Find the number of ways in which 10 candidates A1, A2, …, A10 can be ranked so 
that A1 is always above A2.

 25. Let A be a set of n (≥ 3) distinct elements. Find the number of triples (x, y, z) of 
the elements of A in which atleast two coordinates are equal.

 26. Find the number of ways of arranging m numbers out of 1, 2, 3, …, n so that 
maximum is (n - 2) and minimum is 2 (repetitions of numbers is allowed) such 
that maximum and minimum both occur exactly once, (n > 5, m > 3).

 27. Eight chairs are numbered 1 to 8. Two women and three men wish to occupy one 
chair each. First the women choose the chairs from amongst the chairs marked 
1 to 4, and then the men select the chairs from amongst the remaining. Find the 
number of possible arrangements.
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 28. There are 10 numbered seats in a double decker bus, 6 in the lower deck and 4 on 
the upper deck. Ten passengers board the bus, of them 3 refuse to go to the upper 
deck and 2 insist on going up. Find the number of ways in which the passengers 
can be accommodated.

 29. In how many different ways a grandfather along with two of his grandsons and 
four grand daughters can be seated in a line for a photograph so that he is always 
in the middle and the two grandsons are never adjacent to each other.

 30. Find the number of ways in which A A A B B B can be placed in the squares of 
the figure as shown, so that no row remains empty. 

 31. The tamer of wild animals has to bring one by one 5 lions and 4 tigers to the cir-
cus arena. Find the number of ways this can be done if no two tigers immediately 
follow each other.

 32. In a conference 10 speakers are present. If S1 wants to speak before S2 and S2 
wants to speak after S3, then find the number of ways all the 10 speakers can give 
their speeches with the above restriction if the remaining seven speakers have no 
objection to speak at any number. 

 33. Find the total number of flags with three horizontal strips, in order, that can be 
formed using 2 identical red, 2 identical green and 2 identical white strips.

 34. Messages are conveyed by arranging 4 white, 1 blue and 3 red flags on a pole. 
Flags of the same colour are alike. If a message is transmitted by the order in 
which the colours are arranged then the find the total number of messages that can 
be transmitted if exactly 6 flags are used.

 35. Find number of arrangements of 4-letters taken from the word EXAMINATION.
 36. Find number of ways in which an arrangement of 4-letters can be made from the 

letters of the word PROPORTION.
 37. Find the number of permutations of the word ASSASSINATION taken 4 at a 

time.
 38. The letters of the word TOUGH are written in all possible orders and these words 

are written out as in a dictionary, then find the rank of the word TOUGH. 
 39. The letters of the word SURITI are written in all possible orders and these words 

are written out as in a dictionary. What is the rank of the word SURITI?
 40. There are 720 permutations of the digits 1, 2, 3, 4, 5, 6. Suppose these permuta-

tions are arranged from smallest to largest numerical values, beginning from 1 2 
3 4 5 6 and ending with 6 5 4 3 2 1. 

  (a) What number falls on the 124th position?
  (b) What is the position of the number 321546?
 41. All the five digits number in which each successive digit exceeds its predecessor 

are arranged in the increasing order of their magnitude. Find the 97th number in 
the list.

 42. All the 5 digit numbers, formed by permuting the digits 1, 2, 3, 4 and 5 are ar-
ranged in the increasing order. Find:

  (i) the rank of 35421  (ii) the 100th number.
 43. There are 11 seats in a row. Five people are to be seated. Find the number of seat-

ing arrangements, if
   (i) the central seat is to be kept vacant;
  (ii)  for every pair of seats symmetric with respect to the central seat, one seat is 

vacant.
 44. Find the number of ways in which six children of different heights can line up in a 

single row so that none of them is standing between the two children taller than him.
 45. Define a ‘good word’ as a sequence of letters that consists only of the letters A, B 

and C and in which A never immediately followed by B, B is never immediately 
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followed by C, and C is never immediately followed by A. If the number of n-
letter good words are 384, then find the value of n.

 46. There are 2 identical white balls, 3 identical red balls and 4 green balls of different 
shades. Find the number of ways in which they can be arranged in a row so that 
atleast one ball is separated from the balls of the same colour.

 47. Eight identical rooks are to be placed on an 8 × 8 chess-board. Find the number 
of ways of doing this, so that no two rooks are in attacking positions.

 48. How many arrangements of the 9 letters a, b, c, p, q, r, x, y, z are there such that 
y is between x and z? (Any two, or all three, of the letters x, y, z, may not be con-
secutive.)

 49. In the figure, two 4-digit numbers are to be formed by filling the place with digits. 
Find the number of different ways in which these places can be filled by digits so 
that the sum of the numbers formed is also a 4-digit number and in no place the 
addition is with carrying.

 50. Two n-digit integers (leading 0 allowed) are said to be equivalent if one is a per-
mutation of the other. Thus 10075 and 01057 are equivalent. Find the number of 
5-digit integers such that no two are equivalent.

7.7 Introduction to Circular Permutation

When objects are to be arranged (ordered) in a circle instead of a row, it is known as 
Circular Permutation. For example, three objects a, b, c can be permutated in a circle 
as shown in figure:
Number of ways to arrange a, b, c in circle is not same as number of ways to arrange 
a, b, c in a row.

This is because arrangements abc, bca, cab in a row are same in circle as shown in 
the figure.
Similarly arrangements acb, cba, bac in a row are same in circle as shown in the figure.

7.7.1 Theorem

The number of circular permutations of n distinct objects is (n - 1)!

Proof: Let a1, a2, a3, …, an - 1, an be n distinct objects. Let the total number of circular 
permutations be x. Consider one of these x permutations as shown in Figure.
Clearly, this circular permutation provides n linear permutations as given below:

a1, a2, a3 … an - 1, an

a2, a3, a4, … an, a1

a3, a4, a5, … an, a1, a2

 ……
 ……

an, a1, a2, a3, …, an - 1

Thus, each circular permutation gives n linear permutations. As there are x circular 
permutations, the number of linear permutations is xn. But the number of linear per-
mutations of n distinct objects is n!.

∴ = ⇒ = = −xn n x
n

n
n!

!
( )!1

Th H T U

+

a

b c

a

c b

a

b c

a

c b

a6
a5

a4

a3
a2a1

an

an−1

an−2
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Aliter 1: Number of linear permutations of n distinct objects = n!. Consider two linear 
permutation of n distinct objects k1, k2, k3, . . ., kn and kn, k1, k2, . . ., kn-1. 

Consider a corresponding circular permutation as shown in the following figure.

k1 k1
k2

k3

k2

k3

kn

kn

(For example, think of two thread each having n beads) 
In fact, both the circular arrangements are same. Not only that, there are more 

similar looking circular permutations. There are n linear permutations as shown, which 
give the same circular permutation.

So while counting the number of circular permutations from the number of linear 
permutations, one circular permutation is counted n times.

∴ Number of circular permutations = = −
n

n
n

!
( )!1

Aliter 2: Let Pn denote the number of circular permutations of n distinct objects.
Note that P1 = 1.
Let (n - 1) objects (out of these n objects) be placed on a circle.
This can be done in Pn - 1 ways.
These n - 1 objects break the circle into n - 1 arcs. Now the nth object is to be kept 

some where on these (n - 1) arcs. This can be done in (n - 1) ways.
∴ Pn = (n - 1) Pn - 1 (recurrence relation)

= (n - 1) (n - 2) Pn -2

= (n - 1) (n - 2) (n - 3) Pn - 3 and so on

= (n - 1) (n - 2) (n - 3) . . . 3. 2. 1. P1

= (n - 1)!

7.7.2 Difference between Clockwise and Anti-clockwise

In some of the problems we need to consider clockwise and anti-clockwise arrange-
ments of objects as same arrangements. See the adjacent circular permutations.
There is a difference of just the cyclic order. In first arrangement a, b, c, d are arranged 
in anti-clockwise order where as in second they are arranged clockwise order.

If we have to consider these arrangements same (for example, arrangement of flow-
ers in garland or arrangement of beads in a necklace), then we need to divide total 
circular permutation by 2.

Therefore,
Number of circular permutations of n distinct objects such that clockwise and anti-

clockwise arrangements of objects are same =
−

≥
( )!

, .
n

n
1

2
3

Notes:
 1. Number of circular permutations of ‘n’ distinct things taken ‘r’ at a time = 

n

r
r








 −( )!1  (when clockwise and anticlockwise orders are taken as different) 

 2. If clockwise and anticlockwise orders are taken as same, then the required num-

ber of circular permutations =








 −

≥

n

r
r

r

( )!

, .

1

2
3

k1

k1

k1

k1

k2

k2

k2

k3

k3

kn−1

kn−1 kn−2

k2 k3 kn

kn

kn

kn

1

n−1

2

3

a

d

c

b

a

b

c

d
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Example 106 In how many ways can 13 persons out of 24 persons be seated around 
a table. 
Solution: In case of circular table the clockwise and anti-clockwise orders are differ-

ent, thus the required number of circular permutations =











=
×

24

13
13

13

24

13 11

!
!

!
.

Example 107 Out of ten people, 5 are to be seated around a round table and 5 are to 
be seated across a rectangular table. Find the number of ways to do so.

Solution: First select 5 people out of 10, those who sit around the table. This can be 
done in 10C5 ways.
Number of ways in which these 5 people sit around the round table = 4!

Remaining 5 people sit across a rectangular table in 5! ways.
Total number of arrangements

= 10C5 × 4! × 5!

= × ×
10 !
5 ! 5 !

4 5! !

= ×10!
1
5

= 9 ! × 2.

Example 108 There are 20 persons among whom are two brothers. Find the number 
of ways in which we can arrange them around a circle so that there is exactly one per-
son between the two brothers.

Solution: Let B1 and B2 be two brothers among 20 persons and let M be a person that 
will sit between B1 and B2. The person M can be chosen from 18 person (excluding B1 
and B2) in 18 ways. Considering the two brothers B1 and B2 and person M as one per-
son and remaining 17 persons separately, we have 18 persons in all. These 18 persons 
can be arranged around a circle in (18 - 1)! = 17! ways. But B1 and B2 can be arranged 
among themselves in 2! ways.
Hence, the total number of ways = 18 × 17! × 2! = 2 × 18!

Example 109 In how many ways can a party of 4 men and 4 women be seated at a 
circular table so that no two women are adjacent?

Solution: The 4 men can be seated at the circular table such that there is a vacant seat 
between every pair of men in (4 - 1)! = 3! ways. Now, 4 vacant seats can be occupied 
by 4 women in 4! ways.

Hence, the required number of seating arrangements = 3! × 4! = 144.

Example 110 A round table conference is to be held between 20 delegates of 2 coun-
tries. In how many ways can they be seated if two particular delegates are (i) always 
together? (ii) never together?

Solution:
 (i) Let D1 and D2 be two particular delegates. Considering D1 and D2 as one del-

egate, we have 19 delegates in all. These 19 delegates can be seated round a 
circular table in (19 - 1)! = 18! ways. But two particular delegates can arrange 
among themselves in 2! ways (D1 D2 and D2 D1).

  Hence, the total number of ways = 18! × 2! = 2 (18!).
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 (ii) To find the number of ways in which two particular delegates never sit together, 
we subtract the number of ways in which they sit together from the total number 
of seating arrangements of 20 persons around the round table. Clearly 20 per-
sons can be seated around a circular table in (20 - 1)! = 19! ways.

  Hence, the required number of seating arrangements = 19! - 2 × 18! = 17 (18!).

Alternate Solution:
First arrange remaining 18 persons in (18 - 1)! = 17! ways.
Then select two gaps out of 18 gaps between 18 persons on the circle in 18C2 
ways and arrange the two in 2! ways.
Number of ways = 17! × 18C2 × 2!
 = 17 (18!).

Example 111 In how many different ways can five boys and five girls form a circle 
such that the boys and girls are alternate?

Solution: After fixing up one boy on the table the remaining can be arranged in 4! 
ways. There will be 5 places, one place each between two boys which can be filled by 
5 girls in 5! ways. 
Hence by the principle of multiplication, the required number of ways 

= 4! × 5! = 2880.

Example 112 Find the number of ways to seat 5 boys and 5 girls around a table so that 
boy B1 and girl G1 are not adjacent.

Solution: Number of ways of arranging 5 boys and 5 girls ar ound a table is 

(10 - 1)! = 9!.

Among these, we have to discard the arrangements where B1 and G1 sit together. Con-
sider B1G1 as a single entity. There all 9 people can be arranged around a circle in 
(9 - 1)! = 8! ways.

But the boy B1 and girl G1 can either be arranged in B1G1 or in G1B1 position. So, 
the number of ways in which boy B1 and girl G1 are together is 2 × 8!.

Therefore, the number of ways in which boy B1 and girl G1 are not together is 9! - 2 
× 8! = 8!(9 - 2) = 7 × 8! = 2,82,240.

Aliter: Exclude G1 initially. The remaining 9 can be arranged in (9 - 1)! = 8! ways 
around a circle. Now, there are 9 in-between positions among the 9 people seated around 
a circle. Of these 9, the two sides of B1, i.e., his left and right are not suited for G1 (as 
B1 and G1 must not come together). Hence, there are 7 choices in each of the circular 
permutations for G1.

∴ The total number of ways of arranging the person is 7(8!) ways.

Example 113 There are 5 gentlemen and 4 ladies to dine at a round table. In how 
many ways can they seat themselves so that no two ladies are together?

Solution: Five gentlemen can be seated at a round table in (5 - 1)! = 4! ways. Now, 5 
places are created in which 4 ladies are to be seated. Select 4 seats for 4 ladies from 
5 seats in 5C4 ways. Now 4 ladies can be arranged on the 4 selected seats in 4! ways.
Hence, the total number of ways in which no two ladies sit together

= 4! × 5C4 × 4  = (4!) 5(4!) = 2880.

B2

B1

B5

B3 B4

x x

x
x

x
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Example 114 Three boys and three girls are to be seated around a table in a circle. 
Among them, the boy X does not want any girl neighbour and the girl Y does not want 
any boy neighbour. How many such arrangements are possible?

Solution: Let B1, B2 and X be three boys and G1, G2 and Y be three girls. Since the boy 
X does not want any girl neighbour. Therefore boy X will have his neighbours as boys 
B1 and B2 as shown in in the figure. Similarly, girl Y has her neighbour as girls G1 and 
G2 as shown figure. But the boys B1 and B2 can be arranged among themselves in 2! 
ways and the girls G1 and G2 can be arranged among themselves in 2! ways.
Hence, the required number of arrangements = 2! × 2! = 4.

Example 115 Find the number of ways in which 8 distinct flowers can be strung to 
form a garland so that 4 particular flowers are never separated.

Solution: Considering 4 particular flowers as one group of flower, we have five flow-
ers (one group of flowers and remaining four flowers) which can be strung to form a 

garland in 
4

2

!
 ways. But 4 particular flowers can be arranged themselves in 4! ways. 

Thus, the required number of ways =
×

=
4 4

2
288

! !
.

Example 116 Find the number of arrangements in which g girls and b boys are to be 
seated around a table, b ≤ g, so that no two boys are together.

Solution: g girls can be seated around a table in (g - 1)!
This positioning of g girls create g gaps for b boys to be seated. b boys in those g gaps 

can be seated in 
g

b
b









 !  ways.

Total number of arrangements = (g - 1) ! × 
g

b
b









 !.

Example 117 Find the number of arrangements of 10 people including A, B, C such 
that B and C occupy the chairs next to A on a circular arrangement.

Solution: ‘A’ occupies his chair in 1 way. B and C occupy their chairs in 2 ways. 
Remaining 7 people occupy their chairs in 7 ! ways. 

Total number of arrangements = 1 × 2 × 7 !

Aliter: Consider A, B, C as one person so there are 8 person and we can arrange them in 
7! ways. Now B and C can interchange their position in 2! ways. So total ways = 2 × 7!.

Example 118 Find the number of ways in which 12 distinct beads can be arranged to 
form a necklace. 

Solution: 12 distinct beads can be arranged among themselves in a circular order in 
(12 - 1)! = 11! ways. Now in the case of necklace there is no distinction between 
clockwise and anti-clockwise arrangements. So the required number of arrangements 

=
1

2
11( !).

Example 119 How many necklace of 12 beads each can be made from 18 beads of 
various colours? 

G1 G2

B1

X

Y

B2

C B

or

A
B C

A
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Solution: In the case of necklace there is no distinction between the clockwise and 
anticlockwise arrangements, thus the required number of circular permutations 

=











×
=

×
=

× × × × ×
× × × × × ×

18

12
12

2 12

18

6 24

18 17 16 15 14 13

6 5 4 3 2 1

!
!

!

!

224

119 13

2
=

× !
.

Example 120 In how many ways can seven persons sit around a table so that all shall 
not have the same neighbours in any two arrangements?

Solution: Clearly, 7 persons can sit at a round table in (7 - 1)! = 6! ways. But, in clock-
wise and anti-clockwise arrangements, each person will have the same neighbours.

So, the required number of ways = =
1

2
6 360( !)

Example 121 If n distinct objects are arranged in a circle, show that the number of 
ways of selecting three of these things so that no two of them are next to each other is 

n

6
(n - 4) (n - 5).

Solution: Let a1, a2, a3, …, an be the n distinct objects.
Number of ways to select three objects so that no two of them are consecutive = Total 
number of ways to select three objects - Number of ways to select three consecutive 
objects - Number of ways to select three objects in which two are consecutive and one 
is separated. (1)

Total number of ways to select 3 objects from n distinct objects = nC3 (2)

Select three consecutive objects:
The three consecutive objects can be selected in the following manner.

Select from: a1 a2 a3, a2 a3 a4, a3 a4 a5, …, an - 1 an a1, an a1 a2

So, number of ways in which 3 consecutive objects can be selected from n objects 
arranged in a circle is n. (3)

Select two consecutive (together) and 1 separated:
The three objects so that 2 are consecutive and 1 is separated can be selected in the 
following manner:

Take a1 a2 and select third object from a4, a5, …, an - 1, i.e., take a1 a2 and select 
third object in (n - 4) ways or in general we can say that select one pair from n avail-
able pairs, i.e., a1 a2 a2 a3 … an a1 and third object in (n - 4) ways.

So, number of ways to select 3 objects so that 2 are consecutive and 1 is separated 
= n (n - 4) (4)

Using (1), (2), (3) and (4), we get:
Number of ways to select 3 objects so that all are separated = nC3 - n - n (n - 4)

=
− −

− − − =
− + − −









n n n
n n n n

n n n( )( )
( )

( )1 2

6
4

3 2 6 3

6

2

= − + = − −
n

n n
n

n n
6

9 20
6

4 52( ) ( )( ).
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Build-up Your Understanding 4

 1. A cabinet of ministers consists of 11 ministers, one minister being the chief min-
ister. A meeting is to be held in a room having a round table and 11 chairs round 
it, one of them being meant for the chairman. Find the number of ways in which 
the ministers can take their chairs such that the chief minister occupying the 
chairman’s place.

 2. 20 persons were invited for a party. In how many ways can they and the host be 
seated at a circular table? In how many of these ways will two particular persons 
be seated on either side of the host?

 3. In how many ways can 7 boys be seated at a round table so that two particular 
boys are 

  (i) next to each other   (ii) separated.
 4. A round table conference is to be held between 20 delegates of 2 countries. In 

how many ways can they be seated if two particular delegates 
  (i) always sit together  (ii) never sit together.
 5. There are 20 persons including two brothers. In how many ways can they be ar-

ranged on a round table if:
    (i) There is exactly one person between the two brothers.
   (ii) The two brothers are always separated.
  (iii)  What will be the corresponding answers if the two brothers were twins (alike 

in all respects)?
 6. 2n chairs are arranged symmetrically around a table. There are 2n people, including 

A and B, who wish to occupy the chairs. Find the number of seating arrangements, if:
   (i) A and B are next to each other;
  (ii) A and B are diametrically opposite.
 7. The 10 students of Batch B feel they have some conceptual doubt on circular 

permutation. Mr. Tiwari called them in discussion room and asked them to sit 
down around a circular table which is surrounded by 13 chairs. Mr. Tiwari told 
that his adjacent seat should not remain empty. Then find the number of ways, in 
which the students can sit around a round table if Mr. Tiwari also sit on a chair.

 8. Find the number of ways in which 5 boys and 4 girls can be arranged on a circular 
table such that no two girls sit together and two particular boys are always together.

 9. A person invites a party of 10 friends at dinner and place them
   (i) 5 at one round table, 5 at the other round table.
  (ii) 4 at one round table and 6 at other round table.
  Find the ratio of number of circular permutation of case (i) to case (ii).
 10. Six persons A, B, C, D, E and F are to be seated at a circular table. Find the num-

ber of ways this can be done if A must have either B or C on his right B must have 
either C or D on his right. 

 11. Find the number of ways in which 8 different flowers can be strung to form a 
garland so that 4 particular flowers are never separated.

 12. Find the number of different garlands, that can be formed using 3 flowers of one 
kind and 3 flowers of other kind.

 13. Find the number of seating arrangements of 6 persons at three identical round 
tables if every table must be occupied. 

 14. Let 1 ≤ n ≤ r. The Stirling number of the first kind, S(m, n), is defined as the num-
ber of arrangements of m distinct objects around n identical circular tables so that 
each table contains atleast one object. Show that:

   (i) S(m, 1) = (m - 1)!;
  (ii) S(m, m - 1) = mC2, m ≥ 2.
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 15. Find the number of different ways of painting a cube by using a different colour 
for each face from six available colours.

  (Any two colour schemes are called different if one cannot coincide with the other 
by a rotation of the cube.)

 16. Find number of ways in which n things of which r alike and the rest distinct 
can be arranged in a circle distinguishing between clockwise and anti-clockwise 
 arrangement.

7.8  Division and Distribution of Non-identical 
Items in Fixed Size

7.8.1 Unequal Division and Distribution of Non-identical Objects

In this section we will discuss ways to divide non-identical objects into groups. For 
example, if we have to divide three different balls (b1, b2, b3) among 2 boys (B1 and B2) 
such that B1 gets 2 balls and B2 gets 1 ball, then

Number of ways to divide balls among boys is 3 ways as shown in the following 
table.

B1 B2

b1, b2 b3

b2, b3 b1

b3, b1 b2

Instead of writing all ways and counting them, we can make a formula to find number 
of ways.

First select 2 balls for B1 in 3C2 and then remaining 1 ball for B2 in 1C1 ways.
Total number of ways, using fundamental principle of counting, is
= 3C2 × 1C1 = 3 × 1 = 3 ways.
If we have to divide 3 non-identical balls among 2 boys such that one boy should 

get 2 and other boy should get 1, then following are the ways:

B1 B2

b1, b2

b2, b3

b3, b1

b3

b1

b2

b3

b1,

b2

b1, b2

b2, b3

b3, b1

Distribution of above 3 ways among 2 
boys you can observe that entries are 
interchanged,between B1 and B2

⇒ Total ways to distribute = 6.
Instead of writing all ways and counting them, we can just find number of ways 

using fundamental principle of counting.
First select 2 balls for B1 in 3C2 ways, then select 1 remaining ball for B2 in 1C1 

ways, finally distribute among 2 boys in 2  ways (ball given to B1 and B2 are inter-
changed) because any boy can get 2 balls and the other 1 ball.

Using fundamental principle of counting, total number of ways

= 3C2 × 1C1 × 2  = 3 × 1 × 2 = 6 ways.

Now generalising the above cases, we can write the following formula:
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 1. Number of ways in which (m + n + p) distinct objects can be divided into 3 un-
equal (groups contain unequal number of objects) unnumbered groups contain-

ing m, n, p objects = m + n + pCm n + pCn 
pCp =

+ +( )!

! ! !

m n p

m n p
 (Here among m, n, p no 

two are equal)

 2. Number of ways in which (m + n + p) distinct objects can be divided and dis-
tribute into 3 unequal numbered groups (Here among m, n, p no two are equal) 
containing m, n, p objects

  = Number of ways to divide (m + n + p) objects in 3 groups × Number of ways to 
distribute ‘division-ways’ among groups

  = Number of ways to divide (m + n + p) objects in 3 groups × (Number of groups)! 

=
+ +

×
( )!

! ! !
!

m n p

m n p
3

Above formulae are written for dividing objects into 3 groups but in case groups are 
more, then also we follow the same approach. For example,

Number of ways to divide 10 non-identical objects in 4 groups (G1, G2, G3, G4) 

such that groups G1, G2, G3, G4 gets 1, 2, 3, 4 objects respectively = 
10

1 2 3 4

Number of ways to divide 10 non-identical objects in 4 groups (G1, G2, G3, G4) 
such that groups get objects in number 1, 2, 3, 4 (i.e., any group can get 1 object or 2 
objects or 3 objects or 4 objects).

= Number of ways to divide and distribute 10 objects in 4 groups containing 1, 2, 
3, 4 objects

= ×
10

1 2 3 4
4.

7.8.2 Equal Division and Distribution of Non-identical objects

Here we will see formulae to divide and distribute non-identical objects equally in 
groups, i.e., each group get equal numbers of objects.

 1. Number of ways to divide (mn) distinct objects equally in m unnumbered group 
(each group get n objects)

  
mn

n

mn n

n

mn n

n

n

n m

mn

n mm









 ⋅

−









−
















 ⋅ =

2 1
�

!

( )!

( !) !!

 2. Number of ways to divide (mn) objects equally in m numbered group (each group 
gets n objects)

  = × =
( )!

( !) !
!

!

( !)

mn

n m
m

mn

nm m

Example 122 In how many ways, 12 distinct objects can be distributed equally in 3 
groups?

Solution: Let the groups be labelled as A, B, C. (For our convenience)
Select 4 objects out of 12 to be given to group A in 12C4 ways. Select 4 objects out of 
remaining 8 to be given to group B in 8C4 ways. Rest 4 objects are to be given to group 
C in one way. (i.e., 4C4 ways)
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Apparently, by multiplication principle, the total number of ways is 12C4 . 
8C4 . 

4C4 but each grouping is counted 3! times ! 12C4 
. 8C4 

. 4C4 is the number of ordered 
grouping. 

Understand that, if objects are named as a1, a2, a3, …, a12 then the grouping 12 
elements as

(a1 a2 a3 a4) (a5 a6 a7 a8 ) (a9 a10 a11 a12) is same as (a1 a2 a3 a4) (a9 a10 a11 a12 ) 
(a5 a6 a7 a8 ) or same as (a9 a10 a11 a12 ) (a1 a2 a3 a4) (a5 a6 a7 a8 ), etc.

∴ Required number =
⋅ ⋅12

4
8

4
4

4

3

C C C  
 !

=
12 !
4 ! 8 !

 . 8 !
4 ! 4 !

 . 1
3 !

=
12 !

3 ! (4 !)3 .

Example 123 In how many ways can 12 books be equally distributed among 3 
 students?

Solution: In this question we have to divide books equally among 3 students. So we 
will use formulae (2) given in section 7.8.2. Where we divided non-identical objects 
equally among numbered groups as all students are distinct.

Therefore, number of ways to divide and distribute 12 non-identical objects among 

3 students equally =
( )

12

4
3

.

Example 124 In how many ways we can divide 52 playing cards
(i) among 4 players equally? (ii) in 4 equal parts?

Solution:

 (i) 52 cards is to be divided equally among 4 players. Each player will get 13 cards.  
It means we should apply distribution formula. Using formula (2) given in section 
7.8.2, we get:

  Number of ways to divide playing cards =
52

13 4( )

 (ii) As we have to make 4 equal parts, each part consist of 13 cards. We will apply 
division formula (not distribution). Using formula (1) used in section 7.8.2 we get:

  Number of ways to divide 52 cards in 4 parts =
52

13

1

44( )
.

7.8.3 Equal as well as Unequal Division and 
Distribution of Non-identical Objects

Here we will see formulae to divide and distribute non-identical objects into groups 
such that not all groups contain equal or unequal number of objects, i.e., some groups 
get equal and some get unequal number of objects.

 1. Number of ways to divide (ma + nb + nc) distinct (Out of a, b, c no two numbers 
are equal) objects in (m + n + p) unnumbered groups such that m groups contains  
a objects each, n groups contains b objects each, p group contains c objects each

( )!

( !) ( !) ( !) ! ! !

ma nb nc

a b c m n pm n p

+ +
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Note: We divided by m! because there are m groups containing a objects each 
(equal number of objects).
We divided by n! also because there are n groups containing b objects each (equal 
number of objects). We also divided by p! as p groups of are equal size.

 2. Number of ways to divide and distribute (ma + nb + pc) distinct objects (out 
of a, b, c no two numbers are equal) in (m + n + p) numbered groups such that 
m groups contains a objects each, n groups contains b objects each, p groups 
contains c object each

=
+ +

× + +
( )!

( !) ( !) ( !) ! ! !
( )!

ma nb pc

a b c m n p
m n p

m n p

We can make similar formulae for other cases.

Illustration Number of ways to divide 10 objects in 4 groups containing 3, 3, 2, 2 
objects

10

3

7

3

2

4

2

2

2

2

10

2

1

3

1

2

1

22 2


































=

! ! ( ) ( )

Number of ways to divide and distribute completely 10 objects in 4 groups contain-
ing 3, 3, 2, 2 objects

10

3

7

3

2

4

2

2

2

2
4

10

2

1

3

1

2

1

22 2


































× =



! !
!

( ) ( )



× 4

Number of ways to divide and distribute (m + 2n + 3p) distinct in 6 numbered 
groups such that 3 particular groups get p objects each, 2 particular gets n objects each, 
one one get m objects

=
+ +m n p

m n p

2 3
2 3( ) ( )

Example 125 10 different toys are to be distributed among 10 children. Find the total 
number of ways of distributing these toys so that exactly 2 children do not get any toy.

Solution: It is possible in two mutually exclusive cases;

Case 1: 2 children get none, one child gets three and all remaining 7 children get one 
each.

Case 2: 2 children get none, 2 children get 2 each and all remaining 6 children get one 
each.
Using formula (2) given in section 7.8.3, we get:

Case 1: Number of ways = 10

0 2 3 1 7
10

2 7

!

( !) ! !( !) !
!











Case 2: Number of ways =










10

0 2 2 2 1 6
10

2 2 6

!

( !) ! ( !) ! ( !) !
!

Thus total ways = +








( !)

! ! ! ( !) !
.10

1

3 7 2

1

2 6
2

4
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Example 126 In how many ways can 7 departments be divided among 3 ministers 
such that every minister gets at least one and atmost 4 departments to control?

Solution: Let 3 minister be M1, M2, M3.
Following are the ways in which we can divide 7 departments among 3 ministers such 
that each minister gets at least one and atmost 4.

S.No. M1 M2 M3

1
2
3

4
2
3

2
2
3

1
3
1

Note: If we have a case (2, 2, 3), then there is no need to make cases (3, 2, 2) or 
(2, 3, 2) because we will include them when we apply distribution formula to distribute 
ways of division among ministers.

Case 1: We divide 7 departments among 3 ministers in number 4, 2, 1, i.e., unequal 
division. As any minister can get 4 departments, any one can get 2 any one can get 1 
department, we should apply distribution formula. Using formula (2) given in section 
7.8.1, we get:
Number of ways to divide and distribute departments in number 4, 2, 1

  =








× =

7

4 2 1
3 630!  (1)

Case 2: It is ‘equal as well as unequal’ division. As any minister can get any number 
of departments, we use complete distribution formula. Using formula (2) given in sec-
tion 7.8.3 we get:
Number of ways to divide and distribute departments in number 2, 2, 3.

  =








× =

7

2 2 3

1

2
3 630!  (2)

Case 3: It is also ‘equal as well as unequal’ division. As any minister can get any num-
ber of departments, we use complete distribution formula. Using formula (2) given in 
section 7.8.3 we get:
Number of ways to divide and distribute departments in number 3, 3, 1

  =








× =

7

3 1

1

2
3 420

2( ) ( )
 (3)

Combining (1), (2) and (3), we get number of ways to divide 7 departments among 3 
minister = 630 + 630 + 420 = 1680 ways.

Build-up Your Understanding 5

 1. Find the total number of ways of dividing 15 different things into groups of 8, 4 
and 3 respectively.

 2. Find the number of ways of distributing 50 identical things among 8 persons in 
such a way that three of them get 8 things each, two of them get 7 things each and 
remaining 3 get 4 things each.

 3. Find the number of ways in which 14 men be partitioned into 6 committees where 
two of the committees contain 3 men each, and the others contain 2 men each.

 4. If 3n different things can be equally distributed among 3 persons in k ways then 
find the number of ways to divide the 3n things in 3 equal groups. 
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 5. Find the number of ways to give 16 different things to three persons A, B, C so 
that B gets 1 more than A and C gets 2 more than B. 

 6. Find the number of ways of distributing 10 different books among 4 students S1, 
S2, S3 and S4 such that S1 and S2 get 2 books each and S3 and S4 get 3 books each. 

 7. Find the number of different ways in which 8 different books can be distributed 
among 3 students, if each student receives at least 2 books. 

 8. Find the number of ways in which n different prizes can be distributed amongst m 
(<n) persons if each is entitled to receive at most n - 1 prizes.

 9. In a school there are two prizes for excellence in physics (Ist and IInd) two in 
Chemistry (Ist and IInd) and only 1 in Mathematics (Ist). In how many ways can 
these prizes be awarded to 20 students.

 10. In an election three districts are to be canvassed by 2, 3 and 5 men respectively . 
If 10 men volunteer, then find the number of ways they can be allotted to the dif-
ferent districts.

 11. A train time-table must be compiled for various days of the week so that two 
trains a day depart for three days, one train a day for two days and three trains a 
day for two days. Assuming all trains are identical how many different time-tables 
can be compiled?

 12. In how many ways can 3 persons stay in 5 hotels? In how many of these each 
person stays in a different hotel.

 13. ‘n’ different toys have to be distributed among ‘n’ children. Find the total number 
of ways in which these toys can be distributed so that exactly one child gets no toy.

 14. Find the number of ways in which 7 different books can be given to 5 students if 
each can receive none, one or more books. 

 15. There are (p + q) different books on different topics in Mathematics, where 
p ≠ q. If L = The number of ways in which these books are distributed between 
two students X and Y such that X get p books and Y gets q books.

  M = The number of ways in which these books are distributed between two stu-
dents X and Y such that one of them gets p books and another gets q books.

  N = The number of ways in which these books are divided into two groups of p 
books and q books.

  Then prove that 2L = M = 2N.

7.9 Number of Integral Solutions 

7.9.1  Number of Non-negative Integral Solutions 
of a Linear Equation

Let the given equation be

x1 + x2 + x3 + … + xr = n

Let A be the set of all non-negative integral solutions of the given equation and B be the 
set of all (n + r - 1) term binary sequences containing n, 1’s and (r - 1), 0’s. Here num-
ber of 1’s before the first zero is value of x1, number of 1’s between first zero and sec-
ond zero is value of x2 and so on, number of 1’s after the r - 1th zero is the value of xr.

So for every non-negative integral solution of the equation there is a binary sequence 
of n, 1’s and (r - 1), 0’s. And for every binary sequence of n 1’s and (r - 1) 0’s, we can 
write a non-negative integral solution. Therefore there is bijection between the sets A 
and B.
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⇒ Number of non negative integral solutions of the equation is same as the number 
of binary sequences.

Number of non-negative integral solutions =
+ −
−

=
+ −
−











( )!

!( )!

n r

n r

n r

r

1

1

1

1

Example 127 Find the number of non-negative integral solutions of 

x1 + x2 + x3 + x4 + x5 = 8

Solution: Take a sample solution,

  2 + 0 + 3 + 2 + 1  = 8 (1)
                                                  x1           x2                x3           x4          x5

Take a binary sequence of 8, 1’s and 4, 0’s as

     110011101101 (2)

which corresponds to the sample solution.
(2) is an arrangement of 12 objects, 8 of which are of one type and 4 of which are 

of another type.

Total number of such arrangements =
12 !
8 ! 4 !

= Total number of binary sequences of 8, 1’s and 4, 0’s.

Number of non-negative integral solutions =
12 !
8 ! 4 !

=
× × ×12 11 10 9

4. 3. 2. 1
    

= 495.
Observe that:
 1. 0’s we have used as demakers or separators. Since there are 4 gaps between the 

xis, therefore we need 4 0’s.
 2. Pocket of x2 is filled in the sample solution by 0 (that is the value of the variable; 

students are advised not to get confused between the value zero of a variable 
and a 0 used in the binary sequence) and the corresponding binary sequence 
shows a 0 followed by another 0.

Example 128 Find the number of positive integral solutions of x1 + x2 + x3 + x4 + x5 = 8

Solution: Since we are interested in finding the number of positive solutions, there-
fore each xi must have minimum value 1. So we take 8 identical coins (i.e., similar to 
taking 8, 1’s basically 8 identical objects to be taken) and 5 pockets of xi

, s.

  + + + +  = 8 

                                                 x1         x2            x3        x4        x5

Fill each pocket by one coin. So 3 coins are left, which are now to be filled in the 
pockets of xi’s.

Now this problem is similar to finding number of binary sequences of 3, 1’s and 4, 0’s.
This number is

7 !
3 ! 4 !

7 6 5
3 !

=
× ×

= 35
= Number of positive integral solutions.
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7.9.2  Number of Non-negative Integral Solutions 
of a Linear Inequation

Consider the given inequation as

  x1 + x2 + x3 + … + xr ≤ n (1)

Add a non-negative integer xr + 1 to get 

  x1 + x2 + x3 + … + xr + xr + 1 = n. (2) 

Number of solutions of Eq. (2)

=
+







 =

+n r

r

n r

r n

( )!

! !

7.9.3 Number of Integral Solutions of a Linear Equation 
in x1, x2, …, xr when xi

, s are Constrained

Consider

  x1 + x2 + x3 +…+ xr = n (1)

where x1 ≥ a1, x2 ≥ a2, …, xr ≥ ar, all ai’s are integers. 
Take x1 = a1 + x1′

 x2 = a2 + x2′, etc.,
where x1′ ≥ 0, x2′ ≥ 0, …, xr′ ≥ 0
Eq. (1) reduces to 

(a1 + a2 +…+ar ) + x1′ + x2′ +… + xr′ = n

                                      ⇔ x1′ + x2′ +…+ xr′ = n - (a1 + a2 +…+ ar ) (2)

For every solution of Eq. (1), we can write a corresponding solution of Eq. (2) and for 
every solution of Eq. (2), we can write a corresponding solution of Eq. (1). Therefore 
there is a bijection between the sets of solutions of Eqs. (1) and (2).

Number of solutions of Eq. (1) = Number of non-negative integral solutions of Eq. (2)

 =
+ − − + + +
− − + + +

( ( ) )!

( )!( ( ) )!

n r a a a

r n a a a
r

r

1

1
1 2

1 2

   
  

�
�

Example 129 Find the number of integral solutions of x1 + x2 + x3 + x4 = 14,
where x1 ≥ - 2, x2 ≥ 1, x3 ≥ 2 and x4 ≥ 0.

Solution: Let x1 = - 2 + x1′, x2 = 1 + x2′, x3 = 2 + x3′,
Then given equation can be written as 

 x1′ + x2′+ x3′ + x4 = 13, x1′, x2′, x3′, x4 ≥ 0 (1)

Number of non-negative integral solutions of Eq. (1)

=
16 !

3 ! 13 !

=
× ×
× ×

1 15 14
1 2 3
6

= 560
= Number of integral solutions of the given equation.
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Example 130 How many integral solutions are there to x + y + z + t = 29, when x ≥ 1, 
y ≥ 2, z ≥ 3 and t ≥ 0?

Solution: We have,

x ≥ 1, y ≥ 2, z ≥ 3 and t ≥ 0, where x, y, z, t are integers

Let u = x - 1, v = y - 2, w = z - 3.
Then, x ≥ 1 ⇒ u ≥ 0; y ≥ 2 ⇒ v ≥ 0; z ≥ 3 ⇒ w ≥ 0
Thus, we have
u + 1 + v + 2 + w + 3 + t = 29 ⇒ u + v + w + t = 23 [where u ≥ 0; v ≥ 0; w ≥ 0]
⇒ The total number of solutions of this equation is

23 + 4 - 1C4 - 1 = 26C3 = 2600.

Example 131 How many integral solutions are there to the system of equations x1 + x2 
+ x3 + x4 + x5 = 20 and x1 + x2 + x3 = 5 when xk ≥ 0?

Solution: We have: x1 + x2 + x3 + x4 + x5 = 20 and x1 + x2 + x3 = 5
These two equations reduce to

 x4 + x5 = 15 (1) 

 and x1 + x2 + x3 = 5 (2)

Since corresponding to each solution of Eq. (1) there are solutions of Eq. (2). So, total 
number of solutions of the given system of equations.

= Number of solutions of Eq. (1) × Number of solutions of Eq. (2)
= (15 + 2 - 1C1) (

5 + 3 - 1C2) = 16C1 × 7C2 = 336.

7.10 Binomial, Multinomial and Generating Function

7.10.1 Binomial Theorem

Given n, r ∈ N, 0 ≤ r ≤ n, the number 
n

r








 or nCr is defined to be the number of r ele-

ments subsets of an n elements set. These are also called the binomial coefficients as 
these occur as the coefficients in the expansion of

( )x y
n

x
n

x y
n

x y
n

r
xn n n n+ =








 +








 +








 + +








− −

0 1 2
1 2 2 � nn r r ny

n

n
y− + +








�

Some important results related to summation of binomial coefficients:

 1. 
n

m

m

r

n

r

n r

m r

n

m r

n m r

r


















 =










−
−









 = −











− +









 2. 
n

r

n

r

n

r
n

r r

n

r

n 






 =









 = +









 =

≥ ≥

−

=
∑ ∑∑ 2

2 2 1
2

0 0

1

0

;

 3. ( )−







 =

=
∑ 1 0

0

r

r

n n

r

 4. r
n

r
n

r

n
n






 = ⋅

=

−∑
0

12

Blaise Pascal

19 Jun 1623–19 Aug 1662
Nationality: French

M07_Combinatorics_C07.indd   72 8/11/2017   2:28:19 PM



Combinatorics  7.73

 5. 
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 (Vandermonde Identity)

 6. 
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i

n
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∑
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� ; , ,  (Hockey stick Identity) 

 8. 
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 ∈� ; ,

7.10.2 Binomial Theorem for Negative Integer Index

Given n ∈ , x ∈(-1, 1)

then ( )1
1

0

+ =
+ −







−

≥

∞

∑x
n r

r
xn

r

r

7.10.3 Multinomial Coefficients

Like binomial coefficients, if we consider the expansion of (x1 + … + xm)n, then we get 
the following expansion:

( )
, , ,

,x x x
n

n n n
x x xm

n

m

n n
m

nm
1 2

1 2
1 2

1 2+ + + =








∑�

…
�  where the sum is taken 

over all sequences (n1, n2, …, nm) of non-negative integers with n ni
i

m

=
=
∑

1

.

Here
n

n n n

n

n n nm m1 2 1 2, , ,

!

! ! !… �








 = ⋅

 is called multinomial coefficient.

7.10.3 Application of Generating Function

For large number of selection of objects we use ‘Integral Equation Method followed 
by generating function’. In this method we group alike objects together and with each 
group we define a variable representing number of objects selected from the group. 
Then we add all variables and equate the sum to the total objects to be selected.

For example, if we have to select 3 objects from AAAAABBBBCCC objects, then 
we make groups of identical objects, group of all A objects, group of all B objects 
and group of all C objects. Let x1, x2, x3 be the number of A, B, C objects selected 
respectively.

As total number of objects to be selected is 3, we can make following integral equation:

  x1 + x2 + x3 = 3 [where 0 ≤ xi ≤ 3, i = 1, 2, 3]

Number of solutions of the above integral equation is same as the number of ways to 
select 3 objects from the given objects. This is because every solution of the equation 
is a way to select 3 objects.

Number of solutions of the equation

= + + + 
+Coefficient of  in Sumx x x xx x xmin( ) min( ) max( )1 1 11 �

×× + + + × + ++ +x x x x xx x x x xmin( ) min( ) max( ) min( ) min( )2 2 2 3 31 1�  ��+ x xmax( )3

Alexandre-Théophile
van der Monde

28 Feb 1735–1 Jan 1796
Nationality: French
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Note: Sum represents right hand side of the equation. For each variable x1, x2, x3 a 
bracket is formed using the values the variable can take. 
⇒ Number of solutions

= Coefficient of x3 in (x0 + x1 + x2 + x3)3

= Coefficient of x3 in 
1

1

4 3
−
−











x

x

= Coefficient of x3 in (1 - x4)3 (1 - x)-3

= Coefficient of x3 in (3C0 - 3C1 x
4 + 3C2 x

8 - 3C3 x
12) (1 - x)-3

= Coefficient of x3 in (1 - x)-3 [as other terms cannot generate x3 term]

= 3 + 3 - 1C3 = 5C3 = 10 [using: coefficient of xr in (1 - x)-n = n + r - 1Cr]

Example 132 In a box there are 10 balls, 4 red, 3 black, 2 white and 1 yellow. In how 
many ways can a child select 4 balls out of these 10 balls? (Assume that the balls of 
the same colour are identical)

Solution: Let x1, x2, x3 and x4 be the number of red, black, white, yellow balls selected 
respectively.
Number of ways to select 4 balls

= Number of integral solutions of the equation (x1 + x2 + x3 + x4) = 4

Conditions on x1, x2, x3 and x4:
The total number of red, black, white and yellow balls in the box are 4, 3, 2 and 1 
respectively.

So we can take: Max (x1) = 4, Max (x2) = 3, Max (x3) = 2, Max (x1) = 1
There is no condition on minimum number of red, black, white and yellow balls 

selected, so take:

Min (xi) = 0 for i = 1, 2, 3, 4

Number of ways to select 4 balls

= Coefficient of x4 in (1 + x + x2 + x3 + x4) × (1 + x + x2 + x3) × (1 + x + x2) × (1 + x)

= Coefficient of x4 in (1 - x5) (1 - x4) (1 - x3) (1 - x2) (1 - x)-4

= Coefficient of x4 in (1 - x2 - x3 - x4) (1 - x)-4

= Coefficient of x4 in (1 - x)-4 - Coefficient of x2 in (1 - x)-4 - coeff of x1 in (1 - x)-4

   - Coefficient of x0 in (1 - x)-4

= 7C4 - 5C2 - 4C1 - 3C0 =
× ×7 6 5

3!
- 10 - 4 - 1 = 35 - 15 = 20

Thus, number of ways of selecting 4 balls from the box subjected to the given con-
ditions is 20.

Alternate solution (Using ‘case’ method):
The 10 balls are RRRR BBB WW Y (where R, B, W, Y represent red, black, white and 
yellow balls respectively).

The work of selection of the balls from the box can be divided into following 
 categories.

Case 1: All alike
Number of ways of selecting all alike balls = 1C1 = 1

Case 2: 3 alike and 1 distinct
Number of ways of selecting 3 alike and 1 distinct balls = 2C1 × 3C1 = 6

M07_Combinatorics_C07.indd   74 8/11/2017   2:28:21 PM



Combinatorics  7.75

Case 3: 2 alike and 2 alike
Number of ways of selecting 2 alike and 2 alike balls = 3C2 = 3

Case 4: 2 alike and 2 distinct
Number of ways of selecting 2 alike and 2 distinct balls = 3C1 × 3C2 = 9

Case 5: All distinct
Number of ways of selecting all distinct balls = 4C4 = 1

Total number of ways to select 4 balls = 1 + 6 + 3 + 9 + 1 = 20.

Example 133 There are three papers of 100 marks each in an examination. Then find 
the number of ways in which a student can get 150 marks such that he gets atleast 60% 
in two papers.

Solution: Suppose the student gets atleast 60% marks in first two papers, then he just 
get atmost 30% marks in the third paper to make a total of 150 marks.
Let, x1, x2, x3 be marks obtained in 3 papers respectively. The total marks to be obtained 
is 150.

Therefore, Sum of marks obtained = 150

  ⇒ x1 + x2 + x3 = 150 (1)

60 ≤ x1 ≤ 100; 60 ≤ x2 ≤ 100; 0 ≤ x3 ≤ 30.

The required number of ways = Number of integral solutions of Eq. (1)

= Coefficient of x150 in {(x60 + x61 + … + x100)2 (1 + x + x2 + … + x30)}
= Coefficient of x30 in {(1 + x + … + x40)2 (1 + x + … + x30)}

= Coefficient of x30 in 
1

1

1

1

41 2 31−
−











−
−











x

x

x

x

= Coefficient of x30 in (1 - x)-3 = 30 + 3 - 1C3 - 1
 = 32C2.

Thus, the student gets atleast 60% marks in first two papers to get 150 marks as 
total in 32C2 ways. But the two papers, of atleast 60% marks, can be chosen out of 3 
papers in 3C2 ways.

Hence, the required number of ways = 3C2 × 32C2.

Example 134 Find the number of ways in which 30 marks can be allotted to 8 ques-
tions if each questions carries atleast 2 marks.

Solution: Let x1, x2, x3, x4, …, x8 be marks allotted to 8 questions.
As total marks is 30, we can make following integral equation:

x1 + x2 + x3 +…+ x8 = 30.

It is given that every question should be of atleast 2 marks. It means

2 ≤ xi ≤ 16 ∀i = 1, 2, 3, …, 8

The number of solutions of the integral equation is equal to number of ways to divide 
marks.

Number of solutions
= Coefficient of x30 in (x2 + x3 +…+ x16)8

= Coefficient of x30 in x16 (1 + x +…+ x14)8

= Coefficient of x14 in 
1

1

15 8
−
−











x

x

= Coefficient of x14 in (1 - x)-8 = 21C14 = 116280.
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Alternate solution:
Let, the marks given in each question be;

x1, x2, x3, x4, x5, x6, x7, x8 [where xi′s ≥ 0 (i = 1, 2 … 8)]

and x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = 30

Let, x1 - 2 = y1, x2 - 2 = y2, x3 - 2 = y3, x4 - 2 = y4, x5 - 2 = y5, x6 - 2 = y6, x7 - 2 = y7, 
x8 - 2 = y8.

⇒ y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 = 14

where 0 ≤ yi i = 1, 2, 3, …, 8

⇒Number of solutions = 14 + 8 - 1C8 - 1 = 21C7.

Example 135 In an examination the maximum marks for each of three papers is n and 
that for fourth paper is 2n. Find the number of ways in which a candidate can get 3n marks.

Solution: Let x1, x2, x3 and x4 be the marks obtained in papers 1, 2, 3, 4 respectively.
The total number of marks to be obtained by the candidate is 3n.

Therefore, sum of marks obtained in various papers = 3n.

  ⇒ x1 + x2 + x3 + x4 = 3n (1)

The total number of ways of getting 3n marks
= Number of solutions of the integral Eq. (1)

= Coefficient of x3n in (x0 + x1 + x2 + … + xn)3 × (x0 + x1 + … + x2n)

= Coefficient of x3n in 
1

1

1

1

1 3 2 1−
−











−
−











+ +x

x

x

x

n n

= Coefficient of x3n in (1 - xn + 1)3 (1 - x2n + 1) (1 - x)-4

= Coefficient of x3n in [(1 - 3xn + 1 + 3x2n + 2 - x3n + 3) (1 - x2n + 1) (1 - x)-4]

= Coefficient of x3n in [(1 - 3xn+1 - x2n + 1 + 3x2n + 2) (1 - x)-4]

=  Coefficient of x3n in (1 - x)-4 - 3 Coefficient of x2n - 1 in (1 - x)-4 - Coefficient of 
xn - 1 in (1 - x)-4 + 3 Coefficient of xn - 2 in (1 - x)-4

= 3n + 4 - 1C3n - 3 × 2n - 1 + 4 - 1C2n - 1
 - n - 1 + 4 - 1Cn - 1

 + 3 × n - 2 + 4 - 1Cn - 2

= 3n + 3C3 - 3 × 2n + 2C3 - n + 2C3 + 3 × n + 1C3 [as nCr = nCn - r]

=
+ + +

−
+ +

−
+ +

+
( )( )( ) ( )( )( ) ( )( )( ) (3 3 3 2 3 1

6
3

2 2 2 1 2

6

2 1

6
3

n n n n n n n n n n++ −1 1

6

)( )( )n n

= 
1

2
(n + 1) (5n2 + 10n + 6).

Example 136 In a shooting competition a man can score 5, 4, 3, 2 or 0 points for each 
shot. Find the number of different ways in which he can score 30 in seven shots.

Solution: Let x1, x2, x3, x4, …, x7 be the scores in 7 shots. As total score of 30 is

Sum of scores in 7 shots = 30
⇒ x1 + x2 + x3 + x4 + x5 + x6 + x7 = 30[where xi ∈ {0, 2, 3, 4, 5} i = 1, 2, …, 7]
Number of solutions of above equation
Number of ways of making 30 in 7 shots to be taken,
Coefficient of x30 in (x0 + x2 + x3 + x4 + x5)7.
⇒ Coefficient of x30 in {(x0 + x2 + x3) + x4 (x + 1)}7

⇒  Coefficient of x30 in {x28 (x + 1)7 + 7C1x
24.(x + 1)6.(1 + x2 + x3) + 7C2 x

20 (x + 1)5  
(x3 + x + 1)2 + …} [using Binomial theorem]
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= Number of ways to score 30
⇒ 7C2 + 7C1 (

6C3 + 6C2 + 6C0) + 7C2 (
5C1 + 2)

⇒ 21 + 252 + 147 = 420.

Example 137 Find the number of non-negative integral solutions of 

x1 + x2 + x3 + 4x4 = 20.

Solution: Number of non-negative integral solutions of the given equation 

= Coefficient of x20 in (1 - x)-1 (1 - x)-1(1 - x)-1 (1 - x4)-1 

= Coefficient of x20 in (1 - x)- 3(1 - x4)- 1

= Coefficient of x20 in (1 + 3C1x + 4C2x
2 + 5C3x

3 + 6C4x
4 + …)(1 + x4 + x8 + …)

= 1 + 6C4 + 10C8 + 14C12 + 18C16 + 22C20 = 536.

Build-up Your Understanding 6

 1. Find the number of ways to select 10 balls from an unlimited number of red, 
white, blue and green balls.

 2. Find the number of ordered triples of positive integers which are solutions of the 
equation x + y + z = 100.

 3. Find the number of integral solutions of x1 + x2 + x3 = 0, with xi ≥ -5.
 4. Find the number of integral solutions for the equation x + y + z + t = 20, where x, 

y, z, t are all ≥ -1.
 5. Find the number of integral solutions of a + b + c + d + e = 22, subject to a ≥ -3, 

b ≥ 1, c, d, e ≥ 0.
 6. If  a, b, c are three natural numbers in AP and a + b + c = 21 then find the possible 

number of values of the ordered triplet (a, b, c).
 7. If a, b, c, d are odd natural numbers such that a + b + c + d = 20 then then find the 

number of values of the ordered quadruplet (a, b, c, d).
 8. Find the number of non-negative integral solution of the equation, x + y + 3z = 33.
 9. Find the number of integral solutions of the equation 3 x + y + z = 27, where x, y, 

z > 0.
 10. If a, b, c are positive integers such that a + b + c ≤ 8 then find the number of pos-

sible values of the ordered triplet (a, b, c).
 11. Find the number of non-negative integral solution of the inequation
  x + y + z + w ≤ 7.
 12. Find the number of non-negative even integral solutions of x + y + z = 100.
 13. Find the number of non-negative integral solutions of x + y + z + w ≤ 23.
 14. Find the total number of positive integral solution of 15 < x1 + x2 + x3 ≤ 20.
 15. Find the number of non-negative integer solutions of ( a + b + c ) ( p + q + r + s) = 21.
 16. There are three piles of identical red, blue and green balls and each pile contains 

at least 10 balls. Find the number of ways of selecting 10 balls if twice as many 
red balls as green balls are to be selected. 

 17. Find the number of terms in a complete homogeneous expression of degree n in 
x, y and z.

 18. In how many different ways can 3 persons A, B and C having 6 one rupee coins, 
7 one rupee coins and 8 one rupee coins respectively donate 10 one rupee coins 
collectively.

  (i) If each one giving at least one coin
  (ii)  If each one can give ‘0’ or more coin.
  Also answer the above questions for 15 rupees donation.
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 19. In an examination, the maximum marks for each of the three papers are 50 each. 
Maximum marks for the  fourth paper is 100. Find the number of ways in which 
a candidate can score 60% marks on the whole.

 20. Between two junction stations A and B, there are 12 intermediate stations. Find 
the number of ways in which a train can be made to stop at 4 of these stations so 
that no two of these halting stations are consecutive. 

 21. The minimum marks required for clearing a certain screening paper is 210 out 
of 300. The screening paper consists of ‘3’ sections each of Physics, Chemistry 
and Mathematics Each section has 100 as maximum marks. Assuming there is 
no negative marking and marks obtained in each section are integers, find the 
number of ways in which a student can qualify the examination (Assuming no 
subjectwise cut-off limit).

 22. Find the number of ways in which the sum of upper faces of four distinct dices 
can be six.

 23. How many integers > 100 and < 106 have the digital sum = 5?
 24. In how many ways can 14 be scored by tossing a fair die thrice?
 25. Find the number of positive integral solutions of abc = 30. 
 26. Find The number of positive integral solutions of the equation x1 x2 x3 x4 x5 = 1050.
 27. Let y be an element of the set A = {1, 2, 3, 5, 6, 10, 15, 30} and x1, x2, x3 be posi-

tive integers such that x1 x2 x3 = y, then find the number of positive integral solu-
tions of x1 x2 x3 = y.

 28. Let xi ∈ such that |x1 x2 … x10| = 1080000. Find number of solutions.
 29. Let xi ∈ such that x1 x2 … x10 = 180000. Find Number of solutions.
 30. Let xi ∈, such that |x1| + |x2| +…+ |x10| = 100. Find number of solutions.

7.11 Application of Recurrence Relations

Recurrence relation is a way of defining a series in terms of earlier member of the 
series with a few initial terms. It is complete description and much simpler than 
explicit formula. Here are some examples for use of recurrence relation.

Example 138 Let there be n lines in a plane such that no two lines are parallel and no 
three are concurrent. Find the number of regions in which these lines divide the plane.

Solution: Let an  denotes required number of regions

Initial term a a a0 1 21 2 4= = =, ,

Let number of region by ( )n−1  lines be an−1.
Let us assume our plane be vertical and let us rotate it so that none of the n - 1 lines 

are horizontal.
Now draw nth line, horizontally, below all the point of intersections. All previous 

n - 1 lines meet the nth line at n - 1 different points. These points divides the nth line 
into n parts and each part falls in some old region and will divide the old region in two 
parts which will generate n new region. 

n new regions are added to an−1  regions 

⇒ = + ⇒ − =− −a a n a a nn n n n1 1

⇒ − =
=
∑a a nn
n

n

1
2

Hence,  a n
n n

n = + = +
+∑1 1

1

2

( )
.  (as a1 = 1)
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Example 139 Determine the number of regions that are created by n mutually over-
lapping circles in a plane. Assume that no three circles passing through same points 
and every two circles intersect in two distinct points.

Solution: Let number of regions be hn. Clearly h h h h0 1 2 31 2 4 8= = = =; , ,

It is tempting now to think hn = 2n but by drawing diagram we see that h4 14= .
We obtain recurrence relation as follows:
Let (n - 1) mutually overlapping circle creating hn−1  regions. 
Now draw nth circle. nth circle is intersected by each of ( )n−1  circles in two points,

⇒ We are getting 2 1( )n−  distinct points, these points divides nth circle into 

2 1( )n− arcs. Each arc falls in some old region and will divide the old region in two 

parts and thus will generate 2 1( )n−  new regions. 

⇒ = + − ≥−h h n nn n 1 2 1 2( );

⇒ − = −−h h nn n 1 2 1( )

⇒ = + −
=
∑h h nn
n

n

1
2

2 1( )

= = +
−

= − +h
n n

n nn 2 2
1

2
22( )

.  (as h1 = 2)

Example 140 Determine number of ways to perfectly cover a 2×n  board with domi-
noes (domino means a tile of size 2 1× ).

Solution: Let number of ways be hn. Then h h h0 1 21 1 2= = =; ;

Let n ≥ 2.
We divided the perfect covers of 2 × n board into two parts A and B depending upon 

the domino placed at first place.
A: Those perfect covers in which there is a vertical domino at the first place as 

shown in figure.
B: Those perfect covers in which there are two horizontal domino at the first place 

as shown in the figure. 
Now, perfect covers in A = perfect covers in 2 1× −( )n board.

⇒ = −| |A hn 1

Similarly | |B hn= −2

⇒ = +− −h h hn n n1 2

This is our famous fibonacci sequence. Its general solution already discussed in the 
chapter of recurrence relation.

Example 141 Tower of Brahma (or Tower of Hanoi) is a puzzle consisting of three 
pegs mounted on a board and n discs of different sizes. Initially all the n discs are 
stacked on the first peg so that any disc is always above a larger disc. The problem is to 
transfer all these discs to peg 2, with minimum number of moves, each move consisting 
of transferring one disc from any peg to another so that on the new peg the transferred 
disc will be on top of a larger disc (i.e., keeping a disc on a smaller one is not allowed).

Find the total (minimum) number of moves required to do this.

Solution: Here again we shall give the explanation through four columns representing 
several number of the move: the positions of discs at each stage in peg 1, peg 2 and peg 3.

2

n
n −11

(A)

21

1

n
n −22

2(B)

A B
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When there is just one disc, the problem is trivial, i.e., in 1 move it is transferred 
directly to peg 2. We shall see the scheme of transfers for n = 1, 2 and 3, before finding 
the formula and proving it n = 1. Let name the discs as d1, d2, …, dn with di + 1 to be 
smaller than di for all i, 1 ≤ i ≤ n - 1.

Serial No. of the Moves Peg 1 Peg 2 Peg 3

Initial stage d1 – –

1 d1 –

So in one move d1 is transferred to peg 2, when n = 1, i.e., total number of moves when 
n = 1 is 1.
n = 2, discs are d1 and d2, d2 smaller than d1.

Serial No. of the Moves Peg 1 Peg 2 Peg 3

Initial stage d1, d2 – –

1 d1 d2

2 – d1 d2

3 – d1, d2 –

Thus, total no. of moves when n = 2 is 3.
n = 3, discs are d1, d2, d3 with d3 smaller than d2, d2 smaller than d1.

Serial No. of the Moves Peg 1 Peg 2 Peg 3

Initial stage d1, d2, d3 _ _

1 d1d2 d3 _

2 d1 d3 d2

3 d1 _ d2, d3

4 _ d1 d2, d3

5 d3 d1 d2

6 d3 d1, d2 _

7 _ d1, d2, d3 _

So, when there are 3 discs, i.e., n = 3, the minimum number of moves is 7.
Note that here when the biggest disc alone is still in peg 1, all the discs are trans-

ferred to peg 3 and peg 2 is empty, so that the biggest one can now occupy peg 2. 
Then all the discs from peg 3 now can be transferred to peg 2 above the biggest one and 
it will again take as many times (to be transferred to peg 2), as it took to be transferred 
from peg 1 to peg 3.

Thus, to transfer two discs d1 d2 from peg 1 to peg 2:
d2 goes to peg 3 in one move in the next move, d1, goes to peg 2.
Now, disc d2 takes the same 1 move to go to peg 2. Thus, the required number of 

moves is 1 + 2(1) = 3.
Again, when there are 3 discs, as has been seen in the case of two discs, it takes 3 

moves to transfer d2 and d3 to peg 3 (not peg 2 in this case) and it takes one move to 
transfer disc d1 to peg 2 and it takes again another 3 moves to transfer discs d2 and d3 

to peg 2.
So, the total number of moves =1 + 2 × 3 = 7. For 1 disc, there is one move; for 2 

discs, there are 1 + (2 × 1) moves or 22 - 1; for 3 discs, there are 2{1 + (2 × 1)} + 1

 = 2(22 − 1) + 1

 = 23 - 2 + 1
 = 23 - 1 moves.
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So, we can guess that when there are 4 discs, the number of moves is 2(23 - 1) + 1 = 
24 - 2 + 1 = 24 - 1.

Thus, to find the minimum number of moves, we can use the formula, 2n - 1, when 
there are n discs to be transferred from peg 1 to peg 2.

Now, proving this is very simple by using the principle of Mathematical induction.
We have already verified that this formula holds for the number of discs n = 1, 2 

and 3.
So, let us assume that it holds for n = k, i.e., when there are k discs, the minimum 

number of moves required to transfer the k discs from peg 1 to peg 2 is 2k - 1.
When there are (k + 1) discs, we should verify if the number of moves is 2k+1 - 1.

Serial No. of the Moves Peg 1 Peg 2 Peg 3

After k discs are transferred 
2k - 1 

dk+1 - d1, d2, …, dk

2kth move - dk+l d1, d2, …, dk

Now, by our assumption for n = k, it takes 2k - 1 moves to transfer d1, d2, …, dk discs 
(k in all) to peg 2 from peg 3.

So, the total number of moves = 2k + 2k - 1 

= 2 . 2k - 1 = 2k+1 - 1

Thus, whenever the formula to find the number of moves for n = k (i.e., no. of moves 
= 2k - 1) is true, the formula is true for n = k + 1.

From the fact that the formula is true for n = 1, together with the last statement we 
find, that the formula is true for all n ∈ , i.e., the minimum number of moves required 
to transfer n discs from peg 1 to peg 2, according to the given condition is 2n - 1.

Aliter: Let an be the minimum number of moves that will transfer n disks from one peg 
to other peg under given restriction. Then a1 is obviously 1, and a2 = 3.

Let as think when we can move the largest disk from the first peg? We first transfer 
the n - 1 smaller disk to peg 3 which requires an - 1 moves, then move the largest disk 
to peg 2 requiring one move and finally transfer the n - 1 smaller back to peg 2 on top 
of largest disk which require another an - 1 moves thus

an = an - 1 + 1 + an - 1

⇒ = +
⇒ + = +

⇒ + = +

= =

⇒ =

−

−
−

a a

a a

a a

a

a

n n

n n

n
n

n

n

2 1

1 2 1

1 2 1

2 1

2

1

1

1
1

1

( )

( )

( )as
nn −1

7.12 Principle of Inclusion and Exclusion (PIE)

This principle is used in most counting situations.
The addition principle for counting is stated for disjoint sets as 
|A ∪ B| = |A| + |B| or n(A ∪ B) = n(A) + n(B), where A and B are disjoint sets.
If A and B are not disjoint, then |A ∪ B| = |A| + |B| - (A ∩ B).
We count the elements of A and B in turn and subtract the common elements of A 

and B, i.e., the elements in A ∩ B, as they are counted twice: firstly when we counted 
the elements of A and secondly, when we counted the elements of B.

Abraham de Moivre

26 May 1667–27 Nov 1754
Nationality: French
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For three sets A, B and C, the counting principle states that
|A ∪ B ∪ C| = |A| + |B| + |C| - |A ∩ B| - |A ∩ C| - |B ∩ C| + |A ∩ B ∩ C|
The general PIE is stated as follows:
For any sets A1 A2, …, An, n ≥ 2

| |

| | | | | | ( )

A A A

A A A A A A

n

i i j
i ji

n

i j k
n

i j

1 2

1

11

∪ ∪

= − ∩ + ∩ ∩ − + −
<=

+

< <
∑∑

�

�
kk

n

nA A A∑ ∩ ∩ ∩| |1 2 �

In other words, consider properties P1, P2, …, Pn. Let n(Ak) or | Ak | be the number of 
objects satisfying the property Pk, k = 1, 2, …, n. A commonly asked question is ‘how 
many elements satisfy atleast one of the properties ‘P1, P2,…, Pn’?

This question is answered by the inclusion-exclusion principle which is stated 
below:

If A1, A2, …, Am are m sets and n(S) denotes the number of elements in the set S, 

then, n Ak
k

m

=











1
∪

= − ∩ + + −










−

=≤ < < < ≤
∑n A n A A n Ak i j

s
i

k

s

i i i m
k

s

( ) ( ) ( )� ∩
�

1 1

111 1 2≤≤ < ≤=

−

=

∑∑

+ + −
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m
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1

1

1
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Note that if x Ak
k

m

∈
=1
∪ , then x belongs to at least one of A k mk , .1≤ ≤ ⋅

Note: For notational ease we may use A1 + A2 +…+ Ak in place of A1 ∪ A2 ∪ … ∪Ak 
and A1A2 … Ak in place of Al ∩ A2 ∩ … ∩ Ak .

7.12.1 A Special Case of PIE

For any set A1, A2, …, An, n ≥ 2,

| | | | | | | | ( ) |A A A A A A A A A A An i
i

n

i j
i j

i j k
n

1 2
1

1
1 21+ + + = − + − + −

= <

−∑ ∑� � � AAn
i j k

|
< <
∑

We consider here a special case of the principle of inclusion and exclusion.
In some applications we deal with properties, a1, a2, …, an and numerical values asso-

ciated with properties, i.e., n(a1), n(a2), …, n(an), n(a1a2), …, n(an-1an) … and so on.
It is known that the numerical value assigned to a single property is a constant, and 

numerical values assigned to two properties aiaj, i ≠ j is also a constant and so on.
In other words

 1. n(a1) = n(a2) = … = n(an)

  2. n(a1a2) = n(a1a3) = … = n(a1an) = n(a2a3) = … = n(an-1an)

 3. n(a1a2a3) = n(a1a2a4) = … = n(aiajak), i ≠  j ≠ k
  and so on.

Again we denote by N(l), the common value of the properties a1, a2, …, an taken one 
at a time, i.e., N(l) = n(a1) = n(a2) = … = n(an).

M07_Combinatorics_C07.indd   82 8/11/2017   2:28:30 PM



Combinatorics  7.83

N(2) is the common value of the properties a1, a2,…, an when taken two at a time, 
etc. and N(n) the number denoting the value n(a1a2 … an), i.e., the number denoting 
the value of the properties when all of them are taken together and N(0) is the value of 
n a a an( )′ ′ ′1 2 …  where ′ai  is the complementary property of the property ai and N is the 
value of collection of zero property or atleast one property.

Now, n a
n

Ni
i

n

( ) ( )
=
∑ =










1 1
1

 
n a a

n
Ni j

i j
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Now, with this explanation, the principle of inclusion and exclusion takes the form
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Example 142 Five letters are written to five different persons and their addresses are 
written on five envelopes (one address on each envelope). In how many ways can the 
letters be placed in the envelopes so that no letter is placed in the correct envelope?

Solution: Let us name the envelopes A, B, C, D, E and the corresponding letters a, b, 
c, d, e.

We shall now see, when the letter b is placed in envelope A, in how many ways the 
other 4 letters a, c, d, e can go to the wrong envelopes.
Envelopes

A B C D E
(1)

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)

b

a

a

a

a

a

a

a

a

a

a

d

d

d

d
d

d

d

d
d

e

e
e

e

e

e

e
e

e

c

c

c

c

c

c

c

c

c

Thus for placing the letter b in envelope A, we have 11 different ways in which no letter 
goes to the correct envelope.

But we can also place c, d or e in envelope A, and in each case we get 11 different 
ways of placing letter in which no letter goes to the correct envelope.

Therefore, there are 11 × 4 = 44 different ways in which we can place the five let-
ters, one in each of five envelopes so that no letter goes to the right envelope.

Aliter 1: Let us use special case of PIE
In to our problem of letters and envelopes, we take for each i = 1, 2, 3, …, 5, ki as the 
property that the letter at goes to the envelope Ai.

Here, n = 5,
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∴ N = The total number of ways of 5 letters can be put into the envelopes = 5!

N N N N N N( ) ( ) ( ) ( ) ( )0
5

1
1

5

2
2

5

3
3

5

4
4= −








 +








 −








 +








 −−










5

5
5N ( )

N(i) is the number of ways in which i letters go to i correct envelopes, so whatever 
happens to the other letters is (5 - i)!

Thus, N(l) = 4! = 24,

because 5 – 1 = 4 letters can be placed in 4 envelopes in 4! ways and there is first one 
way of placing the letter in the correct envelope.

N(2) = 3! = 6,

since 5 - 2 = 3 letters can be placed in 3 envelopes in 3! = 6 different ways and again 
there is just one way of placing the two letters in their corresponding envelopes.

Similarly, N(3) = (5 - 3)! = 2! = 2

 N(4) = (5 - 4)! = 1

 N(5) = (5 - 5)! = 0! = 1.

∴ N ( )0 =  The number of ways that none of the letters go into the correct envelope is

5 5 4
5 4

1 2
3

5 4 3

1 2 3
2 5 1 1 1! ! ! !− × +

×
⋅

× −
× ×
⋅ ⋅

× + × − ×

 = 120 - 120 + 60 - 20 + 5 - 1
 = 44.

Aliter 2: See the formula given in derangement section 7.13
By using the given formula for n = 5, we get

D5 5 1
1

1

1

2

1

3

1

4

1

5
= − + − + −





!
! ! ! ! !

                          
= − + −





5
1

2

1

6

1

24

1

120
!

                          = 60 - 20 + 5 - 1 = 44.

Example 143 Find the number of positive integers from 1 to 1000, which are divisible 
by at least one of 2, 3 or 5. 

Solution: Let Ak be the set of positive integers from 1 to 1000, which are divisible by k. 

Obviously we have to find n A A A( ).2 3 5∪ ∪

n(A2) = 
1000

2
500

1000

3
3






= = 





, ( )n A = = 




=333

1000

5
2005, ( )n A

n A A n A A n A A( ) , ( ) , ( )2 3 3 5 2 5
1000

6
166 66

10

∩ = 




= ∩ = ∩

=

similarly 

00 332 3 5, ( ) .n A A A∩ ∩ =

Hence, n A A A( )2 3 5 500 333 200 166 66 100 33 734∪ ∪ = + + − − − + = .

Note that number of positive integers from 1 to 1000, which are not divisible by 
any of 2, 3 or 5 is 

1000 - n ( ) .A A A2 3 5 266∪ ∪ =
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Example 144 Find the number of ways in which two Americans, two Britishers, one 
Chinese, one Dutch and one Egyptian can sit on a round table so that persons of the 
same nationality are separated.

Solution: Total = 6!
n(A) = when A1 A2 together = 5 ! 2 ! = 240
n(B) = when B1 B2 together = 5 ! 2 ! = 240

⇒ n(A ∪ B) = n(A) + n(B) - n(A ∩ B) = 240 + 240 - 96 = 384

Hence n( )A B∩  = Total - n(A ∪ B) 

= 6! - 384

= 720 - 384

= 336.

Example 145 In how many ways can 5 cards be drawn from a complete deck (of 52 
cards) so that all the suites are present? (Do not simplify.)

Solution: Consider the notation: In a selection of 5 cards,
C: the set of selections in which clubs are absent
D: the set of selections in which diamonds are absent
S: the set of selections in which spades are absent
H: the set of selections in which hearts are absent
We have | C | = | D | = | S | = | H | = 39C5,

|C ∩ D| = … = 26C5,

|C ∩ D ∩ S| = … = 13C5,

and| C ∩ D ∩ S ∩ H | = 0
Now |C ∪ D ∪ S ∪ H | = 4( 39C5 ) - 6( 26C5 ) + 4( 13C5 ) - 0
Finally, the required number is 

52C5 - 4 39C5 + 6 26C5 - 4 13C5.

Example 146 In how many ways can 6 distinguishable objects be distributed in four 
distinguishable boxes such that there is no empty box?

Solution: The number of distributions such that:

 (i) atleast one box is empty, is 4C1 . 3
6

 (ii) atleast two boxes are empty, is 4C2 . 2
6

 (iii) atleast three boxes are empty, is 4C3 . 1
6

The totality of distributions is 46.
Hence the required number is

46 - 4C1 3
6 + 4C2 2

6 - 4C3 1
6 = 2260.

Note: If there should be exactly one empty box, then the number of distributions is
4C1(3

6 - 3C1. 2
6 + 3C2. 1

6) = 2160.

Example 147 Find the number of ways to choose an ordered pair (a, b) of numbers 
from the set {1, 2,…, 10} such that |a – b| ≤ 5.

Solution: Let A1 = [(a, b) | a, b ∈ {1, 2, 3, …, 10}, | a - b | = {i}, i = 0, 1, 2, 3, 4, 5.
A0 = {(i, i) | i = 1, 2, 3, …, 10} and | A0 | = 10

A1 = {(i, i + 1) | i = 1, 2, 3, …, 9} ∪ {i, i - 1} | i = 2, 3, …, 10} and | A1 | = 9 + 9 = 18
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A2 = {(i, i + 2) | i = 1, 2, 3, …, 8} ∪ {(i, i - 2) | i = 3, 4, …, 10} and | A2 | = 8 + 8 = 16

A3 = {(i, i + 3) | i = 1, 2,…, 7} ∩ {(i, i - 3) | i = 4, 5, …, 10} and | A4 | = 6 + 6 = 12

A4 = {(i, i + 4) | i = 1, 2, 3 …, 6} ∪ {(i, i - 4) | i = 5, 6,…, 10} and | A4 | = 6 + 6 = 12

A5 = {(i, i + 5) | i = 1, 2, …, 5} ∪ {(i, i - 5) | i = 6, 7, …, 10} and | A5 | = 5 + 5 = 10

  ∴ The required set of pairs ( , )a b Ai
i

=
=10

5

∪ and the number of such pairs, (which 

are disjoint)

A Ai
i i

i
= =

= = + + + + + =∑
10

5

10

5

10 18 16 14 12 10 80∪ | | .

Alternate: Total ways (without condition) = 102 = 100

Let b - a ≥ 6 

1 10 1 5 5
5

2
10≤ < ≤ ⇒ ≤ < − ≤ ⇒








 =a b a b

Similarly for a - b ≥ 6 we will get 10 ways.
Hence required answer = 100 - 10 - 10 = 80.

Example 148 Identify the set S by the following information:

 (i) S ∩ {3, 5, 8, 11} = {5, 8}
 (ii) S ∪ (4, 5, 11, 13} = {4, 5, 7, 8, 11, 13}
 (iii) {8, 13} ⊂ S
 (iv) S ⊂ {5, 7, 8, 9, 11, 13}

Also, show that no three of the conditions suffice to identify S uniquely.

Solution: From (i),

  5, 8 ∈ S (1)

From (ii),

  7, 8 ∈ S (2)

From (iii),

  8, 13 ∈ S (3)

Therefore, from Eqs. (1), (2) and (3), we find that

  5, 7, 8, 13 ∈ S (4)
S ⊂ {5, 7, 8, 9, 11, 13}  (Given)

If at all S contains any other element other than those given in (4), it may be 9 or 11 
or both.

But 9 ∉ S. [∵9 ∉ S ∪ {4, 5, 11, 13} = {4, 5, 7, 8, 11, 13}]
Again 11 ∉ S, for 11 ∉ S ∩ {3, 5, 8, 11} = {5, 8}
∴ S = {5, 7, 8, 13}.
If condition (i) is not given, then S is not unique as S may be {7, 8, 13} or {5, 7, 8, 

13} or {5, 7, 8, 11, 13}.
Similarly, deleting any other data leads to more than one solution to S (Verify.)

Example 149 Suppose that in a poll made of 150 people, the following information 
was obtained: 70 of them read The Hindu, 80 read The Indian Express and 50 read 
Deccan Herald. 30 read both The Hindu and The Indian Express; 20 read both The 
Hindu and the Deccan Herald and 25 read both The  Indian Express and Deccan 
 Herald. Find at most how many of them read all the three.
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Solution: Let H, I and D be the set of those who read The Hindu, The Indian Express 
and the Deccan Herald, respectively.
So, the data given in mathematical symbols are as  follows:

 1. | H ∪ I ∪ D | ≤ 150
 2. | H | = 70
 3. | I | = 80
 4. | D | = 50
 5. | H ∩ I | = 30
 6. | H ∩ D | = 20
 7. | I ∩ D | = 25

We need to find the maximum possible value of | H ∩ I ∩ D |.

150 ≥ | H ∪ I ∪ D | = | H | + | I | + | D | - | H ∩ I | - | I ∩ D | - | H ∩ D | + | H ∩ I ∩ D |
⇒ 150 - 70 - 80 - 50 + 30 + 50 + 25 ≥ | H ∩ I ∩ D |
∴ | H ∩ I ∩ D | ≤ 25

∴ At most 25 of them read all the three. If every one of the 150 people interviewed 
read at least one of these three newspapers, then exactly 25 of them read all the three.

Example 150 Lewis Carroll, the famous author of Alice in  Wonderland, Through the 
Looking Glass, The hunting of the Shark and other wonderful works, was a mathemati-
cian whose real name was Charles Lutwidge Dodgson (1832–1898). Here is a problem 
from his book ‘A Tangled Tale’.

Let S be the set of pensioners, E the set of those who lost an eye, H those who lost an 
ear, A those who lost an arm and L those who lost a leg.

Given that n(E ) = 70%, n(H ) = 75%, n(A) = 80% and n(L) = 85%. Find what per-
centage at least must have lost all the four.

Solution: Let n(S ) be 100.

∴ n(S ) ≥ n(E ∪ H ) = n(E ) + n(H ) - n(E ∩ H )
⇒ 100 ≥ 70 + 75 - n(E ∩ H )
⇒ n(E ∩ H ) ≥ 45.

Similarly n(S) ≥ n(L ∪ A) = n(L) + n(A) - n(L ∩ A)

= 80 + 85 - n(L ∩ A)
⇒ n(L ∩ A) ≥ 65.

Now, n(S) = 100 ≥ n[(E ∩ H ) ∪ (L ∩ A)]

= n[(E ∩ H ) + n(L ∩ A) - n(E ∩ H ∩ L ∩ A)
⇒ 100 ≥ 45 + 65 - n(E ∩ H ∩ L ∩ A)
⇒ n(E ∩ H ∩ L ∩ A) ≥ 110 - 100 = 10.

That is at least 10% of the people must have lost all the four.

Example 151 In the above problem, if those who lost all the four are more than 10 and 
less than 70, construct an  example.

Solution: Here we have to find

n(E ∩ H ∩ A ∩ L) = 10 + k, where 0 < k < 60.

We have n[(E ∩ H ) ∪ (A ∩ L)] = n(E ∩ H ) + n(A ∩ L) - n(E ∩ H ∩ A ∩ L)
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But we know that 100 ≥ n [(E ∩ H ) ∪ (A ∩ L)]

∴ 100 ≥ n(E ∩ H ) + n(A ∩ L) - (10 + k)]

⇒ n(E ∩ H ) + n (A ∩ L) ≤ 110 + k.

∴ We can have n(E ∩ H ) to be say = (45 + k) and n(A ∩ L) = 65.
But, n(S) = 100 ≥ (E ∪ H ) = n(E) + n(H ) - n(E ∩ H )

⇒ 100 + n(E ∩ H ) ≥ n(E ∪ H ) = n(E ) + n(H ) - n(E ∩ H )
⇒ 145 + k ≥ n(E) + n(H ).

So, we can take n(E) = 65 + k, n(H ) = 80.
Similarly, for n (A ∩ L)

100 ≥ n(A) + n(L) - n(A ∩ L)

⇒ 100 + n(A ∩ L) ≥ n(A) + n(L)

⇒ 165 ≥ n(A) + n(L).

We can take n(A) = 75, n(L) = 90
Now, we find

n(E ) = 65 + k, n(H ) = 80, n(A) = 75, n(L) = 90.

Let us check if we are correct in our choice of the cardinal number of each of these four.

100 ≥ n(E ∪ H ) = n(E ) + n(H ) - n(E ∩ H )

⇒ n(E ∩ H ) ≥ (65 + k) + 80 - 100 = 45 + k
and again,

100 ≥ n(A ∪ L) = n(A) + n(L) - n(A ∩ L)
= 75 + 90 - n(A ∩ L)

⇒ n(A ∩ L) ≥ 65

again, 100 ≥ n[(E ∩ H ) ∪ (A ∩ L)]

= n(E ∩ H ) + n(A ∩ L) - n(E ∩ H ∩ A ∩ L)
≥ 45 + k + 65 - n(E ∩ H ∩ A ∩ L)

⇒ n(E ∩ H ∩ A ∩ L) ≥ 10 + k as desired.

In fact, this is just one solution. You can have yet a number of (only finite! Why don’t 
you find them) other solutions. Once you get the cardinal number of the sets E, H, A 
and L, you can even combine E, A and H, L or E, L and H, A, as well. You shall get the 
same result.

For n(S ) = 100 ≥ n(E ∪ A) = n(E ) + n(A) - n(E ∩ A)

⇒ n(E ∩ A) ≥ n(E ) + n(A) - 100 = 65 + k + 75 - 100 = 40 + k
and Similarly n(H ∩ L) ≥ n(H ) + n(L) - 100 = 80 + 90 - 100 = 70

∴ n[(E ∩ A) ∩ (H ∩ L)] ≥ n(E ∩ A) + n(H ∩ L) - 100
= 40 + k + 70 - 100 = 10 + k.

You can verify this by taking the pairs of sets H, A and E, L.

Example 152 a, b, c, d be integers ≥ 0, d ≤ a, d ≤ b, and a + b = c + d.
Prove that there exist sets A and B satisfying n(A) = a, n(B) = b, n(A ∪ B) = c,  
n(A ∩ B) = d.

Solution: (A ∩ B) ⊂ A

⇒ n(A ∩ B) ≤ n(A)

or, d ≤ a

M07_Combinatorics_C07.indd   88 8/11/2017   2:28:33 PM



Combinatorics  7.89

Again, (A ∩ B) ≤ B
n(A ∩ B) ≤ n(B)

d ≤ a
n(A ∪ B) = n(A) + n(B) - n(A ∩ B)

⇒ n(A ∪ B) + n(A ∩ B) = n(A) + n(B)
⇒ c + d = a + b.

Example 153 How many positive integers of n digits exist such that each digit is 1, 2 
or 3? How many of these contain all three of the digits 1, 2 and 3 at least once?

Solution: There are three digits 1, 2, 3 and an n-digit number is to be formed, repeti-
tions allowed.

Thus, number of possibilities is 3 3 3 3 3× × × × =�� ��� ���
n

n

times

For the second part of the question:
In (1), we include the possibility that all the n digits consist of (a) 1 only, (b) 2 only, 
(c) 3 only and again in (2), we include the possibility that the n digits consist of only 
(i) 1 and 2 (ii) 2 and 3 (iii) 1 and 3.

The number of n-digit numbers all of whose digits are 1 or 2 or 3 is 3n.
 (i) The number of n-digit numbers all of whose digits are 1 and 2, each of 1 and 2 

occurring at least once is 2n - 2.
 (ii) The number of n-digit numbers all of whose digits are 2 and 3, each of 2 and 3 

occurring at least once is again 2n - 2.
 (iii) The number of n-digit numbers all of whose digits are 1 and 3, each of 1 and 3 

occurring at least once is 2n - 2.
Thus, the total numbers made up of the digits 1, 2 and 3 is

3n - 3(2n - 2) - 3 = 3n - 3 . 2n + 3.

Example 154 A, B and C are the set of all the positive divisors of 1060, 2050 and 3040, 
respectively. Find n(A ∪ B ∪ C).

Solution: Let n(A) = number of positive divisors of

1060 = 260 × 560 is 612

n(B) = number of positive divisors of

2050 = 2100 × 550 is 101 × 51 and

n(C) = number of positive divisors of

3040 = 240 × 340 × 540 = 413

The set of common factors of A and B will be of the form 2m . 5n where 0 ≤ m ≤ 60 and 
0 ≤ n ≤50.

So, n(A ∩ B) = 61 × 51.

Similarly, since the common factors of B and C and A and C are also of the form 2m 

× 5n,
and in the former case 0 ≤ m ≤ 40,

 0 ≤ n ≤ 40,

and in the latter case 0 ≤ m ≤ 40,

 0 ≤ n ≤ 40,

∴ n(B ∩ C) = 412 also n(A ∩ C) = 412
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and, n(A ∩ B∩ C) is also 412.

∴ n (A ∩ B ∩ C)

 = n(A) + n(B) + n(C) - n(A ∩ B) - n(B ∩ C) - n(A ∩ C) + n(A ∩ B ∩ C)

 = 612 + 101 × 51 + 413 - 61 × 51 - 412 - 412 + 412

 = 61(61 - 51) + 412(41 - 1) + 101 × 51

 = 610 + 1681 × 40 + 5151= 73001.

Example 155 Find the number of integer solutions to the equation x1 + x2 + x3 = 28 
where 3 ≤ x1 ≤ 9, 0 ≤ x2 ≤ 8 and 7 ≤ x3 ≤ 17.

Solution: Consider three numbered boxes whose contents are denoted as x1, x2, x3, 
respectively. The problem now reduces to distributing 28 balls in the three boxes such 
that the first box has at least 3 and not more than 9 balls, the second box has at most 
8 balls and the third box has at least 7 and at most 17 balls. At first, put 3 balls in the 
first box, and 7 balls in the third box. This takes care of the minimum needs of the 
boxes. So, now the problem reduces to finding the number of distribution of 18 balls 
in 3 boxes such that the first has at most (9 - 3) = 6, the second at most 8 and the third 
at most (17 - 7) = 10. The number of ways of distributing 18 balls in 3 boxes with no 

condition is 
18 3 1

3 1

20

2
190

+ −
−









 =









 = .

[See article 7.14: The number of ways of distributing n identical objects in r distinct 

boxes is 
n r

r

+ −
−











1

1
 where ‘r’ stands for the numbers of boxes and n for balls.]

Let d1 be the distribution where the first box gets at least 7; d2, the distributions where 
the second box gets at least 9 and d3, the distributions where the third gets at least 11.

| |
.

d1
18 7 3 1

3 1

13

2

13 12

1 2
78=

− + −
−









 =









 =

×
=

| |
.

d2
18 9 3 1

3 1

11

2

11 10

1 2
55=

− + −
−









 =









 =

×
=

| |
.

d3
18 11 3 1

3 1

9

2

9 8

1 2
36=

− + −
−









 =








 =

×
=

∴ | |d d1 2
18 7 9 3 1

3 1

4

2
6∩ =

− − + −
−









 =








 =

       | | ,d d2 3
18 9 11 3 1

3 1

0

2
0∩ =

− − + −
−









 =








 =

       
| | .d d3 1

18 11 7 3 1

3 1

2

2
1∩ =

− − + −
−









 =








 =

Also, |d1 ∩ d2 ∩ d3| = 0,

⇒ |d1 ∪ d2 ∪ d3| = 78 + 55 + 36 - 6 - 0 - 1 + 0 = 162.

So, the required number of solutions = 190 - 162 = 28.

Note: The number of ways the first box gets at most 6, the second at most 8 and the 
third at most 10 = Total number of ways of getting 18 balls distributed in 3 boxes - (the 
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number of ways of getting at least 7 in the first box, or at least 9 in the second box or 
at least 11 in the third box).

Example 156 I have six friends and during a certain vacation, I met them during 
several dinners. I found that I dined with all the six exactly on 1 day, with every five of 
them on 2 days, with every four of them on 3 days, with every three of them on 4 days 
and with every two of them on 5 days. Further every friend was present at 7 dinners 
and every friend was absent at 7 dinners. How many dinners did I have alone?

Solution: For i = 1, 2, 3, …, 6, let Ai be the set of days on which ith friend is present 
at dinner.

Then given n(Ai) or |Ai| = 7 and |Ai′| = 7.

So, |Ai ∩ Aj| =  5, |Ai ∩ Aj ∩ Ak | = 4, |Ai ∩ Aj ∩ Ak ∩ Al| = 3, |Ai ∩ Aj ∩ Ak ∩ Al ∩ 

Am| = 2,

and,          |A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5 ∩ A6| = 1.

where i, j, k, l, m vary between 1 to 6 and are distinct.

| ... |

| | | | | | |

A A A A

A A A A A A A A Ai
i

i j i j k i j k

1 2 3 6

1

6

∪ ∪ ∪

= − ∩ + ∩ ∩ − ∩ ∩ ∩
=
∑ ∑ ∑ AA

A A A A A A A A A A A

i

i j k l m

|

| | | |

∑

∑+ ∩ ∩ ∩ ∩ − ∩ ∩ ∩ ∩ ∩1 2 3 4 5 6

=







× −








× +








× −








× +








× −

6

1
7

6

2
5

6

3
4

6

4
3

6

5
2

6

6








×1

= 42 - 75 + 80 - 45 + 12 - 1 = 13.

The total number of dinners |Ai| + |Ai′| = 7 + 7 = 14.
The number of dinners in which at least one friend was present = |A1 ∪ A2 ∪ A3 ∪ 

A4 ∪ A5 ∪ A6| = 13.
The number of dinners I dine alone = 14 - 13 = 1.

Aliter: Let the proposer of the problem be called X, and the friends be denoted as A, B, 
C, D, E, F. Since X dines with all the 6 friend exactly on one day. We have the combi-
nation XABCDEF (1) for one day.

Thus, every five of A, B, C, D, E, F had already dined with X for a day. According 
to the problem, every five of them should dine on another day. It should happen in nC5 

= 6 days. The combination is XABCDEF (2), XABCDF (3), XABCEF (4), XABDEF 
(5), XACDEF (6), XBCDEF (7).

In (1) and (2) together, X has already dined with every four friends three times, for 
example, with ABCD, he dined on the first day the numbers above the combinations 
can be taken as the rank of the days X dined with his friends. 2nd and 3rd days, X 
has dined with every three friends of them on four days, for example, with ABC, 1st, 
2nd, 3rd and 4th days, X has dined with every two friends, of them for five days for 
example, with AB, 1st, 2nd, 3rd, 4th and 5th days,

With just one of them he has dined so far 6 days (with A, 1st, 2nd, 3rd, 4th, 5th and 
6th days).

So, he has to dine with every one of them for one more day he should dine with XA, 
XB, XC, XD, XE and XF for 6 more days. Thus, the total number of days he dined so 
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far with at least one of his friends is 1 + 6 + 6 = 13 days. In this counting, we see that 
he has dined with every one of them for 7 days. That shows that he has not dined with 
every one of them for 6 days.

But it is given that every friend was absent for 7 days. Since each one of them has 
been absent for 6 days already, all of them have to be absent for one more day.

Thus, he dined alone for 1 day and the total number of dinners he had is 13 + 1 = 14.

Example 157 A student on vacation for d days observed that (a) it rained seven times 
morning or afternoon; (b) when it rained in the afternoon, it was clear in the morning; 
(c) there were five clear afternoon and (d) there were six clear mornings. Find d.

Solution: Let the set of days it rained in the morning be Mr and the set of days it rained 
in the afternoon be Ar.

Then, clearly the set of days when there were clear morning is M ′r and the set of 
days when there were clear afternoon is A′r.

By condition (b), we get Mr ∩ Ar = ϕ,
By (d), we get M ′r = 6,
By (c), we get A′r = 5,
and by (a), we get Mr ∪ Ar = 7.
Mr and Ar are disjoint sets and n(Mr) = d - 6, n(Ar) = d - 5.
∴ Applying the principle of inclusion and exclusion, we get’

n(Mr ∪ Ar) = n(Mr) + n(Ar) - n(Mr ∩ Ar)
       ⇒ 7 = (d - 6) + (d - 5) - 0
     ⇒ 2d = 18
       ⇒ d = 9.

Aliter: Observe the tabular columns for rainy mornings, rainy afternoons, clear morn-
ings and clear afternoons.

Rainy afternoon Clear afternoon

Rainy morning x y

Clear morning z w

Now, by the hypothesis, we have

 x + y + z + w = d (1)

 x + y + z = 7 (2)
 y + w = 5 (3)
 z + w = 6 (4)

By condition (b), x = 0.
From Eqs. (3) and (4),

              y + z + 2w = 11 (5)

From Eq. (2),

                                                         y + z = 7 (6)

Solving Eqs. (5) and (6), we get

 2w = 4 or

 w = 2
∴ d = x + y + z + w = 0 + y + z + w

 = 0 + 7 + 2 = 9.
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7.13 Derangement

A derangement of 1, 2, …, n is a permutation of the numbers such that no number 
occupies its natural position. Thus (2, 3,1) and (3, 1, 4, 2) are derangements. On the 
other hand, (2, 4, 3, 5, 1) is not a derangement as 3 is at the 3rd position.

The total number of derangements of 1, 2, …, n will be denoted by Dn. 
It is easy to realise that D1 = 0, D2 = 1 and D3 = 2, etc.

D n
n

n

n

= − + − + +
−





!
! ! !

( )

!
1

1

1

1

2

1

3

1
�

Proof: Let Ai be the collection of all ways such that i be at ith position. Now we need 
to get Dn  which is N(A′1 A′2 A′3 … A′n). Using special inclusion and exclusion formula 
we get

N A A A n
n

n
n

n
n

r
n

r( ) ! ( )! ( )! ( )′ ′ ′ = −







 − +








 − − + −




1 2

1
1

2
2 1… � 




 − +( )!n r �

= −
− ×

× − +
− ×

× − − + −
− ×

n
n

n
n

n

n
n

n

n r
r!

!

( )! !
( )!

!

( )! !
( )! ( )

!

( )!1 1
1

2 2
2 1�

rr
n r

n

!
( )!

( )

−

+ + −� 1

= − + − + + − + + −n
n n n n

r
r n!

!

!

!

!

!

!
( )

!

!
( )

1 2 3
1 1� �

= − + + + +
−

+ +
−







n

r n

r n

!
! ! !

( )

!

( )

!
.1

1

1

1

2

1

3

1 1
� �

For an alternate proof see the Example 158.

Note that lim
! ! !

( )

!
.

n
n

n

D
n

e
→∞

−= − + − + +
−

=1
1

1

1

2

1

3

1 1  
 

�

For example, let S1, S2, S3 are three slots where objects A, B, C should be placed. 
Number of ways to place A, B, C in S1, S2, S3 such that A goes to S1, B goes to S2 and 
C goes to S3, i.e., all object are placed in there correct places = 1. Number of way to 
place only one object in a wrong slot is not possible because if A is placed in say S2, 
then B, whose correct slot is S2, would take either S1 or S3. It means B is also placed 
in the wrong slot. So it is not possible to place only one object in wrong slot. To place 
objects A, B, C in S1, S2, S3 such that all objects are placed in wrong slots we use 
derangement formulae, i.e.,

Number of way to place A, B, C all in wrong slots

= − + −








 =3 1

1

1

1

2

1

3
2 ways.

Example 158 On a rainy day n people go to a party. Each of them leaves his raincoat 
at the counter of the gate. Find the number of ways in which the raincoats are handed 
over to the guests after the function is over so that no one receives his/her own raincoat.

Solution: Let us name the guests as g1, g2, …, gn and their raincoats as r1, r2, …, rn, 
respectively.

Pierre Raymond de 
 Montmort

27 Oct 1678–7 Oct 1719 
Nationality: French

M07_Combinatorics_C07.indd   93 8/11/2017   2:28:36 PM



7.94  Chapter 7

Let us denote number of ways for the event that no one gets his/her raincoat by Dn.
We shall find a recurrence relation for Dn, as follows:
For g1 there are (n - 1) possible ways of getting the wrong raincoats.
If g1 is given the raincoat r2, Case (1) r1 may be given to g2 or Case (2) r1 may not 

be given to g2.
In case (1) if g2 receives r1 then the remaining (n - 2) guests may not get their rain-

coats in Dn-2 different ways.
In case (2) if g2 does not receive the raincoat r1 then the number of ways in which 

g2 does not receive r1, g3 does not receive r3,…, gn does not receive rn is Dn-1 as there 
are (n - 1) guests and also (n - 1) raincoats.

Thus, the total number of ways in which the remaining (n - 1) guests do not receive 
their raincoats is Dn-1 + Dn-2 as the two cases mutually exclusive.

For each one way of giving the wrong raincoat to g1 there are Dn-1 + Dn-2 ways that 
the remaining (n - 1) guests get the wrong raincoats.

But there are (n - 1) different ways in which g1 can get a wrong raincoat.
So,    Dn = (n - 1)[Dn-1 + Dn-2]
or   Dn = nDn-1 - Dn-1 + (n - 1) Dn-2

or    Dn - nDn-1 = -[Dn-1 - (n - 1)Dn-2] (1)
        = (-1)2[Dn-2 - (n - 2) Dn-3] (2)

        = (-1)3[Dn-3 - (n - 3)Dn-4]

       � � �

          = (-1)n-2[D2 - 2D1]

[Here replacing n by (n - 1) in Eq. (1), we get Dn-1 - (n - 1)Dn-2 = -{Dn-2 - (n - 2) 
Dn-3} and hence from Eq. (1), we get Eq. (2) and so on.]

∴ We have,

Dn - nDn-1 = (-1)n-2[D2 - 2D1].

Now, D1 = 0, D2 = 1, since D1 stands for just one guest that does not get his/her rain-
coat, which is clearly zero.

Also D2 = 1, since there are just two guests, there is only one way of getting their 
raincoats exchanged so that neither of the two get their raincoat.

∴ D nDn n
n− = − −−
−

1
21 1 0( ) ( ) = (-1)n-2 = (-1)n

∴ 
D

n

nD

n n
n n

n

! !

( )

!
− =

−−1 1

⇒ D

n

D

n n
n n

n

! ( )!

( )

!
.−

−
=

−−1

1

1

Substituting n - 1, n - 2, … for n successively, we get

 
D

n

D

n n
n n

n
− −

−

−
−

−
=

−
−

1 2
1

1 2

1

1( )! ( )!

( )

( )!

D

n

D
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n n

n
− −

−

−
−

−
=

−
−

2 3
2

2 3

1
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                 D D2 1
2
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1
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( )
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Adding both the sides, we get,

D

n

D

n
n

n

! ! ! ! !

( )

!
− = − + + +

−1

1

1

2

1

3

1

4

1
�

⇒ D n
n

n

n

= − + − + +
−







!

! ! !

( )

!
1

1

1

1

2

1

3

1
� ( ∴ D1 = 0)

Note that 1
1

1
0− =

!
,  and thus zero is added to the right hand side to get the formula in 

the proper format.

Aliter: Use derangement formulae (which was obtained by using the special inclusion 
and exclusion principle).

Example 159 Find D4.

Solution: The totality of permutations of 1, 2, 3, 4 is 4!
The number of permutations, which leave fixed

 (i) atleast one of 1, 2, 3, 4, is 4C1 3!
 (ii) atleast two of 1, 2, 3, 4 is 4C2 2!
 (iii) atleast three of 1, 2, 3, 4 is 4C3 1! and, finally,
 (iv) all of 1, 2, 3, 4, is 1

By the inclusion-exclusion principle,

D4 = 4! - 4C1 3! + 4C2 2! - 4C3 1! + 1 = 9.

Example 160 Find the number of permutations of 1, 2, 3, 4, 5 in which exactly one 
number occupies its natural position. 

Solution: Choose the number which should occupy its natural position (5C1)
The number of arrangements of the others is D4.

Hence the required number = 5C1 
. D4 = 45. 

Example 161 There are 5 boxes of 5 different colours. Also there are 5 balls of colours 
same as those of the boxes. In how many ways we can place 5 balls in 5 boxes such that

 (i) all balls are placed in the boxes of colours not same as those of the ball.
 (ii) at least 2 balls are placed in boxes of the same colour.

Solution:
 (i) All the balls should be placed in the wrong boxes.
  That is, boxes not of the colour same as balls.
  Using derangement formulae, number of ways in which this can be done.

  = − + − + −








5 1

1

1

1

2

1

3

1

4

1

5

  = − + − + −





120 1 1
1

2

1

6

1

24

1

120

  = 60 - 20 + 5 - 1 = 44.

 (ii) Atleast 2 balls are placed in the correct boxes, i.e., boxes of the colour same as ball
  = Total number of ways to place balls in boxes - Number of ways to place balls such 

that all balls are placed in wrong boxes - Number of ways to place balls in boxes 
such that 1 ball is placed in the correct box (i.e., box of the same colour as balls).
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  = − −5 44 Number of ways to select a ball that will be in correct box × Number 
of ways in which remaining 4 balls can be placed in 4 boxes such that all balls go 
in wrong boxes (boxes of colour different from balls).

= − − × − + − +








5 44 4 1

1

1

1

2

1

3

1

4
5

1C

  = 120 - 44 - 5 × 9 [using answer of (i) part and derangement formulae]
  = 120 - 44 - 45
  = 31.

Example 162 In how many ways 6 letters can be placed in 6 envelopes such that

 (i) No letter is placed in its corresponding envelope.
 (ii) at least 4 letters are placed in correct envelopes.
 (iii) at most 3 letters are placed in wrong envelopes.

Solution:
 (i) Using derangement formulae:
  Number of ways to place 6 letters in 6 envelopes such that all are placed in wrong 

envelopes.

= − + − + +





6 1
1

1

1

2

1

3

1

6
!

! ! ! !
�

   = 360 - 120 + 30 - 6 + 1 = 265.

 (ii) Number of ways to place letters such that at least 4 letters are placed in correct 
envelopes

  = 4 letters are placed in correct envelopes and 2 are in wrong +5 letters are placed 
in correct envelopes and 1 in wrong + All 6 letters are placed in correct envelopes

  = 6C4 × 1 + 0 (not possible to place 1 in wrong envelope) + =
×

+ =1
6 5

2
1 16.

 (iii) Number of ways to place 6 letters in 6 envelopes such that at most 3 letters are 
placed in wrong envelopes

  = 0 letter is wrong envelope and 6 in correct + 1 letter in wrong envelop and 5 
in correct + 2 letters in wrong envelopes and 4 are in correct + 3 letters in wrong 
envelopes and 3 in correct

  = 1 + 0 (not possible to place 1 in wrong envelope) + × + − + −










6
4

6
31 3 1

1

1

1

2

1

3
C C

= +
×

+
× ×

−
−







1

6 5

2

6 5 4

6

3

2

3

3

= 1 + 15 + 20 × 2 = 56.

Build-up Your Understanding 7

 1. Find the numbers from 1 to 100 which are neither divisible by 2 nor by 3 nor by 7.
 2. Find the number of numbers, from amongst 1, 2, 3, …, 500, which are divisible 

by none of 2, 3, 5.
 3. Find the number of 3 element subsets of the set {1, 2, …, 10}, in which the least 

element is 3 or the greatest element is 7.
 4. Find the number of n digit numbers, which contain the digits 2 and 7, but not the 

digits 0, 1, 8, 9.
 5. How many integers from 1 through 999 do not have any repeated digits?
 6. Find the number of natural numbers less than or equal to 108 which are neither 

perfect squares, nor perfect cubes, nor perfect fifth powers.
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 7. In a certain state, license plates consist of from zero to three letters followed by from 
zero to four digits, with the provision, however, that a blank plate is not allowed.

   (i) How many different license plates can the state produce?
   (ii) Suppose 85 letter combinations are not allowed because of their potential for 

giving offense.  How many different license plates can the state produce?
 8. If the number of ways of selecting K coupons one by one out of an unlimited 

number of coupons bearing the letters A, T, M so that they cannot be used to spell 
the word MAT is 93, then find K.

 9. How many positive integers divide 1040 or 2030?
 10. Find the number of permutations of letters a, b, c, d, e, f, g taken all together if 

neither ‘beg’ nor ‘cad’ pattern appear.
 11. Find the number of permutations of the letters of the word HINDUSTAN such 

that neither the pattern ‘HIN’ nor ‘DUS’ nor ‘TAN’ appears.
 12. Find the number of permutations of the 8 letters AABBCCDD, taken all at a time, 

such that no two adjacent letters are alike.
 13. Find the number of non-negative integer solutions of x1 + x2 + x3 =15, subject to
  x1 ≤ 5, x2 ≤ 6, and x3 ≤ 7.
 14. According to the Gregorian calendar, a leap year is defined as a year n such that
  (i) n divides 4 but not 100; or (ii) n divides 400.
  Find the number of leap years from the year 1000 to the year 3000, inclusive.
 15. Find the number of onto functions from a set containing 6 elements to a set con-

taining 3 elements.
 16. How many 6-digit numbers contain exactly three different digits?
 17. Let Dn be the nth derangement number. Prove that 
   (i) Dn = (n -1) (Dn - 1 + Dn - 2 ), n > 2;

  (ii) lim
n

nD

n e→∞
=

!

1

 18. Show that n letters in n corresponding envelopes can be put such that none of the 

letters goes to the correct envelop is n! 1
1

1

1

2

1

3

1
− + − + +

−









! ! !

( )

!
�

n

n
ways.

 19. Five pairs of hand gloves of different colours are to be distributed to each of five 
people. Each person must get a left glove and a right glove. Find the number of 
distributions so that,exactly one person gets a proper pair. 

 20. Prove (combinatorially) that r r n
r

n

! ( )! .= + −
=
∑ 1 1

1 
 21. In maths paper there is a question on ‘Match the column’ in which column A 

contains 6 entries and each entry of column A corresponds to exactly one of the 6 
entries given in column B written randomly. 2 marks are awarded for each correct 
matching and 1 mark is deducted from each incorrect matching. A student having 
no subjective knowledge decides to match all the 6 entries randomly. Find the 
number of ways in which he can answer, to get atleast 25% marks in this  question.

 22. Ten parabolas are drawn in a plane. Any two parabola intersect in four real, and 
distinct, points. No three parabola are concurrent. Find the total number of dis-
joint regions of the plane. 

 23. In how many ways can a 12 step staircase be climbed taking 1 step or 2 steps at a time?
 24. A coin is tossed 10 times. Find the number of outcomes in which 2 heads are not 

successive.
 25. Find the number of ways to pave a 1 × 7 rectangle by 1 × 1, 1 × 2, 1 × 3 tiles, if 

tiles of the same size are indistinguishable.
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7.14 Classical Occupancy Problems

The problems of the number of distributions of balls into cells are called occupancy 
problems. We distinguish several cases as described below:

7.14.1 Distinguishable Balls and Distinguishable Cells

 1. Number of ways to divide n non-identical balls in r different cells such that each 
cell gets 0 or more number of balls (empty cells are allowed) = rn.

 2. If no cell is empty, then the number is determined by the inclusion/exclusion prin-
ciple or by recurrence relation or by generating function method. Using any one 
of them we can get number of ways to divide n non-identical balls in r different 
cells such that each cell gets at least one object (empty cells are not allowed)

= rn - rC1 (r - 1)n + rC2 (r - 2)n - rC3 (r - 3)n + … (-1)r-1 rCr-1
 1n.

Example 163 Find the number of distributions of 5 distinguishable balls in 3 distin-
guishable cells, if

 (i) an empty cell is allowed;
 (ii) no cell is empty.

Solution:

 (i) 35 =243.
 (ii) Method 1:

The five balls can be distributed in 3 non-identical boxes in the following 2 ways:

Boxes Box1 Box 2 Box 3

Number of balls 3 1 1

Number of balls 2 2 1

Case 1: 3 in one Box, 1 in another and 1 in third Box (3, 1, 1) (1)
Number of ways to divide balls corresponding to (1)

 = =
5

3 1 1

1

2
10

!

! ! ! !
 

But corresponding to each division there are 3! ways of distributing the balls into 3 
boxes.

So number of ways of distributing balls corresponding to (1)
= (Number of ways to divide balls) × 3! = 10 × 3! = 60

Case 2: 2 in one Box, 2 in another and 1 in third Box (2, 2, 1) (2)
Number of ways to divide balls corresponding to (2)

= =
5

2 2 1

1

2
15

!

! ! ! !
But corresponding to each division there are 3! ways of distributing balls into 3 boxes.

So number of ways of distributing balls corresponding to (2)
= (Number of ways to divide balls) × 3!
= 15 × 3! = 90
Hence, required number of ways = 60 + 90 = 150.

Method 2:
Let us name the Boxes as A, B and C. Then there are following possibilities of placing 
the balls.

,

n distinct balls

1

C1 C2 Cr

, , …,

,2 , 3 n…,

r distinct cells
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Box A Box A Box A Number of ways

1

1

1

2

2

3

2

1

3

1

2

1

2

3

1

2

1

1

5
1

4
2

2
2

5
1

4
1

3
3

5
1

4
3

1
1

5
2

3
1

2
2

5

30

20

20

30

C C C

C C C

C C C

C C C

C

× × =

× × =

× × =

× × =

22
3

2
1

1

5
3

2
1

1
1

30

20

× × =

× × =

C C

C C C

Therefore required number of ways of placing the balls

= 30 + 20 + 20 + 30 + 30 + 20 = 150

Method 3:
Number of ways of distributing 5 balls in 3 boxes so that no Box is empty

rn - rC1 (r - 1)n + rC2 (r - 2)n - rC2 (r - 3)n + …

Put n = 5 and r = 3 to get:
Number of ways = 35 - 3C1 2

5 + 3C1 1
5 = 243 - 3 × 32 + 3 = 246 - 96 = 150 ways.

7.14.2 Identical Balls and Distinguishable Cells

If an empty cell is allowed, then the number of distributions is 
n r

r

+ −
−











1

1
 (use binary 

sequences).
In other words the number of ways to divide n identical objects into r groups (dif-

ferent) such that each gets 0 or more objects (empty groups are allowed) = n + r - 1Cr - 1.

Proof:
Let x1, x2, x3, …, xr be the number of objects given to groups 1, 2, 3, …, r respectively.
As total objects to be divided is n, we can take

Sum of the objects given to all groups = n

⇒ x1 + x2 + x3 + x4 + … + xr = n.

This equation is known as integral equation as all variables are integer.
As each group can get 0 or more, following are constraints on integer variables.

0 ≤ x1 ≤ n ; 0 ≤ x2 ≤ n, … 0 ≤ xr ≤ n, i.e., 0 ≤ xi ≤ n i = 1, 2, 3, …, r.

We can observe that number of integral solutions of the above equation is equal to num-
ber of ways to divide n identical objects among r groups such that each gets 0 or more.

= n + r - 1Cn = n + r - 1Cr - 1.

 If no cell is allowed to remain empty, then the number is n -1Cr -1.
In other words the number of ways to divide n identical objects into r groups (differ-

ent) such that each group receives at least one object (empty groups are not allowed).

= n - 1Cr - 1.

Example 164 How many terms are there in the expansion of (a + b + c + d)24?

Solution: A typical term is a b c dk k k k1 2 3 4⋅ ⋅ ⋅ ,  where k1, k2, k3, k4 are non-negative inte-
gers whose sum = 24.
The number of terms is the same as the number of distributions of 24 identical balls in 
four distinguishable cells, empty cell allowed. This is 24 + 4 -1C24 = 27C24.

,

n identical balls

C1 C2 Cr

, , …,

,, …,

r distinct cells
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Example 165 Find the number of ways of distributing 5 identical balls into three 
boxes so that no box is empty and each box being large enough to accommodate all 
the balls.

Solution: Let x1, x2 and x3 be the number of balls into three boxes so that no box is 
empty and each box being large enough to accommodate all the balls.
The number of ways of distributing 5 balls into Boxes 1, 2 and 3 is the number of inte-
gral solutions of the equation x1 + x2 + x3 = 5 subjected to the following conditions on 
x1, x2, x3. (1)

Conditions on x1, x2 and x3:
According to the condition that the boxes should contain at least one ball, we can find 
the range of x1, x2 and x3, i.e.,

Min (xi) = 1 and Max (xi) = 3 for i = 1, 2, 3 [using: Max (x1) = 5 - Min (x2) - Min(x3]
or 1 ≤ xi ≤ 3 for i = 1, 2, 3
So, number of ways of distributing balls
= Number of integral solutions of (1)
= Coefficient of x5 in the expansion of (x + x2 + x3)3

= Coefficient of x5 in x3 (1 - x3) (1 - x)-3

= Coefficient of x2 in (1 - x3) (1 - x)-3

= Coefficient of x2 in (1 - x)-3 [as x3 cannot generate x2 terms]
= 3 + 2 - 1C2 = 4C2 = 6.

Alternate solution:
The number of ways of dividing n identical objects into r groups so that no group 
remains empty

= n - 1Cr - 1 

= 5 - 1C3 - 1
 = 4C2 = 6.

Example 166 Find the number of ways of distributing 10 identical balls in 3 boxes so 
that no box contains more than four balls and less than 2 balls.

Solution: Let x1, x2 and x3 be the number of balls placed in Boxes 1, 2 and 3 respec-
tively.
Number of ways of distributing 10 balls in 3 boxes

= Number of integral solutions of the equation x1 + x2 + x3 = 10 (1)

Conditions on x1, x2 and x3:
As the boxes should contain atmost 4 ball and at least 2 balls, we can make

Max (xi) = 4 and Min (xi) = 2 for i = 1, 2, 3
or 2 ≤ xi ≤ 4 for i = 1, 2, 3
So the number of ways of distributing balls in boxes
= Number of integral solutions of equation (i)

= Coefficient of x10 in the expansion of (x2 + x3 + x4)3

= Coefficient of x10 in x6 (1 - x3)3 (1 - x)-3

= Coefficient of x4 in (1 - x3)3 (1 - x)-3

= Coefficient of x4 in (1 - 3C1 x
3 + 3C2 x

6 + …) (1 - x)-3

= Coefficient of x4 in (1 - x)-3 - Coefficient of x in 3C1 (1 - x)-3

= 4 + 3 - 1C4 - 3 × 3 + 1 - 1C1 = 6C4 - 3 × 3C1 = 15 - 9 = 6.
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Example 167 Find the number of ways in which 14 identical toys can be distributed 
among three boys so that each one gets atleast one toy and no two boys get equal 
number of toys.

Solution: Let the boys get a, a + b and a + b + c toys respectively.

a + (a + b) + (a + b + c) = 14, a ≥ 1, b ≥ 1, c ≥ 1

⇒ 3a + 2b + c = 14, a ≥ 1, b ≥ 1, c ≥ 1

∴ The number of solutions

= Coefficient of t14 in {(t3 + t6 + t9 + …) (t2 + t4 + …) (t + t2 + …)}
= Coefficient of t8 in {(1 + t3 + t6 + …) (1 + t2 + t4 + …) (1 + t + t2 + …)}
= Coefficient of t8 in {(1 + t2 + t3 + t4 + t5 + 2t6 + t7 + 2t8) (1 + t + t2 +…+t8)}
= 1 + 1 + 1 + 1 + 1 + 2 + 1 + 2 = 10.
Since, three distinct numbers can be assigned to three boys in 3! ways.
So, total number of ways = 10 × 3! = 60.

7.14.3 Distinguishable Balls and Identical Cells 

Label the balls by the natural numbers 1, 2, …, n. A partition of {1, 2, …, n} in r part 
is a set of r non-empty subsets, A1, A2, …, Ar of {1, 2, … n} such that
A1 ∪ A2 ∪ … ∪ Ar = {1, 2, …, n} and any two of A1, … Ar are disjoint.

For example, {{1}, {2, 3}, {4}} is a 3 partition of {1, 2, 3, 4}.
Denote the number of r partitions of {1, 2, …, n} by S(n, r). 
S(n, r) is called a Stirling number of the second kind. 
It is easy to see that:
S(n, 1) = 1, S(n, n) = 1, S(n, r) = 0, if r > n.
To determine S(n, r) for 1< r < n.
There are two possibilities:

 1. The number n is by itself is a partition.
  ⇒ The numbers 1, 2, …, n - 1 must form a r - 1 partition.
  The number of such partitions = S (n - 1, r - 1).
 2. The number n is along with atleast one of 1, 2, …, n - 1 in a partition.
  ⇒ The numbers 1, 2, …, n - 1 must form a r partition and n must be inserted in 

any one of the r subsets. So n can be put in r ways.
The number of such partitions = r S(n - 1, r)

Hence S(n, r) = S(n - 1, r - 1) + r S(n - 1, r),1< r < n
Use this to show that S(n, 2) = 2n - 1 - 1
In general, we can easily get

S(n, r) = 
1

1
1

2
2 1

1
11

r
r

r
r

r
r

r

r
n n n r n

!
( ) ( ) ( )−








 − +








 − − + −

−










 −�








Note: If n distinguishable balls are to be distributed in r identical cells, an empty cell 

allowed, then the number of distributions is S n k
k

r

( , ).
=
∑

1
Example 168 Find the number of distributions of 5 distinguishable balls in 3 identical 
cells, an empty cell allowed.

Solution: The sought after number is S(5, 1) + S(5, 2) + S(5, 3).
Now S(5, 1) = 1, S(5, 2) = 25 - 1 - 1 = 15, and

,

n distinct balls

1

CC C C
,, , …,

,2 , 3 n…,

r identical cells
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 S(5, 3) = S(4, 2) + 3S (4, 3)
 = (23 - 1) + 3(S (3, 2) + 3 S(3, 3))
 = 7 + 3((22 - 1) + 3)
 = 25

Hence, the answer is 1 + 15 + 25 = 41.

7.14.4 Identical Balls and Identical Cells 

Consider the problem of distributing n identical balls in k identical cells, no cell 
remaining empty. 

The number of distributions = The number of ways of writing n as the sum 
x x xk1 2+ + +�� ��� ���

positive integers

,  the order of terms being ignored = number of Partition of n in k 

parts.
This is equivalent to number of integral solution of x1 + x2 + x3 +…+ xk = n with

1 ≤ x1 ≤ x2 ≤ x3 ≤ … ≤ xk which is equal to [xn] in 
x

x x x x

k

k( )( )( ) ( )1 1 1 12 3− − − −�
Aleternatively denote this number by Pk(n).

Clearly, P1(n) = Pn(n) = 1, P2(n) = 
n

2





, Pk(n) = 0, k > n

For example, 5 2 2 1

3 1 1
5 23

= + +
= + +




⇒ =P ( )

To determine Pk (n), 1 < k < n
Let us divide all partitions in two types:
(A) Atleaset one partition of size 1
(B) No partition of size 1
Number of partitions of type A is pk-1(n - 1) (As make one partition of size 1 and 

remaining n - 1 in k - 1 parts). Number of partitions of type B is pk(n - k) (As first 
remove k objects and divide n - k objects in k parts). Now add one object in each part 
so that each part will be of size atleast 2. 

Hence, Pk(n) = Pk-1(n - 1) + Pk(n - k), 1 < k ≤ 
n

2





Using the above reccurence we can easily prove P3(n) = n

12

2

.  Read it “nearest 

integer” (see the Example 169).

Note: If n identical balls are to be distributed in r identical cells, an empty cell allowed, 

then the number is P nk
k

r

( ).
=
∑

1

Example 169 What is the number of necklaces that can be made from 6n identical 
blue beads and 3 identical red beads?

Solution: The sought after number is P3(6n) + P2(6n) + P1(6n).
We have

Pk(n) - Pk(n - k) = Pk - 1(n - 1)

⇒ P3(6n) - P3(6n - 3) = P2(6n - 1) =
−




= −

6 1

2
3 1

n
n  (1)

Leonhard Euler

15 Apr 1707–18 Sep 1783
Nationality: Swiss
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and P3(6n - 3) - P3(6n - 6) = P2(6n - 4) =
−




= −

6 4

2
3 2

n
n  (2)

Adding (1) and (2), we get, P3(6n) - P3(6(n - 1)) = 3(2n - 1) (3)
Let P3(6n) = an, then the Eq. (3) becomes an - an - 1 = 3(2n - 1) (4)
Now plugging n = 2, 3, …, n in Eq. (4) and adding all, we get an - a1 = 3(n2 - 1)
As, a1 = P3(6) = 3
⇒ an = 3n2

⇒ P3(6n) = 3n2

Also P2(6n) =





=

6

2
3

n
n

and P1(6n)
∴ The required number is 3n2 + 3n + 1.

Build-up Your Understanding 8

 1. Find the number of ways in which n distinct objects can be put into two different 
boxes so that no box remains empty. 

 2. Find the number of ways in which n distinct objects can be kept into two identical 
boxes so that no box remains empty.

 3. 10 identical balls are to be distributed in 5 different boxes kept in a row and 
labeled A, B, C, D and E. Find the number of ways in which the balls can be dis-
tributed in the boxes if no two adjacent boxes remain empty. 

 4.  Find the number of distributions of 6 distinguishable objects in three distinguish-
able boxes such that each box contains an object.

 5. Find the number of ways in which 12 identical coins can be distributed in 6 dif-
ferent purses, if not more than 3 and not less than 1 coin goes in each purse.

 6. Find the number of ways in which 30 coins of one rupee each be given to six 
persons so that none of them receive less than 4 rupees.

 7. Find the number of ways of wearing 8 distinguishable rings on 5 fingers of right hand.
 8. 15 identical balls have to be put in 5 different boxes. Each box can contain any 

number of balls. Find total number of ways of putting the balls into box so that 
each box contains atleast 2 balls.

 9.  In how many ways can 3 blue, 4 red and 2 green balls be distributed in 4 distinct 
boxes? (Balls of the same colour are identical)

 10.  How many different ways can 15 Candy bars be distributed to Tanya, Manya, 
Shashwat and Adwik, if Tanya cannot have more than 5 candy bars and Manya 
must have at least two. Assume all Candy bars to be alike.

 11. In how many ways, 16 identical coins can be distributed to 4 beggars when
    (i) any beggar may get any number of coins?
   (ii) every beggar gets atleast one coin?
  (iii) every beggar gets atleast two coins?
  (iv) every beggar gets atleast three coins?
 12. Prove that the number of n digit quaternary sequences (whose digits are 0, 1, 2, 

and 3), in which each of the digits 2 and 3 appear atleast once, is 4n - 2 ⋅ 3n + 2n.
 13. Shivank has 15 ping-pong balls each uniquely numbered from 1 to 15. He also 

has a red box, a blue box, and a green box.
    (i)  How many ways can Shivank place the 15 distinct balls into the three boxes 

so that no box is empty?
  (ii)  Suppose now that Shivank has placed 5 ping-pong balls in each box. How 

many ways can he choose 5 balls from the three boxes so that he chooses at 
least one from each box?
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 14. In how many ways we can place 9 diff erent balls in 3 diff erent boxes such that in 
every box at least 2 balls are placed?

 15. In how many ways can we put 12 diff erent balls in three diff erent boxes such that 
fi rst box contains exactly 5 balls.

 16. Five balls are to be placed in three boxes. Each can hold all the fi ve balls. In how 
many diff erent ways can we place the balls so that no box remains empty, if 

    (i) balls and boxes are all diff erent?
   (ii) balls are identical but boxes are diff erent?
  (iii) balls are diff erent but boxes are identical?
  (iv) balls as well as boxes are identical?
 17. A man has 3 daughters. He wants to bequeath his fortune of 101 identical gold 

coins to them such that no daughter gets more share than the combined share of 
the other two. Find the number of ways of accomplishing this task.

 18. There are six gates in an auditorium. suppose 20 delegates arrive. How many 
records could be there?

 19. A man has to move 9 steps. He can move in 4 directions: left, light, forward, 
backward.

    (i) In how many ways he can take 9 steps in 4 direction?
   (ii)  In how many ways he can move 9 steps if he has to take atleast one step in 

every direction.
  (iii)  In how many ways he can move 9 steps such that he fi nish his journey one step 

away (either left or right or forward or backward) from the starting position.

7.15 Dirichlet’s (Or Pigeon Hole) Principle (PHP)

Let k n, .∈�  If at least kn + 1 objects are distributed among k boxes, then atleast one 
of the box, must contain atleast (n + 1) objects. In particular, if atleast (n + 1) objects 
are put into n boxes, then atleast one of the box must contain atleast two objects. For 
arbitrary n objects and m boxes this generalizes to atleast one box will contain atleast 

n

m

−




+

1
1 objects.

Example 170 Divide the numbers 1, 2, 3, 4, 5 into two arbitrarily chosen sets. Prove 
that one of the sets contains two numbers and their difference.

Solution: Let us try to divide 1, 2, 3, 4, 5 into two sets in such a way that neither set 
contains the difference of two of its numbers.
2 cannot be in the same set as 1, 4, because if 2 and 1 are in the same sets 2 - 1 = 1 
belongs to the set; again if 2 and 4 are in the same set then 4 - 2 = 2 belongs to the set 
and hence, if we name the sets as A and B, and if 2 ∈ A, then 1, 4 both belong to B.

A     B
{2, , }   {1, 4, }

We cannot put 3 in set B as 4 - 3 = l belongs to B, so 3 belongs to A.

A = {2, 3, } B = {1, 4 }

Now, 5 is the only number left out. Either 5 should be in set A or in B, but then if 5 ∈ 
A ⇒ 5 - 3 = 2 ∈ A.

So, 5 cannot be in A.
However, if 5 is put in set B, then 5 - 4 = 1 ∈ B. So, 5 cannot be in set B.
Thus, we cannot put 5 in either set and hence, the result.

Johann Peter Gustav 
Lejeune Dirichlet

13 Feb 1805–5 May 1859
Nationality: German
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Example 171 Show that for any set of 10 points chosen within a square whose sides 
are of length 3 units, there are two points in the set whose distance is at most 2.

Solution: Divide the square into 9 unit squares as given in the figure. Out of the 10 
points distributed in the big square, at least one of the small squares must have at least 
two points by the Pigeon hole principle. These two points
being in a unit square, are at the most 2  units distance apart as 2  is the length of 
the diagonal of the unit square.

Example 172 Show that given a regular hexagon of side 2 cm and 25 points inside it, 
there are at least two points among them which are at most 1 cm distance apart.

Solution: If ABCDE is the regular hexagon of side 2 cm and P, Q, R, S, T and U are 
respectively the midpoints of AB, BC, CD, DE, EF and FA, respectively, then by join-
ing the opposite vertices, and joining PR, RT, TP, UQ, QS and SU, we get in all 24 
equilateral triangles of side 1 cm.

A P

F

U Q

C

T

E S D

R

B

2
3

4
5

11
12

19

24
23

22
21

20

14
15

16

13

6

1

7
8

9
10

17
18

We have 25 points. So, of these 25 points inside the hexagon ABCDEF, at least 2 
points lie inside any one triangle whose sides are 1 cm long. So, at least two points 
among them, will be at most 1 cm apart.

Example 173 If 7 points are chosen on the circumference or in the interior of a unit 
circle, such that their mutual distance apart is greater than or equal to 1, then one of 
them must be the centre.

Solution: Divide the circle into six equal parts by drawing radii with two adjacent 
radii making an angle of 60°. Then, two of the seven points cannot lie in the interior 
of any one of the six sectors, since the distance between any two points is greater than 
or equal to 1.
If at all, in any sector, with boundaries included, two of the points may lie on the circu-
lar arc as end points (of the arc of any one of these sectors) or one on the arc and one 
at the centre of the circle.

Even if two lie on the ends of each circular arc, we have only 6 points satisfying the 
condition, thus forcing the seventh point to lie at the centre.

Example 174 4n + 1 points lie within an equilateral triangle of side 1 cm. Show that 
it is possible to choose out of them, at least two, such that the distance between them 

is at most 1

2n
cm.

Solution: ABC is an equilateral triangle of side 1 cm. If the sides are divided into two 

equal parts, we get 4 equilateral triangles with side 
1

2
cm.

60°

60°60°

60°

60° 60°
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Again, if each of these four triangles is subjected to the above method, we get 4 × 4 

triangles of side 1

2

1

2

1

22
× = cm.

Thus, after n steps we get, 4n triangles of side 1

2n
cm.

Now, if we take 4n + 1 points inside the original equilateral ΔABC, then at least 
two of the points lie on the same triangle out of 4n triangles by Pigeon hole principle. 
Hence, the distance between them is less than or at the most equal to the length of the 

side of the triangle, in which they lie, i.e., they are 1

2n
cm apart or they are less than

1

2n
cm apart.

Example 175 Let A be any set of 19 distinct integers chosen from the Arithmetic Pro-
gression 1, 4, 7, …, 100. Prove that there must be two distinct integers in A, whose sum 
is 104.

Solution: There are 
( )100 1

3
1 34

−
+ =  elements in the progression.

1, 4, 7, …, 100. Consider the following pairs:

(4, 100), (7, 97), (10, 94), …, (49, 55).

There are in all 
49 4

3
1 16

−
+ =  pairs or

100 55

3
1

−
+






 .

Now, we shall show that we can choose eighteen distinct numbers from the AP, such 
that no two of them add up to 104. In the above 16 pairings of the AP the numbers 1 
and 52 are left out.

Now, taking one of the numbers from each of the pairs, we can have 16 numbers and 
including 1 and 52 with these 16 numbers, we now have 18 numbers.

But, no pair of numbers from these 18 numbers can sum up to 104, since just one 
number is selected from each pair and the other number of the pair (not selected) is 
104, the number chosen.

Also 1 + 52 ≠ 104. Thus, we can choose 18 numbers, so that no two of them sum 
up to 104.

For getting 19 numbers (all these should be distinct), we should choose one of the 
16 not chosen numbers, but then this number chosen is the 104 complement of one of 
the 16 numbers chosen already (among the 18 number). Thus, if a set of 19 distinct 
elements are chosen, then we must have at least one pair whose sum is 104.

Example 176 Let X ⊂ {1, 2, 3,…, 99} and n(X ) = 10. Show that it is possible to choose 

two disjoint non-empty proper subsets Y, Z of X such that y z
y Y z Z∈ ∈
∑ ∑= .

Solution: Since n(X) = 10, the number of non-empty, proper subsets of X is 210 - 2 = 
1022.
The sum of the elements of the proper subsets of X can possibly range from 

1 90
1

9

to ( ).+
=
∑ i
i

 That is 1 to (91 + 92 + … + 99), i.e., 1 to 855.

i = l

B

A

C
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That is, the 1022 subsets can have sums from 1 to 855.
By Pigeon hole principle, at least two distinct subsets B and C will have the same 

sum.
( ∴ There are 855 different sums, and so if we have more than 855 subsets, then at 

least two of them have the same sum.)
If B and C are not disjoint, then let

 X = B - (B ∩ C)

and, Y = C - (B ∩ C).

Clearly, X and Y are disjoint and non-empty and have the same sum of their elements.
Define s(A) = sum of the elements of A. We have B and C not necessarily disjoint 

such that s(B) = s(C).

Now, s(X) = s(B) - s(B ∩ C)

 s(Y) = s(C) - s(B ∩ C)

but, s(B) = s(C).

Hence, s(X) = s(Y).
Also X ≠ ϕ. For if X is empty, then B ⊂ C which implies s(B) < s(C) (a contradic-

tion). Thus, X and Y are non-empty and s(X) = s(Y).

Example 177 If repetition of digits is not allowed in any number (in base 10), show 
that among three four-digit numbers, two have a common digit occurring in them.

Also show that in base 7 system any two four-digit numbers without repetition of 
digits will have a common number occurring in their digits.

Solution: In base 10, we have ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. Thus, for 3 four-
digit numbers without repetition of digits, we have to use in all 12 digits, but in base 
10 we have just 10 digits. Thus, at least any two of the three four-digit numbers have 
a common number occurring in their digits by Pigeon hole principle. Again for base 
7 system, we have seven digits 0, 1, 2, 3, 4, 5, 6. For two four-digit numbers without 
repetition we have to use eight digits and again by Pigeon hole Principle, they have 
atleast one common number in their digits.

Example 178 In base 2k, k ≥ 1 number system, any 3 non- zero, k-digit numbers are 
written without repetition of digits. Show that two of them have a common digit among 
them.

In base 2k + 1, k ≥ 1 among any 3k + 1 digit non-zero numbers, there is a common 
number occurring in any two digits.

Solution:

Case 1: In case k′ = 1, we have the digits 0, 1 and the k-digit non-zero number(s) is 1 
only. Thus, all the three numbers in this case are trivially the same 1.

For k > 1: Three k-digit (non-zero) numbers will have altogether 3k digits and the 
total number of digits in base 2k system is 2k. Since repetition of digits is not allowed 
and 3k > 2k implies that among the digits of at least two of the numbers, there is at 
least one digit common among them (by Pigeon hole principle).

Case 2: In the case of k = 1, 2k + 1 = 3, the three digits in base 2k + 1 = 3 systems are 
0, 1 and 2.

k + 1 = 1 + 1 = 2 and the digits non-zero numbers here are 10, 20, 12, 21.

C − (B ∩ C)
= C − B

B ∩ C

CB

B − (B ∩ C)
= B − C

M07_Combinatorics_C07.indd   107 8/11/2017   2:28:48 PM



7.108  Chapter 7

So, we can pick up 10, 20 and 12, or 10, 20, 21, …. In each of the cases there is a com-
mon digit among two of them. (In fact, any two numbers will have a common digit 1.)

In general case, 3(k + 1) digit numbers will have 3k + 3 digits in all. But it is a base 
(2k + 1) system.

The numbers are written without repetition of digits, since 3k + 3 > 2k + 1 (In fact, 
any two k + 1 digit numbers could also have the same property as 2k + 2 > 2k + 1, again 
by the Pigeon hole principle at least two of the numbers, will have at least one common 
number in their digits.

Example 179 Let A denote the subset of the set S = {a, a + d,…, a + 2nd} having the 
property that no two distinct elements of A add up to 2(a + nd ). Prove that A cannot 
have more than (n + 1) elements. If in the set S, 2nd is changed to a + (2n + 1)d, what 
is the maximum number of elements in A if in this case no two elements of A add up to 
2a + (2n + 1)d?

Solution: Pair of the elements of S as [a, a + 2nd], [a + d, a + (2n − 1)d], …, [a + (n 
- 1)d, a + (n + 1)d ] and one term a + nd is left out.
Now, sum of the terms in each of the pairs is 2(a + nd). Thus, each term of the pair is 
2(a + nd) complement of the other term.

Now, there are n pairs. If we choose one term from each pair, we get n term. To this 
collection of terms include (a + nd ) also.

Now, we have (n + 1) numbers. Thus, set A can be taken as the set of the above 
(n + 1) numbers. Here no two elements of the set A add up to 2(a + nd) as no element has its 
2(a + nd) complement in A except a + nd, but then, we should take two distinct elements.

If we add any more terms to A so that A contains more than (n + 1) elements, then 
some of the elements will now have then 2(a + nd) complement in A, so that sum of 
these two elements will be 2(a + nd), and hence, the result.

In the second case, we have

S = {a, a + d, …, a + {2n + 1) d}

There are 2(n + 1) elements. So, pairing them as before gives (n + 1) pairs, i.e., [a, a + 
(2n + 1) d], [a + d, a + 2nd], …, [a + nd, a + (n + 1)d].

Now, we can pick exactly one term from each of these (n + 1) pairs.
We get a set A of (n + 1) elements where no two of which add up to [2a + 2(n + 1)d].

Note: Here we need not use distinct numbers, even if the same number is added to 
itself, the sum will not be [2a + 2(n + 1)d]. Here again, even choosing one more term 
from the numbers left out and adding it to A; A will have a pair which adds up to [2a + 
2(n + l)d]. Thus, the maximum number of elements in A satisfying the given condition 
is (n + 1).

Example 180 Given any five distinct real numbers, prove that there are two of them, 

say x and y, such that 0 <
( )

( )
.

x y

xy

−
+

≤
1

1

Solution: Here we are using the property of tangent functions of trigonometry.

Given a real number a, we can find a unique real number A, lying between 
−π
2

 and 

⋅

π
2

,  i.e., lying in the real interval 
−







π π
2 2

,  such that tan A = a, as the tangent func-
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tion in the open interval 
−







π π
2 2

,  is continuous and strictly increasing and covers R 

completely. Therefore, corresponding to the five given real numbers ai(i = 1, 2, 3, 4, 

5), we can find five distinct real numbers Ai (i = 1, 2, 3, 4, 5) lying between 
−π
2

 and 

⋅

π
2

 such that tan Ai = ai.

Divide the open interval −







π π
2 2

,  into four equal intervals, each of length ⋅

π
4

.  Now, 

by Pigeon hole principle at least two of the Ai’s must lie in one of the four intervals. 
Suppose Ak and Al with Ak > Al lie in the same interval, then

0 <Ak - Al ≤
π
4

.

⇒ tan 0 < tan (Ak - Al) < tan π
4

⋅

[It is because tan function increases in the interval −







π π
2 2

, ]

i.e.,   0
1

1<
−

+
<

tan tan

tan tan

A A

A A
k l

k l

   0
1

1<
−

+
<

a a

a a
k l

k l

.

Hence, there are two real numbers x = ak, y = a1 such that 0
1

1<
−
+

≤
x y

xy
.

Build-up Your Understanding 9

 1. Prove that, among any 52 integers, two can always be found, such that the differ-
ence of their squares, is divisible by 100.

 2. Show that, for any set of 10 points, chosen within a square, whose side is 3 units, 
there are two points, in the set, whose distance is at most 2 .

 3. There are 7 persons in a group, show that, some two of them, have the same num-
ber of acquaintances among them.

 4. 51 points are scattered inside a square, with a side of one metre. Prove that some 
set of three of these points can be covered by a square, with side 20 cm. 

 5. Let 1 < a1 < a2 < a3 < … < a51 < 142. Prove that, among the 50 consecutive differences  
(ai − ai - 1) where i =1, 2, 3, …, 51, some value, must occur at least twelve times.

 6.  You are given 10 segments, such that, every segment is larger than 1 cm but 
shorter than 55 cm. Prove that, you can select three sides of a triangle, among 
these segments.

 7. There are 9 cells in a 3 3×  square. When these cells are filled by numbers 1, 2, 3 
only, prove that, of the eight sums obtained, at least, two sums are equal.

 8. Let there be given 9 lattice points in a 3-D Euclidean space. Show that, there is a 
lattice point, on the interior of one of the line segments joining two of these nine 
points.

 9. Consider seven distinct positive integers, not exceeding 1706. Prove that, there 
are three of them, say a, b, c such that, a < b + c < 4a.

0
2 4

π
4 2

ππ−π−
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 10. One million pine trees grow in a forest. It is known that, no pine tree, has more 
than 60000 pine needles in it. Show that, two pine trees in the forest must have the 
same number of pine needles.

 11. In a circle of radius 16, there are placed 650 points; Prove that there exists a ring 
(annulus) of inner radius 2 and outer radius 3, which contains not less than 10 of 
the given points.

 12. On a rectangular table of dimensions 120″ by 150″, we set 14001 marbles of size 
1″ by 1″. Prove that, no matter how these are arranged, one can place a cylindrical 
glass with diameter of 5″ over atleast 8 marbles.

 13. Let A be the set of 19 distinct integers, chosen from the AP 1, 4, 7, 10, …, 100. 
Prove that, there should be two distinct integers in A, such that, their sum is 104.

 14. If a line is coloured in 11 colours, show that, there exist two points, whose dis-
tance apart, is an integer, which have the same colour.

 15.  Show that, given 12 integers, there exists two of them whose difference is divis-
ible by 11.

 16. Given eleven triangles, show that, some three of them belong to the same type 
(such as equilateral, isosceles, etc.)

 17. A is a subset of the AP 2, 7, 12, …, 152. Prove that, there are two distinct elements 
of A whose sum is 159. What can you conclude if A has only 14 elements?

 18. Given three points, in the interior of a right angled triangle, show that, two of 
them are at a distance not greater than the maximum of the lengths of the sides 
containing the right angle.

 19. There are 90 cards numbered 10 to 99. A card is drawn and the sum of the digits 
of the number in the card is noted; show that if 35 cards are drawn, then, there are 
some three cards, whose sum of the digits are identical.

 20. If in a class of 15 students, the total of the marks in a subject is 600, then show 
that, there is a group of 3 students, the total of whose marks is at least 120.

 21. Let ABCD be a square of side 20. Let Ti (i = 1, 2, …, 2000) be points 
in the interior of the square, such that, no three points from the set 
S A B C D T ii      = ⊂ ∀ ={ , , , } , , , ,1 2 3 2000…  are collinear, Prove that, at least 

one triangle, with the vertices in S has area less than 1

10
.

 22. 5 points are plotted inside a circle. Prove that, there exist two points, which form 
an acute angle with the centre of the circle.

 23. Let A denote a subset of {1, 11, 21, 31, …, 551} having the property that, no two 
elements of A, add up to 552. Prove that A cannot have more than 28 elements.

 24. Prove that, there exist two powers 3, which differ by a multiple of 2005.
 25. All the points in the plane are coloured, using three colours. Prove that, there ex-

ists a triangle with vertices, having the same colour, such that, either it is isosceles 
or its angles are in geometric progression.

Solved Problems

Problem 1 In how many ways can a pack of 52 cards be 
 (i) distributed equally among four players in order?
 (ii) divided into 4 groups of 13 cards each? 
 (iii) divided into four sets of 20, 15, 10, 7 cards?
 (iv) divided into four sets, three of them having 15 cards each and the fourth having 

7 cards? 
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Solution:
 (i) From 52 cards of the pack, 13 cards can be given to the first player in 52C13 

ways.
  From the remaining 39 cards, 13 cards can be given to the second player in 39C13 

ways.
  From the remaining 26 cards, 13 cards can be given to the third player in 26C13 

ways. 
  The remaining 13 cards can be given to the fourth player in 13C13 = 1 way. 
  By fundamental theorem, the number of ways of dividing 52 cards equally among 

four players = 52 C13 × 39C13 × 26C13 × 13C13 = 
52

13 39

39

13 26

26

13 13
1

52

13 4

!

! !

!

! !

!

! !

!

( !)
.× × × =

 (ii) By standard result, the number of ways of forming 4 groups, each of 13 cards 

=
52

4 13 4

!

!( !)
.

 (iii) Here the sets have unequal number of cards, hence the required number of ways 

= 52C20 × 32C15 × 17C10 × 7C7 = 
52

20 32

32

15 17

17

10 7
1

52

20 15 10 7

!

! !

!

! !

!

! !

!

! ! ! !
.× × × =

 (iv) By standard result, the required number of ways = =
52

15 15 15 7 3

52

15 3 73

!

! ! ! ! !

!

( !) . ! !
.

Problem 2 Find the number of ways of filling three boxes (named A, B and C) by 12 
or less number of identical balls, if no box is empty, box B has at least 3 balls and box 
C has at most 5 balls. 

Solution: Suppose box A has x1 balls, box B has x2 balls and box C has x3 balls. Then, 

x1 + x2 + x3 ≤ 12, x1 ≥ 1, x2 ≥ 3, 1 ≤ x3 ≤ 5

Let x4 = 12 - (x1 + x2 + x3). Then 

x1 + x2 + x3 + x4 = 12 (1 ≤ x1 ≤ 8, 3 ≤ x2 ≤ 10, 1 ≤ x3 ≤ 5 and 0 ≤ x4 ≤ 7) 

The required number = Coefficient of x12 in 

( )( )( )( )x x x x x x x x x x x x1 2 8 3 4 10 1 2 5 0 1 7+ + + + + + + + + + + +� � � �

= Coefficient of x12 in ( )( )( )( )x x x x x x x x x x x+ + + + + + + + + + + +2 3 3 4 5 2 5 21� � � �

= Coefficient of x7 in ( )( )( )( )1 1 1 12 2 2 3 4 2+ + + + + + + + + + + + +x x x x x x x x x x� � �

= Coefficient of x7 in (1 - x)-4 (1 - x5) 
= Coefficient of x7 in (1 - x5) (1 + 4C1x + 5C2x

2 + 6C3 x
3 + …) 

= 10C7 - 5C2 = 110.

Problem 3 A person writes letters to six friends and address the corresponding enve-
lopes. In how many ways can the letters be placed in the envelopes so that 

 (i) at least two of them are in the wrong envelopes?
 (ii) all the letters are in the wrong envelopes?

Solution:
 (i) The number of all the possible ways of putting 6 letters into 6 envelopes is 6!. 

There is only one way of putting all the letters correctly into the corresponding 
envelopes. 

  Hence if there is a mistake, at least 2 letters will be in the wrong envelope. 
  Hence the required answer is 6! - 1 = 719. 
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 (ii) Using the result of derangements, the required number of ways 

= − + − + − +







= − + − + − +

6 1
1

1

1

2

1

3

1

4

1

5

1

6

720 1 1
1

2

1

6

1

24

1

120

1

!
! ! ! ! ! !

7720








= 360 - 120 + 30 - 6 + 1 = 265. 

Problem 4 Find the number of integers which lie between 1 and 106 and which have 
the sum of the digits equal to 12.

Solution: Consider the product (x0 + x1 + x2 + . . . + x9) (x0 + x1 + x2 + . . . + x9) . . . 6 
factors. The number of ways in which the sum of the digits will be equal to 12 is equal 
to the coefficient of x12 in the above product. So, required number of ways = Coef-
ficient of x12 in (x0 + x1 + x2 +…+ x9)6.

= Coefficient of x12 in (1 - x10)6 (1 - x)-6

= Coefficient of x12 in (1 - x)-6 (1 - 6C1 x
10 + …)

= Coefficient of x12 in (1 - x)-6 - 6C1 ⋅ Coefficient of x2 in (1 - x)-6 

= 12 + 6 - 1 C6 - 1 - 6C1 × 2 + 6 - 1C6- 1 = 17C5 - 6 × 7C5 = 6062. 

Problem 5 Straight lines are drawn by joining m points on a straight line to n points 
on another line. Then excluding the given points, prove that the lines drawn will inter-

sect at 
1

2
mn(m - 1) (n - 1) points. (No two lines drawn are parallel and no three lines 

are concurrent.)

Solution: Let A1, A2, …, Am be the points on the first line (say l1) and let B1, B2, …, Bn 
be the points on the second line (say l2). Now any point on l1 can be chosen in m ways 
and any point on l2 can be chosen in n ways. Hence number of ways of choosing a point 
l1 and a point on l2 is mn.
Hence number of lines obtained on joining a point on l1 and a point on l2 is mn. 
Now any point of intersection of these lines, which can be done in mnC2 ways. Hence 
 number of point is mnC2. But some of these points are the given points and counted 
many times. For example, the point A1 has been counted nC2 times. Hence required 
number of points is 

mnC2 - m ⋅ nC2 - n ⋅ mC2 = 
1

2
1 1mn m n( )( )− −

Aliter: If we select two points from first line and two from the second line then we will 
have 2 required points from every such selection

Hence number of such points = 2
2 2

1

2
1 1×









×







 = − −

m n
mn m n( )( ).

Problem 6 In the figure you have the road plan of a city. A man standing at X wants 
to reach the cinema hall at Y by the shortest path. What is the number of different paths 
that he can take? 

A1 A2 A3
l1

l2

B1 B2
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Solution: A path from X to Y is shown by dark line segments which corresponds y x x 
x y y x y. It is easy to see that any path of required type corresponds to an arrangement 
of x, x, x, x, y, y, y and y and vice versa. Hence required number of ways = number of 

arrangements of 4x’s and 4y’s, which is
8

4 4
.

Problem 7 Show that the number of combinations of n letters out of 3n letters of which 
n are a’s, n are b’s and the rest are unequal is (n + 2) ⋅ 2n - 1.

Solution: From n we have 0, 1, 2, 3 . . ., n From n we may have 0, 1, 2, 3 …, n, while 
for each of the rest n letters we may have 2 combinations 0 or 1. Thus the required 
number of combinations is thus

= Coefficient of xn in 

(1 + x + x2 +…+ xn) (1 + x + x2 +…+ xn) (1 + x) (1 + x) +…(1 + x) 

= Coefficient of xn in 
( )

( )
( )

1

1
1

1 2

2

−
−

⋅ +
+x

x
x

n
n

= Coefficient of xn in (1 - xn + 1)2 (1 + x)n (1 - x)- 2 
Since (1 - xn + 1)2 will not contain xn, we have required number of combinations
= Coefficient of xn in (1 + x)n . (1 - x)- 2 
= Coefficient of xn in [2 - (1 - x)]n (1 - x)-2 
= Coefficient of xn in 2n (1 - x)-2 - nC1 2

n - 1 (1 - x)-1 + nC1. 2
n - 2 . (1 - x)0 

- nC3 . 2
n - 3 (1 - x) + … + (- 1)n . nCn (1 - x)n - 2 

= Coefficient of xn in 2n (1 - x)- 2 - n . 2n - 1 . (1 - x)- 1 

= 2n ( )!

!
( ) ( ).

n

n
n n n nn n n n+

− ⋅ = ⋅ + − ⋅ = ⋅ +− − −1
2 2 1 2 2 21 1 1

Problem 8 Show that the number of rectangles of any size on a  chess board is k
k

3

1

8

=
∑ .  

Solution: A rectangle can be fixed on the chess board if and only if we fix two points 
on x-axis and two points on y-axis. For example, in order to fix the rectangle RSTU, 
we fix B and G on x-axis and K and M on y-axis and vice-versa.
Hence total number of rectangles on the chess board is the number of ways of choosing 
two points on x-axis (which can be done in 9C2 ways) and two points on y-axis (which 

can also be done is 9C2 ways). Hence require number is ( ) .9
2

2 3

1

8

C k
k

=
=
∑

Problem 9 Find the number of triangles whose angular points are at the angular points 
of a given polygon of n sides. but none of whose sides are the sides of the polygon.

Solution: A n-sided polygon has n angular points. Number of triangles formed from 
these n angular points = nC3. But it also includes the triangles with sides on the 
 polygon.

Let us consider a side PQ. If each angular point of the remaining (n - 2) points is 
joined with PQ, we get a triangle with one side PQ.

∴ Number of triangles with PQ as one side = n - 2. In similar ways n sides like 
QR can be considered. Hence number of triangle = n (n - 2). But some triangles have 
been counted twice. For example, PQ side with R gives ΔPQR. and QR side with P 
gives same ΔPQR.

Number of such triangles = n

X

Y

Y

O

T
J
K
L
M
N
P
Q

A B C D E F G H X

R

QP
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[As for each side, one triangle is repeated. Hence for n sides, n triangle’s have been 
counted more.]

Hence, the number of triangles of which one side is the side of the triangle 
= n(n - 2) - n = n(n - 3)

Hence number of required triangles

= nC3 - n(n - 3) =
− −

− −
n n n

n n
( ) ( )

( )
1 2

6
3 = − +

n
n n

6
9 202( )  = 

n
n n

6
4 5( )( ).− −

Problem 10 Find the number of all whole numbers formed on the screen of a calcu-
lator which can be recognized as numbers with (unique) correct digits when they are 
read inverted. The greatest number formed on its screen is 999999.

Solution: The digits 0, 1, 2, 5, 6, 8 and 9 can be recognized as digits when they are 
seen inverted hence number can contain these digits only.
Note that number can be of 1 digit to 6 digit number. But in more than one digit num-
bers, 0 cannot come in first place and also in unit place (Imagine inverted case).

Number of digits Total numbers

1 7

2 6 × 6 = 36

3 6 × 7 × 6 = 252

4 6 × 72 × 6 = 1764

5 6 × 73 × 6 = 12348

6 6 × 74 × 6 = 86436

Total = 100843

Problem 11 Find the number of positive integral solutions of x + y + z + w = 20 under 
the following conditions:
 (i) Zero values of x, y, z, w are included. 
 (ii) Zero values are excluded.
 (iii) No variable may exceed 10; zero values excluded
 (iv) Each variable is an odd number.
 (v) 0 < x < y < z < w.

Solution:
 (i) x + y + z + w = 20; x ≥ 0, y ≥ 0, z ≥ 0, w ≥ 0
  Coefficient of a20 in (a0 + a1 + a2 + …)4

  = (1 - a)-4 = 20+4 - 1C20
  = 23C3 = 1771

Note: You can directly use the result n + r - 1Cr - 1 or n+r-1Cn

 (ii) Number of ways = Coefficient of a20 in (a + a2 + a3 + …)4

  = Coefficient of a20 in a4 (1 - a)-4

  = Coefficient of a16 in (1 - a)-4 = 19C16
  = 969.

Note: that you can directly use n - 1Cr - 1
 (iii) If no variable exceeds 10, then sum of rest should be less than or equal to 10 [as 

20 - 10 = 10]
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  Let x ≤ 10, then y + z + w ≥ 10

  and      max (y + z + w) = 20 - min (x)

  max (y + z + w) = 20 - 1 = 19

  ∴ 10 ≤ y + z + w ≤ 19 [where y ≥ 1, z ≥ 1, w ≥ 1]

  ⇒ 10 ≤ (y1 + 1) + (z1 + 1) + (w1 + 1) ≤ 19

  ⇒ 7 ≤ y1 + z1 + w1 ≤ 16; 0 ≤ y1 ≤ 9, 0 ≤ z1 ≤ 9, 0 ≤ w1 ≤ 9

  Number of solutions = (Number of solutions of y1 + z1 + w1 < 16) - (Number of 
solutions of y1 + z1 + w1 ≤ 6)

  Now,

  Number of solutions of y1 + z1 + w1 ≤ 16 can be obtained by adding a dummy 
variable x1 (x1 ≥ 0) such that x1 + y1 + z1 + w1 = 16.

  Number of solutions = Coefficient of x16 in (1 - x10)3 (1 - x)-4 = 19C4 - 39C3

  Again,

  Number of solutions of y1 + z1 + w1 ≤ 6 can be obtained by adding a dummy 
variable l1 (l1 ≥ 0) such that l1 + y1 + z1 + w1 = 6

  Number of solutions = Coefficient of x6 in (1 - x10)3 (1 - x)-4 = 9C3

  Hence, Total number of solutions = 19C3 - 4 9C3 = 633.
 (iv) Each variable is an odd number.
  ∴ x = 2x1 + 1 y = 2y1 + 1

  z = 2z1 + 1 w = 2w1 + 1 [where x1, y1, z1, w1 ≥ 0]

  x + y + z + w = 20

  ⇒ (2x1 + 1) + (2y1 + 1) + (2z1 + 1) + (2w1 + 1) = 20

  2x1 + 2y1 + 2z1 + 2w1 = 16

  ⇒ x1 + y1 + z1 + w1 = 8 [where x1, y1, z1, w1 ≥ 0]

  Number of solutions = 8 + 4 - 1C4 - 1
                                                   = 11C3 = 165
 (v) Assume 0 < x < y < z < w
  Let x = x1

 y = x + x2 = (x1) + x2

 z = y + x3 = (x1 + x2) + x3

w = z + x4 = (x1 + x2 + x3) + x4 [where x1, x2, x3, ≥ 1]
x + y + z + w = 20

⇒ x1 + (x1 + x2) + (x1 + x2 + x3) + (x1 + x2 + x3 + x4) = 20

 4x1 + 3x2 + 2x3 + x4 = 20 (1) [where x1, x2, x3, x4 ≥ 1]

Let us again change the variables

        x1 = y1 + 1; x2 = y2 + 1; x3 = y3 + 1; x4 = y4 + 1 [where y1, y2, y3, y4 ≥ 0]

Substituting above values in Eq. (1), we get
4(y1 + 1) +3 (y2 + 1) + 2 (y3 + 1) + (y4 + 1) = 20.

                     ⇒ 4y1 + 3y2 + 2y3 + y4 = 10 [where y1, y2, y3, y4 ≥ 0]

Y1 3y2 + 2y3 + y4 Number of solutions

0
1
2

10
6
2

14 (Use Table-1)
7 (Use Table-2)
2 (Use Table-3)

Total Number of solutions = 23
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Table 1

3y2 + 2y3 + y4 = 10

y2 2y3 + y4

Number of 
solutions

0
1
2
3

10
7
4
1

6
4
3
1

14

Table 2

3y2 + 2y3 + y4 = 6

y2 2y3 + y4

Number of 
solutions

0
1
2

6
3
0

4
2
1

7

Table 3

3y2 + 2y3 + y4 = 6

y2 2y3 + y4

Number of 
solutions

0 2 2

2

Problem 12 There are 12 seats in the first row of a theater of which 4 are to be occu-
pied. Find the number of ways of arranging 4 persons so that:
 (i) no two persons sit side by side.
 (ii) there should be atleast 2 empty seats between any two persons.
 (iii) each person has exactly one neighbour.

Solution:
 (i) We have to select 4 seats for 4 persons so that no two persons are together. It 

means that there should be atleast one empty seat vacant between any two per-
sons.

  To place 4 persons we have to put 4 seats between the remaining 8 empty seats 
so that all persons should be separated.

  Between 8 empty seats 9 gaps are available for 4 seats to put.
  We can select 4 gaps in 9C4 ways.
  Now we can arrange 4 persons on these 4 seats in 4! ways. So total number of 

ways to give seats to 4 persons so that no two of them are together
  = 9C4 × 4! = 9P4 = 3024.
 (ii) Let x0 denotes the empty seats to the left of the first person, xi (i = 1, 2, 3) be the 

number of empty seats between ith and (i + 1)th person and x4 be the number of 
empty seats to the right of 4th person.

  Total number seats are 12. So we can make this equation :
  x0 + x1 + x2 + x3 + x4 = 8 (1)
  Number of ways to give seats to 4 persons so that there should be two empty 

seats between any two persons is same as the number of integral solutions of the 
Eq. (1) subjected to the following conditions.

  Conditions on x1, x2, x3, x4:
  According to the given condition, these should be two empty seats between any 

two persons. That is,
  Min (xi) = 2 for i = 1, 2, 3 and Min (x0) = 0
  Max (x0) = 8 - Min (x1 + x2 + x3 + x4) = 8 - (2 + 2 + 2 - 0) = 2
  Max (x4) = 8 - Min (x0 + x1 + x2 + x3) = 8 - (2 + 2 + 2 - 0) = 2
  Similarly,
  Max (xi) = 4 for i = 1, 2, 3
  Number of integral solutions of the equation (i) subjected to the above condition

  = Coefficient of x8 in the expansion of (1 + x + x2)2 (x2 + x3 + x4)3

  = Coefficient of x8 in x6 (1 + x + x2)5

  = Coefficient of x2 in (1 - x3)5 (1 - x)-5

  = Coefficient of x2 in (1 - x)-5

  = 5 + 2 - 1C2 = 6C2 = 15.
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  Number of ways to select 4 seats so that there should be atleast two empty seats 
between any two persons = 15. But 4 persons can be arranged in 4 seats in 4! ways.

  So total number of ways to arrange 4 persons in 12 seats according to the given 
condition = 15 × 4! = 360.

 (iii) As every person should have exactly one neighbour, divide 4 persons into 
groups consisting two persons in each group.

Let G1 and G2 be the groups in which 4 persons are divided.
According to the given condition G1 and G2 should be separated from each 

other.
Number of ways to select seats so that G1 and G2 are separated = 8 + 1C2

But 4 persons can be arranged in 4 seats in 4! ways.
So total number of ways to arrange 4 persons so that every person has exactly 

one neighbour = 9C2 × 4! = 864

Problem 13 In how many ways three girls and nine boys can be seated in two vans, 
each having numbered seats, 3 in the front and 4 at the back? How many seating 
arrangements are possible if 3 girls should sit together in a back row on adjacent seats?

Solution:
 (i) Out of 14 seats (7 in each Van), we have to select 12 seats for 3 girls and 9 boys.
  12 seats from 14 available seats can be selected in 14C12 ways.
  Now on these 12 seats we can arrange 3 girls and 9 boys in 12! ways.
  So total number of ways 14C12 × 12! = 91 × 12!
 (ii) One van out of two available can be selected in 2C1 ways.

Out of two possible arrangements (see figure) of adjacent seats, select one in 2C1 ways.
Out of remaining 11 seats, select 9 seats for 9 boys in 11C9 ways.

Arrange 3 girls on 3 seats in 3! ways and 9 boys on 9 seats 9! ways.
So possible arrangement of sitting (for 3 girls and 9 boys in 2 vans) is:
2C1 × 2C1 × 11C9 × 3! × 9! = 12! ways.

Problem 14 How many seven-letters words can be formed by using the letter of the 
word SUCCESS so that:

 (i) the two C are together but not two S are together?
 (ii) no two C and no two S are together?

Solution:

 (i) Considering CC as single object, U, CC, E can be arranged in 3! ways.
  X U X C C X E X
  Now the three S are to be placed in the 4 available places (X) so that C C are not 

separated but S are separated.
  Number of ways to place S S S = (No of ways to select 3 places) × 1 = 4C3 × 1 = 4
  ⇒ Number of words = 3! × 4 = 24.
 (ii) Let us first find the words in which no two S are together. To achieve this, we have 

to do following operations.

 (a) Arrange the remaining letter U C C E in 
4

2

!

!
 ways.

 (b) Place the three S S S in any arrangement from (a)

X U X C X C X E X

G1 G2 G3

G1 G2 G3
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There are five available places for three S S S.

Number of placements = 5C3

Hence total number of words with no two S together =
4

2

!

!
5C3 = 120.

Number of words having C C separated and S S S separated = (Number of words 
having S S S separated) - (Number of  words having S S S separated but C C together)

= 120 - 24 = 96 [using result of part (i)].

Problem 15 A square of n units by n units is divided into n2 squares each of area 
1 sq. units. Find the number of ways in which 4 points (out of (n + 1)2 vertices of unit 
squares) can be chosen so that they form the vertices of a square.

Solution: 

n

n + 1 − r lines

n + 1

n + 1 − r
lines

a squre of size r × r

n + 1r + 1

r + 1

1
1

2

2
3

3 r + 2

r + 2 P

…

…

…

We can easily see that number of squares of size r × r with its sides along the 
horizontal and vertical lines is equal to number of positions of P on the lattice points 
formed by (n + 1 - r) horizontal and (n + 1 - r) vertical lines which is (n + 1 - r) × (n 
+ 1 - r).

⇒ Number of squares of size r × r = (n + 1 - r)2 
In addition to these squares there are squares whose sides are not parallel to hori-

zontal/vertical lines. Each of these squares is inscribed in some previously counted 
squares. So we will first count how many are inscribed in our r × r size square. Then 
we will sum over ‘r’.

From the adjacent figure we can see that these are r inscribed squares, including 
the r × r square itself.

Now total number of squares

= + −

= + − ⋅ = + −

=
+

=

= = =

∑

∑ ∑ ∑

r n r

n r r n r r

n

r

n

r

n

r

n

r

n

( )

( ) ( )

( )

1

1 1

1

2

1

2

1

2

1

3

1

nn n n n n

n n n

( )( ) ( )

( ) ( )

+ +
−

+







=
+ +

1 2 1

6

1

2

1 2

12

2

2

1

1

2

2

3

3

4

4

r + 1

r

r

…

…

…

…
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Problem 16 A boat’s crew consists of 8 men, 3 of whom can only row on one side and 
2 only on the other. Find the number of ways in which the crew can be arranged.

Solution: Let the man P, Q, R, S, T, U, V, W and suppose P, Q, R can row only on one 
side and S, T on the other as represented in the figure.
Then, since 4 men must row on each side, of the remaining 3, one must be placed on 
the side of P, Q, R and the other two on the side S, T; and this can evidently be done in 
3 ways, for we can place any one of the three side of P, Q, R.

Now 3 ways of distributing the crew let us first consider one, say that in which U is 
on the side of P, Q, R as shown in the figure.

Now, P, Q, R, U can be arranged in 4! ways and S, T, V, W can be arranged in 4! ways.
Hence total number of ways arranging the men = 4! × 4! = 576
Hence the number of ways of arranging the crew = 3 × 576 = 1728.

Problem 17 How many integers between 1 and 1000000 have the sum of the digits 
equal to 18.

Solution: Integers between 1 and 1000000 will be, 1,2, 3, 4, 5 or 6-digits numbers, and 
given sum of digits = 18
Thus we need to obtain the number of solutions of the equation

                              x1 + x2 + x3 + x4 + x5 + x6 = 18 (1)

Where 0 ≤ xi ≤ 9, i = 1, 2, 3, 4, 5, 6
Therefore, the number of solutions of the Eq. (1), will be
= Coefficient of x18 in (x0 + x1 + x2 + x3 + … + x9)

= Coefficient of x18 in 
1

1

10 6
−
−











x

x

= Coefficient of x18 in (1 - x10)6 (1 - x)-6

= Coefficient of x18 in (1 - 6x10) (1 - x)-6

= 6 + 18 - 1C18 - 6 . 6 + 8 - 1C8

= 23C18 - 6 . 13C8 = 23C5 - 6 . 13C5

= 33649 - 7722 = 25927.

Problem 18 How many three digit numbers are of the form xyz with x < y; z < y and  
x ≠ 0.

Solution: Since, x ≥ 1, then y ≥ 2 (∴ x < y)
If y = n then n take the values from 1 to n - 1 and z can take the value from 0 to n - 1 
(i.e., n values) thus for each value of y (2 < y < 9), x and z take n(n - 1) values.

Hence, the 3-digit numbers are of the from xyz

= − = − × − ={ }
= =
∑ ∑ ∑n n n n
n n

( ) ( ) ( )1 1 1 1 1 0
2

9

1

9

= − ==
+ +

−
+

= =
∑ ∑n n
n n

2

1

9

1

9 9 9 1 18 1

6

9 9 1

2

( ) ( ) ( )
.

= 285 - 45 = 240.

Problem 19 Find the number of polynomials of the form x3 + ax2 + bx + c which are 
divisible by x2 + 1 and where a, b, c belong to (1, 2,…, n).

P

S T

Q R

P Q R U

S T V W
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Solution: Let f (x) = x3 + ax2 + bx + c be the polynomial divisible by x2 + 1 or (x + i) 
(x - i).

f(i) = 0 ⇒ i3 + ai2 + bi + c = 0
(b - 1) i + (c - a) = 0

b - 1 = 0 and c - a = 0
b = 1, c = a

Hence, number of polynomials = Number of values which a or c can take.
As a or c can takes n values, therefore number of polynomials = n.

Problem 20 John has x children by his first wife. Mary has (x + 1) children by her 
first husband. They marry and have children of their own. The whole family has 24 
children. Assuming that two children of the same parents do not fight. Prove that the 
maximum number of fights thats can take place in 191.

Solution: Let number of children of John and Mary are y and No. of children of John 
and his first wife is x. Hence, number of children of Mary from his first husband are 
(x + 1).

  x + x + 1 + y = 24 (1)

Total number of fights between two children subject to the condition that any children 
of same parents do not flight.

N x C C C Cx x y( ) = − + + 
+   24

2 2
1

2 2

N x
x x x x

Cy( )
( ) ( )

= −
− + +

+





276
1 1

2
2 

          = − +
−





276
1

2
2x

y y( )

          = − −
− −





276
23 2 22 2

2
2x

x x( ) ( )
 [using Eq. (1)]

  N(x) = 276 - (3x2 - 45x + 253) = -3x2 + 45x + 23

Maximum value of N(x) can occur at x = −
−

=
( )

( )
.

45

2 3
7 5

But x ∈ I hence x = 7 or 8  [as Graph is symmetrical about x = 7.5]
Maximum value = 23 - 3(7)2 + 45(7)
      = 191.

Problem 21 There are 2n guests at a dinner party. Supposing that the master and 
mistress of the house have fixed seats opposite one another, and that there are two 
specified guests who must not be placed next to one another, find the number of ways 
in which the company can be placed.

Solution: Let the M and M′ represent seats of the master and mistress respectively, and 
let a1, a2 …, a2n represent the 2n seats.
Let the guests who must not be placed next to one another be called P and Q.

Now put P at a1, and Q at any position, other than a2, say at a3; then remaining 2n 
- 2 guests can be positioned in (2n - 2)! ways. Hence there will be altogether (2n - 2) 
(2n - 2)! arrangements of the guests when P is at a1.

23

α β7 7.5 8
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The same number of arrangements when P is at an or an + 1 or a2n.
Hence, for these position (a1, an, an + 1, a2n) of P, there are altogether in 4 (2n - 2) 

(2n - 2)! ways. (1)
If P is at a2 there are altogether (2n - 3) positions for Q.
Hence, there will be altogether (2n - 3) (2n - 2)! arrangements of the guests when 

P is at a2.
The same number of arrangements can be made when P is at any other position 

except the four position a1, an, an + 1, a2n.
Hence, for these (2n - 4) positions of P there will be altogether in (2n - 4) (2n - 3) 

(2n - 2)! arrangements of the guests. (1)
Hence, from Eqs. (1) and (2), the total number of ways of arranging the guests

= 4(2n - 2) (2n - 2)! + (2n - 4) (2n - 3) (2n - 2)!

= (4n2 - 6n + 4) (2n - 2)!

Problem 22 There are n straight lines in a plane, no two of which are parallel and no 
three passes through the same point. Their point of intersection are joined. Show that 
the number of fresh lines thus introduced is:

1

8
1 2 3n n n n( )( ) ( )− − −

Solution: Let AB be any one of the n straight lines and suppose it is intersected by 
some other straight line CD at P.
Then it is clear that AB contains (n - 1) points of intersection because it is intersected 
by the remaining (n - 1) straight lines in (n - 1) different points. Hence, the aggregate 
number of points contained in the n straight lines = n (n - 1). But in making up this 
aggregate each point has evidently been counted twice. For instance, the point P has 
been counted one among the points situated on AB and again among those on CD.

Hence, the actual number of points =
−n n( )1

2
Now we have to find the number of new lines formed by joining these points. The 

number of new lines passing through P is evidently equal to the number of points lying 
outside the lines AB and CD for we get a new lines joining P with each of these points 
only.

Now, since, each of the lines AB and CD contained (n - 2) points besides the point 
P, the number of points situated on AB and CD.

= 2(n - 2) + 1 = (2n - 3)

Thus, the number of points outside AB and CD are 
n n

n
( )

( )
−

−
1

2
2 3  = The number of 

new lines passing through P and similarly through each other points.
So, the aggregate number of new lines passing through the points.

=
− −

− −







n n n n
n

( ) ( )
( )

1

2

1

2
2 3

But in the making up this aggregate every new line is counted twice; for instance if Q 
be one of the points outside AB and CD, the line PQ is counted once among the lines 
passing through P and again among these passing through Q.

Hence, actual number of fresh lines introduced

M

an

a4

a3

a2

a1a2n

an + 3

an + 2

an + 1

M′

A B
P
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=
− −

− −

















1

2

1

2

1

2
2 3

n n n n
n

( ) ( )
( )

= − − −
1

8
1 2 3n n n n( ) ( ) ( ).

Problem 23 Let set S = {a1, a2, a3, …, a12 } where all twelve elements are distinct, 
we want to form sets each of which contains one or more of the elements of set S 
(including the possibility of using all the elements of S ). The only restriction is that the 
subscript of each element in a specific set must be an integral multiple of the smallest 
subscript in the set. For example, {a2, a6, a8} is one acceptable set, as is {a6 }. How 
many such sets can be formed? Can you generalize the result?

Solution: Every (positive) integer is a multiple of 1.
So, we will first see a set consisting of a1 and other  elements:
There are 11 elements other than a1. So the set with a1 and another element, with 

one other element, 2 other elements, and all the 11 other elements, … and all the 11 
other elements, i.e., we have to choose a1 and 0, 1, 2,…, 11 other elements out of a2, 

a3, …, a12. This could be done in 
11

0

11

1

11

11









 +









 +…+









  = 211 ways.

If a set contains a2, as the element with the least subscript, then besides a2, the set 
can have a4, a6, a8, a10, a12 elements, none or one or more of them. This could be done 

in 
5

0

5

1

5

5








 +








 + +








�  = 25 ways.

Similarly, for having a3 as the element with the least subscript 3, we have a6, a9, a12 
to be the elements such that the subscripts (6, 9, 12) are divisible by 3.

So, the number of subsets with a3 as one element is 3C0 + 3C1 + 3C2 + 3C3 = 23.
For a4, one of the elements, the number of subsets (other elements being a8 

and a12) is 22.
For a5 it is 21 (there is just an element a10 such that 10 is a multiple of 5).
For a6, it is again 21 (as 6/12)
For a7, a8, a9, a10, a11 and a12, there is just one subset, namely, the set with these 

elements. This is total up to 6.
So, the total number of acceptable set according to the condition is

211 + 25 + 23 + 22 + 21 + 21 + 6

= 2048 + 32 + 8 + 4 + 2 + 2 + 6 = 2102

If there are n elements in the set a1, a2, a3, …, an then there are n multiples of 1.

n

2





 multiples of 2

n

3





 multiples of 3

… … … … … … …
… … … … … … …

n

n






 multiples of n
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So that the total number of such sets is given by

2 2 2 21 2
1

3
1 1

n

n n n

n−




− 




− 




−

+ + + +� .

Problem 24 Find the number of 6-digit natural numbers where each digit appears at 
least twice.

Solution: We consider numbers like 222222 or 233200 but not 212222, since the digit 
1 occurs only once.

The set of all such 6-digits can be divided into the following classes.
S1 = the set of all 6-digit numbers where a single digit is repeated six times.
n(S1) = 9, since ‘0’ cannot be a significant number when all its digits are zero.
Let S2 be the set of all 6-digit numbers, made up of three distinct digits.
Here we should have two cases: S2(a) one with the exclusion of zero as a digit and 

other S2(b) with the inclusion of zero as a digit.

S2(a): The number of ways, three digits could be chosen from 1, 2, …, 9 is 9C3. Each 
of these three digits occurs twice. So, the number of 6-digit numbers in this case is

= ×
× ×

=
× ×
× ×

× = × × × =9
3

6

2 2 2

9 8 7

1 2 3

720

8
9 8 7 15 7560C

!

! ! !
.

S2(b): The three digits used include one zero, implying, we have to choose the other 
two digits from the 9 non-zero digits.

This could be done in 9
2

9 8

1 2
36C =

×
=

.
.  Since zero cannot be the leading digit, so 

let us fix one of the fixed non-zero numbers in the extreme left. Then the other five 
digits are made up of two zeroes, two fixed non-zero numbers and another non-zero 
number, one of which is put in the extreme left.

In this case the number of 6-digit numbers that could be formed is 5

2 2 1
2

!

! ! !× ×
×  

(since from either of the pairs of fixed non-zero numbers, one can occupy the extreme 
left digit) = 60.

So, the total number in this case = 36 × 60 = 2160.

∴ n(S2) = n(S2a) + n(S2b) = 7560 + 2160 = 9720.

Now, let S3 be the set of 6-digit numbers whose digits are made up of two distinct 
digits each of which occurs thrice. Here again, there are two cases: S3(a) excluding the 
digit zero and S3(b) including the digit zero.
S3(a) is the set of 6-digit numbers, each of whose digits are made up of two non-zero 
digits each occurring thrice.

∴ n S a C[ ( )]
!

! !
.3

9
2

6

3 3
36 20 720= ×

×
= × =

S3(b) consists of 6-digit numbers whose digits are made up of three zeroes and one of 
non-zero digit, occurring thrice. If you fix one of the nine non-zero digit, use that digit 
in the extreme left. This digit should be used thrice. So in the remaining 5 digits, this 
fixed non-zero digit is used twice and the digit zero occurs thrice.

So, the number of 6-digit numbers formed in this case is

9
5

3 2
90×

×
=

!

! !
.

∴ n(S3) = nS3(a) + nS3(b) = 720 + 90 = 810.
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Now, let us take S4, the case where the 6-digit number consists of exactly two digits, 
one of which occurs twice and the other four times.

Here again, there are two cases: S4(a) excluding zero and S4(b) including zero.

S4(a): If a and b are the two non-zero numbers, then when a is used twice and b is four 

times, we get 
6

2 4

!

! !×
 and when a is used four times and b is used twice, we again get 

6

4 2

!

! !
.

×
So, when two of the nine non-zero digits are used to form the 6-digit number in this 

case, the total numbers formed is

9
2 2

6

4 2
36 5 6 1080C × ×

×
= × × =

!

! !
.

Thus, n[S4(a)] = 1080.

S4(b): In this case we may use four zeroes and a non-zero number twice or two zeroes 
and a non-zero number four times.

In the former case, assuming the one of the fixed non-zero digit occupying the 
extreme left, we get the other five digits consisting of four zeroes and one non-zero 
number.

This results in 9
5

4 1
×

×
!

! !
 6-digit numbers.

When we use the fixed non-zero digit four times and use zero twice, then we get 

9
5

3 2
90×

×
=

!

! !
 six-digit numbers, as the fixed number occupies the extreme left and 

for the remaining three times it occupies 3 of the remaining digits, other digits being 
occupied by the two zeroes.
So, n(S4) = n[S4(a)] + n[S4(b)]

 = 1080 + 45 + 90 = 1215.

Hence, the total number of 6-digit numbers satisfying the given condition

 = n(S1) + n(S2) + n(S3) + n(S4)

 = 9 + 720 + 810 + 1215

 = 2754.

Problem 25 Let X = {1, 2, 3, …, n}, where n ∈ N. Show that the number of r combina-
tions of X which contain no consecutive integers is given by

n r

r

− +









1
where 0 ≤ r ≤ 

n+1

2
.

Solution: Each such r combination can be represented by a binary sequence b1, b2, 
b3, …, bn where bi = 1, if i is a member of the r combination and 0, otherwise with no 
consecutive bi’s = 1 (the above r combinations contain no consecutive integers). The 
number of 1’s in the sequence is r.

Now, this amounts to counting such binary sequences.
Now, look at the arrangement of the following boxes and the balls in them.

1 2 3 4 5 6 7

00 000 00 0000 0 0 000

00 000 00 0000 0 0 000

M07_Combinatorics_C07.indd   124 8/11/2017   2:28:59 PM



Combinatorics  7.125

Here, the balls stand for the binary digits zero, and the boundaries on the left and right 
of each box can be taken as the binary digit one. In this display of boxes and balls as 
interpreted gives previously how we want the binary numbers. Here, there are 7 boxes, 
and 6 left/right boundary for the boxes (stating from 2 to 6). So, this is an illustration 
of 6 combinations of non-consecutive numbers.

The reason for zeroes in the front and at the end is that we can have leading zeroes 
and trailing zeroes in the binary sequence b1, b2,…, bn.

Now, clearly finding the r combination amounts to distribution of (n - r) balls into 
(r + 1) distinct boxes [(n - r) balls = (n - r) zeroes as these are r ones, in the n number 
sequence] such that the 2nd, 3rd, …, rth boxes are non-empty. (The first and the last 
boxes may or may not be empty—in the illustration 1st and the 7th may have zeroes or 
may not have balls as we have already had six combinations!). Put (r - 1) balls one in 
each of 2nd, 3rd, …, rth boxes, (so that no two l’s occur consecutively). Now we have 
(n - r) - (r - 1) balls to be distributed in (r + 1) distinct boxes.

This could be done in 
[( ) ( ) ( ) ]

[( ) ( )]

n r r r

n r r

− − − + − +
− − −











1 1 1

1
ways,

i.e., 
n r

n r

− +
− +











1

2 1
 ways which is equal to

n r

n r n r

n r

r

− +
− + − − +









 =

− +









1

1 2 1

1

( ) ( )
 ways.

Here (n - 2r + 1) is the number of that of identical objects (zeroes of the binary 
representation) and (the distinct boxes is (r + 1 - 1) = r. Thus, we apply the formula 

for distributing r identical objects in n distinct boxes as given by n r

r

− +









1
.

[Distribution formula]

Problem 26 Let S = {1, 2, 3,…, (n + 1)}, where n ≥ 2 and let T = {(x, y, z) | x, y, z 
∈ S, x < z, y < z}. By counting the members of T in two different ways, prove that 

k
n n

k

n
2

1

2

2
2

1

3=
∑ =

+







 +

+







 .

Solution: T can be written as T = T1 ∪ T2, T1 = {(x, y, z) | x, y, z ∈ S, x = y < z) and T2 
= {(x, y, z) | x, y, z ∈ S, x ≠ y, x, y < z}.

The number of elements in T1 is the same as choosing two elements from the set S, 

where n(S) = (n + 1), i.e., n T
n

( ) ,1 =
+









1

2
 (as every subset of two elements, the larger 

element will be z and the smaller will be x and y.)

In T2 we have 2
1

3

n+







  elements, after choosing three elements from the set S, two 

of the smaller elements will be x and y and they may be either taken as (x, y, z) or as 
(y, x, z) or in other words, every three element subset of S, say {a, b, c}, the greatest 
is z, and the other two can be placed in two different ways in the first two positions,

∴ n T T
n n

( ) ( | |)or =
+







 +

+









1

2
2

1

3
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T, can also be considered as Si
i

n

=

+

2

1

∪ ,  where Si = {(x, y, i) | x, y < i, x, y ∈ S}. All these 

sets are pair-wise disjoint as for different i, we get different ordered triplets (x, y, i).
Now in Si the first two components of (x, y, i) namely (x, y), can be any element 

from me set 1, 2, 3, …, i - 1.
x and y can be any member from 1, 2, 3, …, (i - 1), equal or distinct.

∴ The number of ways of selecting (x, y), x, y ∈ {1, 2, 3,…, (i - 1)} is (i - 1)2.
Thus, n(Si) for each i is (i - l)2, i > 2. For example, n(S2) = 1, n(S3) = 22 = 4 and so on.

Now, n T n S
i

n

( ) =










=

+

1
2

1

∪

=
=

+

∑n Si
i

n

( )
2

1

(because all Si’s are pair-wise disjoint)

= − =
==

+

∑∑ ( )i i
i

n

i

n

1 2 2

12

1

and hence, 
n n

k
k

n+







 +

+







 =

=
∑

1

2
2

1

3
2

1

.

Problem 27 Show that the number of ways in which three numbers in AP can be selected 

from 1, 2, 3,…, n is
1

4
1

1

4
22( ) ( )n or n n− −  accordingly as n is odd or n is even.

Solution: Let three numbers be a, b, c with common diffrence ‘d’, Now c - a = 2d
⇒ c ≡ a(mod 2) ⇒ c, a both ever or odd.

Let n = 2m then there are m even numbers and m odd numbers. For c, a both even 

m

2









  choices and for both odd 

m

2









  choices. Hence for n = 2m, 2

2

m







  AP’s. For n 

even, 2
1

2 4
2⋅

−
= −

m m n
n

( )
( ) AP’s.

Similarly for n = 2m + 1, m m
m

n

2

1

2

1

2
2

2







 +

+







 = =

−





  AP’s.

Problem 28 A train going from station X to station Y, has 11 stations in between, as 
halts. 9 persons enter the train during the journey with 9 different tickets of the same 
class. How many different sorts of tickets they may have had?

Solution: 9 people enter the train during the journey, that is, they enter possibly from 
halt 1 to halt 11. But they can have tickets from halt i to halt j, 1 ≤ i ≤ j < 12 (where 
12th station is Y).

∴ The total number of different tickets

= =
×

=12
2

12 11

2
66C .
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So, the total number of different sort of available tickets is

12
2

12 11

1 2
66C =

×
=

.
.

From these 66, we have to choose 9 tickets.
This can be done in 66C9 ways.

Aliter: Halt 1 issues 11 different tickets.
Halt 2 issues 10 different tickets.

… … … … …

Halt 11 issues 1 ticket.
As the travellers might have got into the train from Halt 1 to 11. So, the total num-

ber of different types of available tickets is

1 2 3 10 11
11 12

1 2
66+ + + + + =

×
=�

.
.

So, there are 66 possible types of tickets to be issued to 9 persons. This could be done 
in 66C9 ways.

Problem 29 There are two bags, each containing m numbered balls. A person has to 
select an equal number of balls from both the bags. Find the number of ways in which 
he can select at least one ball from each bag.

Solution: He may choose one ball or two balls or m balls from each bag.
Choosing one ball from one of the bags can be done in mC1 ways. Then, choosing 

one ball from the other bag also can be done in mC1 ways.
Thus, there are mC1 × mC1 ways of choosing one ball from each bag. Similarly, if 

r balls, 1 × r × m are chosen from each of the two bags, the number of ways of doing 
this is

(mCr) . (
mCr) = (mCr)

2

Thus, the total number of ways of choosing at least one ball from both the bags is

( ) ( ) ( )m
r

m
r

m

r

m

r

m

C C C2 2
0

2

01

= +
==
∑∑ = −2 1n

nC

=
⋅

− = =










=

∑( )!

! !
( ) .

2
1 10

2 2

0

n

n n
C C Cm m

r
m

r

m

mas

Problem 30 If n points (no three of which are collinear) in a plane be joined in all 
possible ways by straight lines and if no two of the straight lines coincide or are 
parallel and no three lines pass through the same point (with the exception of the 
n original points), then prove that the number of points of intersection, exclusive of 
these n points is

1

8
1 2 3n n n n( )( )( ).− − −

Solution: Every pair of distinct points determines a straight line. Given n points, no 
three of which are collinear, we get nC2 lines, i.e., the number of lines determined by n 

distinct points, no three of which are collinear is nC
n n

2
1

2
=

−( )
.
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In turn these lines, taken two at a time, intersect. However, through joining each one 
of points to the other (n - 1) points, we see that there are (n - 1) lines passing through 
each one of these original points. Thus, each of these original points will be counted 
n-1C2 times and all the original points will be counted as n × n-1C2 points.

The total number of points of intersection of the lines n n( )−1

2
 including these n 

original points counted n Cn⋅ −1
2  times is, thus, 

n n

C
( )

.
−1

2
2

So, the points of intersection other than the original points is thus

n n
nC n C

( )−
−− ×

1

2
2

1
2

=

− −
−



 −

− −
n n n n

n n n

( ) ( )
( )( )

.

1

2

1

2
1

2

1 2

1 2

         =
− − −

−
− −n n n n n n n( )[ ( ) ] ( )( )1 1 2

8

1 2

2

         =
−

− − − −
n n

n n n
( )

[ ( )]
1

8
2 4 22

         =
−

− + =
− − −n n

n n
n n n n( )

[ ]
( )( )( )

.
1

8
5 6

1 2 3

8
2

Aliter: Selection of any four points out of n points corresponds to a complete 
quadrilateral for a complete quadrilateral we get three new points of intersection 
as shown in the figure. 

Hence 3
4

⋅









n
 points =

− − −
× × ×

=
− − −

3
1 2 3

4 3 2 1

1 2 3

8

n n n n n n n n( )( )( ) ( )( )( )
.

Problem 31 You have n objects, each of weight w. When they are weighed in pairs, the 
sum of the weights of all the possible pairs is 120. When they are weighed in triplets, 
the sum of the weights of all possible triplets is 480. Find n.

Solution: The number of all possible pairs of objects that could be obtained from n 
objects is

nC
n n

2
1

2
=

−( )

Total weight of 
n n n n

w
( ) ( )−

=
−

× ×
1

2

1

2
2pairs

  = n(n - 1)w units = 120 (1)

The number of all possible triplets of objects that could be obtained from n objects 

= =
− −nC

n n n
3

1 2

6

( )( )
.

The total weight of all these triplets =
− −

×
n n n

w
( )( )1 2

6
3

             =
− − ×

=
n n n w( )( )1 2

2
480  (2)

B C

3

1

2

D
A
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Dividing Eq. (2) by (1), we get

n−
= =

2

2

480

120
4

⇒ n - 2 = 8 or n = 10.

Problem 32 Find the number of permutations (p1, p2, p3, p4, p5, p6) of (1, 2, 3, 4, 5, 6) 
such that for any k, 1 ≤ k ≤ 5 (p1, p2, p3, …, pk) does not form a permutation of 1, 2, 3, 
…, k, i.e., p1 ≠ 1, (p1, p2  ) is not a permutation of (1, 2) (p1, p2, p3  ) is not a permutation 
of (1, 2, 3), etc. [INMO, 1992]

Solution For each positive integer k, 1 ≤ k ≤ 5, let Nk denote the number of permuta-
tions (p1, p2, …, p6) such that p1 ≠ 1, (p1, p2) is not a permutation of (l, 2), … (p1, p2, 
…, pk) is not a permutation of (1, 2, …, k). We are required to find N5.

We shall start with N1.
The total number of permutations of (1, 2, 3, 4, 5, 6) is 6! and the permutations of 

(2, 3, 4, 5, 6) is 5!. Thus, the number of permutations in which p1 = 1 is 5!.
So, the permutation in which p1 ≠ 1 is 6! - 5! = 720 - 120 = 600. Now, we have to 

remove all the permutations with (1, 2) and (2, 1) as the first two elements to get N2. Of 
these, we have already taken into account (1, 2) in considering N1 and subtracted all the 
permutations starting with 1. So, we should consider the permutation beginning with 
(2, 1). When p1 = 2, p2 = 1 (p3, p4, p5 and p6) can be permuted in 4! ways.

So, N2 = N1 - 4! = 600 - 24 = 576.
Having removed the permutations beginning with (1, 2), we should now remove those 
beginning with (1, 2, 3). But, corresponding to the first two places (1, 2) and (2, 1), we 
have removed all the permutations. So, we should now remove the permutations with 
first three places (3, 2, 1), (3, 1, 2), (2, 3, 1).

Note that the first 3 positions being 1, 2, 3 is included in the permutations begin-
ning with 1.

For each of these three arrangements, there are 3! ways of arranging 4th, 5th and 
6th places and hence,

N3 = N2 - 3 × 3! = 576 - 18 = 558. To get N4, we should remove all the permutations 
beginning with the permutations of (1, 2, 3, 4), of which the arrangement of (1, 2, 3) in the 
first three places have already been removed. We have to account for the rest. So, when 4 
is in the first place, 3! arrangements of 1, 2, 3 in the 2nd, 3rd and 4th places are possible. 
Also, when 4 is in the second place, since we have removed the permutation when 1 occu-
pies the first place, there are two choices for the first place with 2 or 3 and for each of these 
there are 2 arrangements, i.e., (2, 4, 1, 3), (2, 4, 3, 1), (3, 4, 2, 1), (3, 4, 1, 2). When 4 is in 
the third place, then there are first 3 arrangements (2, 3, 4, 1), (3, 2, 4, 1) and (3, 1, 4, 2).

So, the total permutations of (1, 2, 3, 4) to be removed from N3 to get N4 is (6 + 4 + 
3) × 2 = 26, because there are 2 ways of arranging the 5th and 6th places for each one 
of the above permutations of (1, 2, 3, 4).

∴ N4 = N3 - 26

          = 558 - 26 = 532.

To get N5, we should remove from N4 all the permutations of (1, 2, 3, 4, 5) which have 
not been removed until now. When 5 occupies the first position, there are 4! = 24 ways 
of getting 2nd, 3rd, 4th and 5th places which have not been removed so far. When p2 = 5, 
p1 cannot be 1, so p1 can be chosen from the other 3, viz., 2, 3 and 4, in 3 ways and 3rd, 
4th and 5th places can be filled for each of the first place choice in 3 × 2 × 1 = 6 ways.
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So, when p2 = 5, there 18 different arrangements to be removed.
When p3 = 5, the first two places cannot be (1, 2) so that they can be filled in (2, 3), 

(2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3) and for the fourth and fifth places there 
are exactly two choices for each of the above arrangements for first and second place.

So, when p3 = 5, the number of arrangements to be removed is 8 × 2 = 16. When p4 
= 5, p1 p2 p3 can be removed (241, 412, 421, 234, 243, 342, 324, 423, 432, 314, 341, 
413, 431) and since there is only one choice left, we have now to remove 13 arrange-
ments when

 p4  = 5.

When p5 = 5, we have already removed the permutations of (1, 2, 3, 4) of the first four 
places to find S4.

So, now S5 = S4 - (24 + 18 + 16 + 13)

 = 534 - 71 = 463.
So, 463 is the desired number of permutations.

Problem 33 Consider the collection of all three element subsets drawn from the set 
{1, 2, 3, 4, …, 299, 300}.  Determine the number of subsets for which, the sum of the 
elements is a multiple of 3.

Solution: The given set S = {1, 2, 3, 4, …, 299, 300} can be realised as the union of 
the three disjoint sets S1, S2 and S3 with

 S1 = {x ∈ S : x = 3n + 1, 0 ≤ n ≤ 99},

 S2 = {x ∈ S : x = 3n + 2, 0 ≤ n ≤ 99},

 S3 = {x ∈ S : x = 3n, 1 ≤ n ≤ 100}.

Now, to get the set of all three element subsets of S, with the sum of the elements of the 
subset a multiple of 3, we should choose all three elements from the same set S1, S2 or 
S3 or we should choose one element from each of the set S1, S2 and S3.

We see that,         n(S1) = n(S2) = n(S3) = 100.
Choosing all the three elements from either S1, S2 or S3 will give 3 × 100C3 triplets 

and its sum is also divisible by 3.
Choosing the three elements, one each from S1, S2 and S3 will give
100C1 × 100C1 × 100C1 triplets and its sum is also divisible by 3.
So, the total number of 3 element subsets with the required property is

3 × 100C3 + 100C1 × 100C1 × 100C1

=
× × ×

× ×
+

3 100 99 98

1 2 3
1003

 = 100 × 99 × 49 + 1000000

 = 485100 + 1000000

 = 14,85,100.

Problem 34 A normal die bearing the numbers 1, 2, 3, 4, 5, 6 on its faces is thrown 
repeatedly until the running total first exceeds 12. What is the most likely total that 
will be obtained?

Solution: Consider the throws before the last one. After this penultimate throw, the 
running total ‘s’ should be such that 7 ≤ s ≤12; since, if we take the least value of s, i.e.,  
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s = 7, then we would just cross 12, if the final throw gives 6, and the maximum value 
of s is 12; in the final throw by getting any number 1 to 6, the running total exceeds 
12. Thus, the possible values of the running total in the penultimate throw is 7, 8, 9, 
10, 11 and 12.

Let us tabulate the possible running totals after the final throw.

Possible Running totals 
after the  penultimate 
throw

Possible running totals after the final 
throw

7
8
9
10
11
12

13
13
13
13
13
13

14
14
14
14
14

15
15
15
15

16
16
16

17
17

18

Thus, the number that occurs most number of times in the possible running total after 
the final throw is 13.
[Since, the die is a fair die and so getting any one of 1 to 6 is equally likely and hence, 
the possible running totals 7, 8, 9, 10, 11 and 12 in the penultimate throw is also 
equally likely.]

Problem 35 Create two fair dice which when rolled together have an equal probabil-
ity of getting any sum from 1 to 12.

Solution: The only sums that we want are from 1 to 12, using two dice with faces 
marked, say a1, a2, …, a6 and b1, b2, b3, …, b6. We have totally 6 × 6 = 36 outcomes.

So, each number from 1 to 12 should occur 
36

12
3=  times.

If one die has numbers 1, 2, 3, 4, 5, 6 on its faces, then for 1 to 6 occur thrice, there 
should be three zeroes on the three faces of the second die. For each of 7, 8, …, 12 
to occur thrice, three should be 3 sixes on the other three faces, so that (1, 6), (2, 6), 
(3, 6), …, (6, 6) can occur thrice.

Thus, the probability of getting 1 from the first die is 
1

6
 and the probability of 

getting zero from the second die is 
3

6

1

2
= .  So, probability of getting the pair (1, 0) is 

1

6

1

2

1

12
× =  and similarly for each of numbers from 1 to 12 [1 = 1 + 0, 2 = 2 + 0, …, 6 

= 6 + 0, 7 = 1 + 6, 8 = 2 + 6, …, 12 = 6 + 6].

Problem 36 If the numbers x, y are chosen at random from 1, 2,…, n with replacement, 
n ≥ 3, show that P(x3 + y3 is a multiple of 3) is less than P(x3 + y3 is a multiple of 7).

Solution: Let S = {1, 2, 3, …, n}.
We shall first take n = 2, n = 3 and n = 4 and find, in how many ways we get (x3 + 

y3) and how many of them are divisible by (a) 3; (b) 7.

For n = 2,

 (x, y) = (1, 1), (1, 2), (2, 1), (2, 2),

 (x3, y3) = (1, 1), (1, 8), (8, 1), (8, 8)
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and (x3 + y3) is divisible by 3 for x3 = 1, y3 = 8 and x3 = 8, y3 = 1.

Thus, P[(x3 + y3) is a multiple of 3] in this case is 2

4

1

2
=  and P[(x3 + y3) is a mul-

tiple of 7] is an impossible event. Therefore, the statement does not hold for n = 2.
For n = 3, {(x, y) | (x, y) ∈ S) = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), 

(3, 2), (3, 3)}
and, {(x3, y3) | (x, y) ∈ S) = {(1, 1), (1, 8), (1, 27), (8, 1), (8, 8), (8, 27), (27, 1), 

(27, 8), (27, 27)}.
Of these set of ordered pairs, we get (x3 + y3) divisible by 3 as (1 + 8), (8 + 1), 
(27 + 27) = 3.

So, here P[(x3 + y3) is a multiple of 3] = 
3

9

1

3
= and the set of ordered pairs we get 

set (x3 + y3) is divisible by 7 is (1 + 27), (8 + 27), (27 + 1), (27 + 8) = 4.

∴ In this case, P[(x3 + y3) is a multiple of 7] =
4

9
,

and clearly, P[(x3 + y3) is a multiple of 7] > P[(x3 + y3) is a multiple of 3].
Now, we shall pass on to the general case where n > 3.
For any number, the possible remainders when n is divided by 3 is 0, 1 or 2.
So, the possible ordered pairs (x, y) (mod 3) is {(0, 0), (0, 1), (1, 0), (0, 2), (2, 6), 

(1, 1), (1, 2), (2, 1), (2,2)}.

Here P{(x3 + y3) is a multiple of 3} =
1

3
 as has already been seen.

 T = {(x3 + y3) | (x, y) ∈ N (mod 3)}

 =  {(03 + 03), (03 + 13), (13 + 03), (03 + 23), (23 + 03),  

 (13 + l3), (l3 + 23), (23 + l3), (23 + 23)}.

The subset of T which contains elements x3 + y3 is a multiple of 3 is {(03 + 13), 

(13 + 23), (23 + 13)} and hence, the probability is 1

3
.

Again, when S is listed so that the elements are written in mod 7, we get
S7 = (0, 1, 2, 3, 4, 5, 6).
Now, the set of the cubes of the elements of S7 is

Sc = {0, 1, 8, 27, 64, 125, 216}.

The pairs (x3, y3) such that (x3 + y3) is a multiple of 7 are {(0, 0), (1, 27), (27, 1), 
(1, 125), (125, 1) (1, 216), (216, 1), (8, 27), (27, 8), (8, 125), (125, 8), (8, 216), (216, 
8), (64, 27), (27, 64), (64, 125), (125, 64), (64, 216), (216, 64)}.

Thus, this set of ordered pairs (x3, y3) contains 19 elements such that (x3 + y3) is a 
multiple of 7.

So, P[(x3 + y3) is a multiple of 7] in this case is 
19

7 7

19

49×
= .

[ ∴ n(Sc × Sc) = n(Sc) × n(Sc) = 7 × 7 = 49]

P[(x3 + y3) is a multiple of 3] =
1

3

and hence, P[(x3 + y3) is a multiple of 3] < P[(x3 + y3) is a multiple of 7] =
19

49
.

1

3

19

49

1 49

3 49

3 19

3 49
<

×
×

<
×
×







as
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Notes: 
 1. Here we have assumed that n is both a multiple of 3 as well as 7. Actually, we need 

to prove it for the general case where n need not be either a multiple of 3 or 7. But 
this can also be enumerated and verified.

 2. Sc can be considered as the set of possible remainders as {0, 1, 1, -1, 1, -1, -1} in the 
case of mod 7 and to get (x3 + y3) to be divisible by 7, we can choose (1, −1), (0, 0).

Probability of choosing 1 is 3

7
 and probability of choosing -1 is also 

3

7
.

∴ Probability of choosing (1, -1) or (-1, 1) is

2
3

7

3

7

18

49
× × = .

Probability of choosing (0, 0) is 
1

7

1

7

1

49
× =

∴ Probability of (x3 + y3) is a multiple of 7 is 
18

49

1

49

19

49
+ = .

In the case of mod 3, also we have the set of possible remainders of x3 or y3 on 
dividing by 3 to be {0, 1, -1}.

For (x3 + y3) to be a multiple of 3, we should choose x3 = 0 = y3 and x3 = 1 and 
y3 = -1 or x3 = -1 and y3 = 1.

0 can be chosen in 
1

3
 ways.

So, probability of choosing a zero and again a zero is
1

3

1

3

1

9
× = .

Probability of choosing (1, -1) or (-1, 1) is

1

3

1

3

1

3

1

3

1

9

1

9

2

9
× + × = + = .

∴ P[(x3 + y3) is divisible by 3] = + = =
1

9

2

9

3

9

1

3
 and hence, the result.

Problem 37 Show that the number of triplets (a, b, c) with (a + b + c) < 95 is less than 
the number of those with (a + b + c) > 95. where a, b, c ∈ S = {1, 2, 3, …, 63}.

Solution: Let S = {1, 2, 3, …, 63}
Let A be the set of all triplets of S such that (a + b + c) < 95, i.e.,

A = {(a, b, c):(a + b + c) < 95; a, b, c ∈ S}.

Similarly, let B be the set of all triplets of S such that (a + b + c) > 95, where {a, b, c} 
∈ S,

i.e., B = {(a, b, c): (a + b + c) > 95; a, b, c ∈ S}
and C = {(a, b, c): (a + b + c) > 97; a, b, c ∈ S}.
Clearly, C is a proper subset of B because a, b, c ∈ S, if (a + b + c) = 96 then (a, b, c) 
∈ B and (a, b, c) ∉ C.

However, every element of C ∈ B,

as,                                        a + b + c > 97 ⇒ a + b + c > 95 

hence,                                         (a, b, c) ∈ C ⇒ (a, b, c) ∈ B.

Now, it is enough if we show that n(A) = n(C) as n(C) < n(B) and n(A) = n(C)

⇒ n(A) < n(B).
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If (a, b, c) ∈ A, then 1 ≤ a + b + c < 95 and also 1 ≤ a, b, c ≤ 63.
Therefore, 1 ≤ (64 - a), (64 - b), (64 - c) ≤ 63 and as (a + b + c) < 95,
(64 - a) + (64 - b) + (64 - c) = 192 - (a + b + c) > 192 - 95 = 97.
Thus to each element of A, there is a unique element in C.
Conversely, if (a, b, c) ∈ C, then ((64 - a), (64 - b), (64 - c)) ∈ A for
(64 - a) + (64 - b)+ (64 - c) = 192 - (a + b + c),
and since (a, b, c) ∈ C, (a + b + c) > 97

∴ 192 - (a + b + c) < 192 - 97 = 95

and thus ((64 - a), (64 - b), (64 - c)) ∈ A, which shows that for every element of C 
there corresponds a unique element in A.

Thus, there is a 1 - 1 correspondence between the sets A and C.

∴ n(A) = n(C) < n(B).

Problem 38 Prove that it is impossible to load a pair of dice (each die has numbers 
1 to 6 on their 6 faces) so that every sum 2, 3, …, 12 is equally likely. As customary, 
assume that the dice are distinguishable (For example, a 2 on the first die with a 4 on 
the second is different from a 4 on the first die and a 2 on the second, even though the 
same total 6 is obtained).

Solution: Let pi denote the probability of i coming up on the first die and qi, the prob-
ability of i on the second die where i = 1, 2, …, 6. The probability of getting the sum 
2 is p1q1.
The probability of getting the sum 12 is p6q6.

If the probability of getting all the 11 sums are same, then probability of each would 

be 
1

11
.

The probability of getting a 7 is also 
1

11
 and is equal to

1

11
1 6 2 5 3 4 4 3 5 2 6 1

1 6 6 1

= + + + + +

≥ +

p q p q p q p q p q p q

p q p q

=








 +











=








 +








p q
q

q
p q

q

q

p q
q

q
p q

q

q

1 6
1

1
6 1

6

6

1 1
6

1
6 6

1

6 


=








 +









 = +











1

11

1

11

1

11
6

1

1

6

6

1

1

6

q

q

q

q

q

q

q

q

⇒ 1 6

1

1

6

≥ +
q

q

q

q
.

But 
q

q
6

1

 and 
q

q
1

6

 are reciprocals of one another and hence their sum should be ≥ 2.

i.e., q

q

q

q
6

1

1

6

+  cannot be less than 1.

It is a contradiction and hence, the result.
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Aliter: The probability mass function of the first die can be written as a probability 
generating function (pgf ) as

p1x + p2x
2 + p3x

3 + p4x
4 + p5x

5 + p6x
6.

For the second die, the pgf is

q1x + q2x
2 + q3x

3 + q4x
4 + q5x

5 + q6x
6.

Now, the pgf of the sum is given by 
1

11
2 3 12( )x x x+ + +�

p x q x xi
i

i
i

i

i

i

i= = =
∑ ∑ ∑

















 ≡











1

6

1

6

2

121

11
.

Cancelling x2 on both sides, we get

p x q x xi
i

i
i

i

i

i

i

−

=

−

= =
∑ ∑ ∑

















 ≡









1

1

6
1

1

6

0

101

11

The RHS is the product 1

11
(x - ω) (x - ω2) … (x - ω10), where ω is the 11th roots of 

unity. All the roots of the RHS are complex and they occur in conjugate pairs. On the 
LHS we have two real polynomial factors each of degree 5. This is impossible. We can-
not have a real 5th degree polynomial factor for 1 + x + x2 + … + x10.

Hence, such dice do not exist.

Problem 39 There are 6 red balls and 8 green balls in a bag. Five balls are drawn out 
at random and placed in a red box. The remaining 9 balls are put in a green box. What 
is the probability that the number of red balls in the green box plus the number of green 
balls in the red box is not a prime number?

Solution: Let g denote the number of green balls in the red box.
So, the red box contains (5 - g) red balls.
There are 8 green balls in all. So, the number of green balls in the green box

= (8 - g)

There are 6 red balls in all.
So, the number of red balls in the green box

= 6 - (5 - g) = (1 + g)

So, the number of red balls in the green box + the number of green balls in the red box 
= (1 + g) + g = (2g + 1).

Here (2g + 1) is an odd number.
Now, g cannot exceed 5, because only 5 balls are put in red box and it is taken that 

g green balls are put in red box.
So, 2g + 1 cannot be greater than 2 × 5 + 1 = 11.

Even if  g = 0, 2g + 1 = 1

and hence,  1 ≤ 2g + 1 ≤ 11.

The odd primes from 10 to 11 are 3, 5, 7 and 11.
So, the only composite odd number less than 11 is 9, since 1 is neither composite 

nor prime, 2g + 1 can either be 9 or 1.

5 balls

red balls

(5 − g)

g green balls

Green Box

Red Box

(red
balls)

6 − (5 − g)
= 1 + g

(8 − g) green
balls

9 balls
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So,    2g + 1 = 1 ⇒ g = 0

and    2g + 1 = 9 ⇒ g = 4

Only for the value of g = 0 or 4, we get the number 2g + 1 to be non-prime.
Thus, it implies that we should find the number of ways of drawing all 5 red (to put 

in red box) or 4 green and 1 red in the draw.
The number of ways of drawing 5 red out of 6 red and 0 green out of 8 green is

= 6C5 - 8C0.

The number of ways of drawing 4 green and 1 red balls is

= 8C4 × 6C1

Total number of drawing 5 balls is 14C5 and hence, the required probability is

6
5

8
0

8
4

6
1

14
5

C C C C

C

× + ×

=
× +

× × ×
× × ×

⋅

× × × ×
× × × ×

=
+
× ×

6 1
8 7 6 5

1 2 3 4
6

14 13 12 11 10

1 2 3 4 5
6 420

14 13 11
==

× ×
=

426

14 13 11

213

1001
.

Problem 40 An oil vendor has three different measuring vessels A, B and C with 
capacities 8 litres, 5 litres and 3 litres. The vessel A is filled with oil, he wants to divide 
the oil into two equal parts, by pouring it from one container to another, without using 
any other measuring vessels other than the three. How can he do it?

Solution: It is clear that, after pouring the oil several times into the different containers 
A, B and C, finally he should have 4 litres in vessel A and 4 litres in vessel B. Since C 
can hold a maximum of 3 litres only, this can be done by using a rectangular coordinate 
system. B can hold 0, 1, 2, 3, 4 and 5 litres and C can hold only 0, 1, 2 and 3 litres.

(1, 0)

(0, 3)

(0, 1)

(0, 2)

(2, 0) (3, 0) (4, 0) (5, 0)

(5
, 2

)

(0, 0)

(4, 3)(2, 3)

We represent the contents of B and C in a rectangular coordinate system using a 5 × 
3 grid. Since no fraction is involved, we take only the 24 lattice points (i, j).

Here i = 0, 1, 2, 3, 4, 5; j = 0, 1, 2, 3 are used as follows:
In the horizontal lines (x-axis) are plotted (0, 0) to (5, 0) to represent the possibili-

ties of different measures of oil that B can hold, and in the vertical line (y-axis), the 
points (0, 0) to (0, 3) are plotted to represent the possibilities of different measures of 
oil that C can hold.
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We do not fill both the vessels B and C with 5 litres and 3 litres, respectively (5, 3) 
at any stage, as this forces us to use vessel A again. Vessel A is filled with 8 litres in 
the beginning.

To start with, filling the oil in vessel B from vessel A represents the point (5, 0). 
This is shown by the arrow from (0, 0) to (5, 0) and this is followed by (2, 3) (by pour-
ing oil from B to C, B now has 2 litres and C has 3 litres). This is followed by (2, 0) 
(by pouring oil from C to A, C is empty and A has 3 + 3 = 6 litres). Now, (follow the 
arrows) (0, 2) (by pouring oil from B to C). This is followed by (5, 2) (by pouring 5 
litres from A into B) and (5, 2) is followed by (4, 3) [by pouring 1 litre from B to C, 
as C can hold one more litre and hence (5 - 1, 2 + 1) = (4, 3) is reached].

Now, we finally get (4, 0) from (4, 3) by pouring 3 litres of oil from C into A.
Now, B has 4 litres and A has 4 litres.
Thus in seven stages (minimum), we accomplish this task.
The above schematic representation can be given in a tabular column also as  follows:

Stage 8 L Vessel 5 L Vessel 3 L Vessel

0 (initial) 8 0 0

1 3 5 0

2 3 2 3

3 6 2 0

4 6 0 2

5 1 5 2

6 1 4 3

7 4 4 0

We have several other methods, but the one given above is the best solution. Since in 
this case, we accomplish the task in the minimum number of steps. We give here a 
diagrammatic representation as well as a tabular column for yet another solution.

Here we have

 (1, 0)

(0, 3)

(0, 1)

(0, 2)

(2, 0) (3, 0) (4, 0) (5, 0)(0, 0)

(3, 3)(1, 3)

(5, 1)

 (1) - (0, 3)

 → (2) - (3, 0)

 → (3) - (3, 3)

 → (4) - (5, 1)

 → (5) - (0, 1)

 → (6) - (1, 0)

 → (7) - (1, 3)

 → (8) - (4, 0)
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In this case we accomplish the task in 8 stages (8 > 7!).

Stage 8 L 5 L 3 L

(Initial) 0 8 0 0

1 5 0 3

2 5 3 0

3 2 3 3

4 2 5 1

5 7 0 1

6 7 1 0

7 4 1 3

8 4 4 0

Problem 41 Consider a square array of dots, coloured red or blue, with 20 rows and 
20 columns. Whenever two dots of the same colour are adjacent in the same row or 
column; they are joined by a segment of their common colour. Adjacent dots of unlike 
colours are joined by a black segment. There are 219 red dots, 39 of them on the border 
of the array, not at the corners. There are 237 black segments. How many blue seg-
ments are there?

Solution: In each row, there are 19 segments (Since there are 20 points in each row).
There are 20 rows and hence there are 20 × 19 = 380 horizontal segments.
Similarly, there are 20 × 19 = 380 vertical segments (There are 20 columns with 19 

segments in each column).
Therefore, the total number of segments = 760.
Number of black segments = 237.
Number of segments which are either blue or red = 523.
Let r denote the number of red segments and each red segment has 2 red points as 

the end point of the segment and each black segment has one end point coloured blue 
and the other end point coloured red.

So, the total number of times a red dot becomes an end point of a segment is

  = 2 × r + 237 = 2r + 237 (1)

There are altogether 219 red dots and of these, 39 are on the border.
So, the number of red dots in the interior is 180.
Each red dot on the border accounts for 3 segments (Since none of the red dots is 

on the corner).
So, the number of segments for which each red point on the border becomes the 

end points 3.
So, the total number of segments to which the 39 border red dots are end points 
39 × 3 = 117.

Each of the 180 red points on the interior becomes the end point for 4 segments.
So, the total number of segments for which the 180 red points are the end points 

= 180 × 4 = 720.
So the total number of times a red dot becomes an end point, i.e., total number of 

red ends

       = 117 + 720 = 837 (2)

B

R
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Hence, Eqs. (1) and (2) represent the same number, the result,

∴ 2r + 237 = 837
            ∴ r = 300.

i.e., the number of red segments = 300
and the number of blue segments = 523 - 300 = 223.

Problem 42 Suppose on a certain island there are 13 grey, 15 brown and 17 crimson 
chameleons. If two chameleons of two different colours meet, they both change to the 
third colour. (For example, when a grey and brown pair meet, then both would change 
to crimson). This is the only time they change colour. Is it possible for all chameleons 
eventually to be of the same colour?

Solution:  We will write the number of grey, brown and crimson chameleons as triples 
(g, b, c). An encounter of grey and brown changes the count (g, b, c) to (g, b, c) 
+ (-1, -1, 2).

Similarly, the other encounters will lead to changes (-1, 2, -1) and (2, -1, -1) in the 
count of grey, brown and crimson chameleons. Let there be m encounters of (-1, -1, 2) 
kind, n encounters of (-1, 2, -1) kind and l encounters of (2, -1, -1) kind leading to all 
chameleons of the same colour, i.e., the final triples will be either (45, 0, 0) or (0, 45, 
0) or (0, 0, 45). Hence, we get the following equations if we end up in the triple (45, 0, 
0), i.e., all grey chameleons.

 (13, 15, 17) + m(-l, -1, 2) + n(-1, 2, -1) + l(2, -1, -1) = (45, 0, 0)

 ∴ -m - n + 2l = 32

 -m + 2n - l = -15

 2m - n - l = -17

These three equations are consistent, but of rank < 3. Hence, they have infinity of 
solutions given by

m l n l= − = −
49

3

47

3
and

Note that we will never get all the three m, n, l to be integers in these solutions. 
Hence, the equations even though they are consistent, they are of no use to us as we 
want l, m, n to be positive integers.

Similarly, when the terminal triple is either (0, 45, 0) or (0, 0, 45), we get systems of 
equations which do have an infinity of solutions but which do not provide integer solu-
tions. Hence, no sequence of encounters will even lead to all chameleons to be of the 
same colour.

Aliter 1: For this solution we use very elementary modulo arithmetic. Note that 
our initial configuration (13, 15, 17) when taken modulo 3 is (1, 0, 2). Let us see 
the effect of each of the encounters modulo 3 on (1, 0, 2). Consider encounter 1 
leading to the change (-1, -1, 2). This leads to the new configuration (1, 0, 2) 
+ (-1, -1, 2) (modulo 3) = (0, -1, 4) (modulo 3) = (0, 2, 1) (modulo 3). Note that 
one of the components of the triple (original as well as the resultant) was divisible 
by 3, one left a remainder of 1, and the third left a remainder of 2 when divided 
by 3. Similarly, using encounters (-1, 2, -1), we get (0, 2, 1) modulo 3 and using 
(2, -1, -1), we get (3, -1, 1)(modulo 3) = (0, 2, 1) (modulo 3). Whatever be the 
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encounter, the resultant triple has the same configuration, one component divis-
ible by 3, one leaves a remainder of 1 and the other leaves a remainder of 2 when 
divided by 3. So, the successive encounters lead to the triples (0, 2, 1), (2, 1, 0), (1, 
0, 2), (0, 2, 1) and so on. But if all chameleons must be of the same colour, we must 
end with (45, 0, 0) or (0, 45, 0) or (0, 0, 45). Taking modulo 3, this implies that we 
have to arrive at (0, 0, 0) modulo 3. But we will never arrive at a triple where every 
component is divisible by 3 by our above discussion. Hence, the chameleons can 
never be of the same colour.

Aliter 2: Let us use weights for each colour; 0 for grey, 1 for brown and 2 for crimson. 
The value of a triple (g, b, c) is calculated as (0 × g + 1 × b + 2 × c) modulo 3. For the 
initial configuration the value is (0 × 13 + 1 × 15 + 2 × 17) modulo 3 = 1 (modulo 3). 
Let us now see how each of the encounters affects the value. In the case (-1, -1, 2) the 
value is changed by -1 × 0 + (-1) × l + 2 × 2 = 3 (mod 3) = 0 (mod 3), i.e., no change. 
Similarly, for the other two encounters (-1, 2, -1) and (2, -1, -1), the value is changed 
by 0 (mod 3) only. Hence, the value remains the same after any number of encounters 
in any order. But the value of the final required configurations namely, (45, 0, 0), 
(0, 45, 0) or (0, 0, 45) is 0 (mod 3). But the original value, namely, 1 (mod 3) does not 
change by the encounters and hence, can never reach 0 (mod 3). Hence, the chame-
leons cannot all end up with the same colour.

Aliter 3: We will enumerate all possible triples that we can arrive at due to these 
encounters and check whether we can ever arrive at (45, 0, 0), (0, 45, 0) or (0, 0, 45). 
Instead of 1 grey and 1 brown becoming 2 crimson, we will take the general case 
of r grey and r brown becoming 2r crimsons. Similarly for the other encounters as 
follows:

G B C Changes Due to Encounters

Initial stage 13 15 17 -13 -13 + 26

1 0 2 43 4 -2 -2

2 4 0 41 -4 8 -4

3 0 8 37 +6 -8 -8

4 16 0 29 -16 32 -16

5 0 32 13 26 -13 -13

6 26 19 0 -19 -19 38

7 7 0 38 -7 14 -7

8 0 14 31 28 -14 -14

9 28 0 17 -17 34 -17

10 11 34 0 -11 -11 22

11 0 23 22 44 -22 -22

12 44 1 0 -1 -1 2

13 43 0 2 -2 4 -2

14 41 4 0 -4 -4 8

15 37 0 8 -8 16 -8

16 29 16 0 -16 -16 32

17 13 0 32 -13 26 -13

18 0 26 19 38 -19 -19
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19 38 7 0 -7 -7 14

20 31 0 14 -14 28 -14

21 17 28 0 -17 -17 34

22 0 11 34 34 -11 -11

23 22 0 23 -22 44 -22

24 0 44 1 2 -1 -1

25 2 43 0 -2 -2 4

26 0 41 4 8 -4 .4

27 8 37 0 -8 -8 16

28 0 29 16 32 -16 -16

29 32 13 0 -13 -13 26

30 19 0 26 -19 38 7

31 0 38 7 14 -7 -7

32 14 31 0 -14 -14 28

33 0 17 28 34 -17 -17

34 34 0 11 -11 22 -11

35 23 22 0 -22 -22 44

36 1 0 44 -1 2 -1

37 0 2 43

In the 37th stage we get back to (0, 2, 43), the same as we got in the first stage. Note 
that, at no stage did we get 2 components to be equal. Thus, it starts recurring and we 
will never reach the configurations (0, 0, 45), (0, 45, 0) or (45, 0, 0). Hence, the result.

Problem 43 During a certain lecture each of five mathe maticians fell asleep exactly 
twice. For each pair of these mathematicians, there was some moment when both were 
sleeping simultaneously. Prove that at some moment, any three of them were sleeping 
simultaneously. Assume that no one was sleeping before the lecture. [USA MO, 1986]

Solution: Here we use proof by contradiction.
That is, we assume that there is no moment when any three of the mathematicians were 
sleeping simultaneously. Since every pair of mathematicians had some common time 
interval when both of them were sleeping, there are 5C2 = 10 non-overlapping time 
intervals, (Non-overlapping because at no point of time did three of them sleep simul-
taneously by our assumption) one interval of common dozing for each of the ten pairs. 
Each such interval is started by a moment when one of the mathematicians in the pair 
fell asleep. Each of the 5 mathematicians fell asleep twice.

∴ There are exactly 10 such moments such that each moment initiated a different 
interval (as we have to account for 10 non-overlapping intervals). Let us now consider 
the first common dozing interval, say, that of mathematicians 1 and 2. The moment 
b starts the common interval. But note that moment a is already used up and does not 
start any other common dozing interval.

∴ We are left with 8 moments and 9 common dozing intervals which have to 
start at these 8 moments which is impossible. Hence it is not possible that all the 10 
intervals are non-overlapping and hence, in an interval, there will be 3 mathematicians 
sleeping simultaneously.

2

11

2

d

cb

a
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Aliter: Let the 5 mathematicians be m1, m2, m3, m4 and m5. Let the 10 pairs be 
(m1, m2), (m1, m3), (m1, m4), (m1, m5), (m2, m3), (m2, m4), (m2, m5), (m3, m4), (m3, m5) 
and (m4, m5).

If these pairs have 10 non-overlapping time intervals when each pair sleeps, then 
each mathematician sleeps with 4 of his colleagues in turn. But each mathematician 
can sleep for only 2 stretches. Therefore, we form the time interval as follows: We 
will represent the mathematicians m1, m2, m3, m4, m5 on a line segment showing the 
moment they fall asleep and the moment they wake up. We will show that the hypoth-
esis is not satisfied (each pair sleeping in a common interval), if we do not allow three 
of them to sleep during one time interval.

(1, 2) (2, 3) (3, 4) (4, 5) (2, 4)(5, 2)(3, 5)(1, 3)(5, 1)

M1

M1 M2

M2

M3

M3

M4

M4M4

M5

M5

M1

M1

M3

M3

M5

M5

M2

M2

The time of waking up

The time of falling asleep

Explanation of the diagram: After representing the mathematicians M1, M2, M3, M4, 
M5 and showing the time of their falling asleep, after the 5th mathematicians falls 
asleep, M1 goes to sleep for his second nap. After M1 starts sleeping for the second 
time, M2 cannot come for his second nap, as every pair should occur exactly once and 
we had M1 and M2 sleeping simultaneously at the initial stage itself. So, the points, 
showing the other four mathematicians to follow M1 for their second nap, should be 
M3, M5, M2 and M4 in that order.

Now each mathematicians appears twice, and we have the pairs (M1, M2), (M2, M3), 
(M3, M4), (M4, M5) (M5, M1), (M1, M3), (M3, M5), (M5, M2) and (M2, M4).

Here these pairs common sleep period is shown as the ordered pairs of their sub-
scripts (1, 2), (2, 3), (3, 4), (4, 5), (5, 1), (1, 3), (3, 5), (5, 2) and (2, 4).

Thus, we have just nine pairs, sleeping simultaneously and the pair (1, 4) did not 
sleep simultaneously.

In the diagram, when M4 appears for the second time, he sleeps along with M2. So, 
if we replace M4 between M1 and M2 in the figure, so that M4’s waking up moment is 
shown after M2 starts sleeping but before M3 starts sleeping as in the following figure.

(1, 4)

M1

M4

M1
M4 M2

M4

M3

M2

M4

M2M3

M5

M4

M1

M5

M3

M1

M5

M3

M2

M5

Since both M1 and M4 wake up after M2 falls asleep, both M1 and M4 sleep simultane-
ously with M2 and the time interval between M2 falling asleep and M4 getting up (or 
M2 getting up as M4 may get up after M2 gets up but before M3 falls asleep shown by 
the dotted arrow) shown as (1, 4, 2) is the moment, when all the three M1, M4 and M2 
sleep simultaneously. Hence, the statement is proved.
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Problem 44 A difficult mathematical competition consisted of a Part I and a Part II 
within combined total of  28 problems. Each contestant solved 7 problems altogether. 
For each pair of problems there were exactly two contestants who solved both of them. 
Prove that there was a contestant who in Part I solved either no problem or at least 4 
problems.

Solution: We will find the total number of contestants.
Since for each pair of problems there were exactly two contestants, let us assume 

that an arbitrary problem p1 was solved by r contestants. Each of these r contestants 
solved 6 more problems, solving 6r more problems in all counting multiplicities. Since 
every problem, other than p1 was paired with p2 and was solved by exactly two contes-
tants, each of the remaining 27 problems (i.e., other than p1) is counted twice among 
the problems solved by the r contestants, i.e.,
 6r = 2 × 27

or r = 9.

Therefore, an arbitrary problem p1 is solved by 9 contestants. Hence, in all we have 

9 28

7
36

×
=  contestants, as each contestant solves 7 problems.

For the rest of the proof, let us assume the contrary, that is, every contestant solved 
either 1, 2 or 3 problems in Part I.

Let us assume that there are n problems in Part I and let x, y, z be the number of 
contestants who solved 1, 2 and 3 problems in Part I.

Since every one of the contestants solves either 1, 2 or 3 problems in Part I, we get
 x + y + z = 36 (1)
 x + 2y + 3z = 9n (2)

(Since each problem was solved by 9 contestants.)
Since every contestant among y solves a pair of problems in Part I and every con-

testant among z solves 3 pairs of problems in Part I and as each pair of problems was 
solved by exactly two contestants, we get the following equations:

 y z C
n n

n nn+ = = ⋅
−

= −3 2 2
1

2
12.

( )
( )  (3)

From Eqs. (1), (2) and (3), we get

z = n2 - 10n + 36

and, y n n n= − + − = − −





 − <2 29 108 2

29

4

23

8
02

2

.

As y < 0 is not an acceptable result, our assumption is wrong.
Hence, there is at least one contestant who solved either no problem from Part I or 

solved at least 4 problems from Part I.

Problem 45 There are certain number of balls and they are painted with the following 
conditions:

   (i) Every two colours appear on exactly one ball.
  (ii) Every two balls have exactly one colour in common.
 (iii) There are four colours such that any three of them appear on one ball.
    (iv) Each ball has three colours.

Find the number of balls and the number of colours used.
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Solution: Let us represent each of the balls by a line segment with three points to show 
the three colours.
Thus, ROY is a ball with three colours red, orange and yellow. We have to have three 
more balls such that on each of them one of the colours should be red, orange or yellow. 
So, next draw lines through R, O, Y to meet at a common point G standing for green 
colour. But the balls with colours RG, OG and YG must have a third colour in them say, 
Indigo (I), Violet (V) and Blue (B). Thus, we have 7 balls and 7 colours, in all.

7 colours R, O, Y, G, I, V, B and 7 balls
1. ROY, 2. RIG, 3. RVB, 4. OVG, 5. YBG, 6.YVI, 7. IBO.
Clearly, any pair of the above 7 balls have exactly one colour in common (satisfying 

condition 2). Each of the balls contribute 3 pairs of colours. In all, we have 21 pairs of 

colours in all the 7 balls. Now, 7 colours lead to 
7 6

2
21

×
=  pairs of colours and each 

pair of colours is found in exactly one ball (satisfying condition 1). Each ball has 3 
colours (condition 4 satisfied). Now, consider the four colours G, R, Y, V. No three of 
these colours are found on a ball (condition 3 is satisfied).

Thus, the total number of colours is 7 and the total number of balls is also 7.

Problem 46 It is proposed to partition the set of positive integers into two disjoint 
subsets A and B. Subject to the following conditions:

  (i) 1 is in A.
 (ii) No two distinct members of A have a sum of the form

2k + 2(k = 0, 1, 2, …).

 (iii) No two distinct members of B have a sum of the form

2k + 2(k = 0, 1, 2, …).

Show that this partitioning can be carried out in a unique manner and determine 
the subsets to which 1987, 1988, 1989, 1997, 1998 belong.

Solution: Since it is given that 1 ∈ A, 2 ∉ A. For if 2 ∈ A, then 20 + 2 = 3 is generated 
by 2 members of A violating the condition for the partitioning.

∴ 2 ∈ B

Similarly, 3 ∉A as 1 + 3 = 4 = 21 + 2

∴ 3 ∈ B

But 4 ∉ B. For if 4 ∈ B, then 22+ 2 = 4 + 2 = 6 is generated by two members of B.
∴ The partitioning for the first few positive integers is

 A = {1, 4, 7, 8, 12, 13, 15, 16, 20, 23, …}

 B = {2, 3, 5, 6, 9, 10, 11, 14, 17, 18, 19, 21, 22, …}

Suppose 1, 2, …, n - 1 (for n ≥ 3) have already been assigned to A ∩ B in such a way 
that no two distinct members of A or B have a sum = 2l + 2 (l = 0, 1, 2, …)

Now, we need to assign n to A or B.
Let k be a positive integer such that 2k-1 + 2 ≤ n < 2k + 2. Then, assign ‘n’ to the 

complement of the set to which 2k + 2 - n belongs. But for this, we need to check that 
whether 2k + 2 - n has already been assigned or not. Now as n ≥ 2k-1 + 2 > 2k-1 + 1

 2n > 2k + 2

∴ n > 2k + 2 - n

YR

I

B

O

V

G
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Since all numbers below n have been assumed to be assigned to either A or B, 2k + 2 - n 
has already been assigned and hence n is also assigned uniquely.

For example, consider k = 1

3 = 20 + 2 ≤ n < 21 + 2 = 4.

Consider n = 3, 4 - n = 1 Now 1 ∈ A (given)

∴ 3 ∈ B

Consider k = 2

∴ 22-1 + 2 ≤ n < 22 + 2 = 6

 4 ≤ n < 6

When n = 4, as 6 - n = 2 ∈ B, we assign 4 to A.
When n = 5 as 6 - 5 = l ∈ A, we assign 5 to B.
Since the set to which n gets assigned is uniquely determined by the set to which 2k 

+ 2 - n belongs, the partitioning is unique.
Looking at the pattern of the partitioning of the initial set of positive integers, we 

conjecture the following:

 1.  n ∈ A if 4 | n
 2.  n ∈ B if 2 | n but 4  n
 3. If n = 2r . k + 1, r ≥ 1, k odd, then n ∈A if k is of the form 4m - 1 and n ∈ B if k is 

of the form 4m + 1.

Proof of the conjecture: We note that 1, 4 ∈ A and 2, 3 ∈ B. If 2k-1 + 2 ≤ n < 2k + 2 and 
all numbers less than n have been assigned to A or B and satisfy the above conjectures, 
then if 4 | n, as 2k + 2 - n is divisible by 2 but not by 4, 2k + 2 - n ∈ B. Hence, n ∈ A. 
Similarly, if 2 divides n but not 4, then 2k + 2 - n is divisible by 4 and hence, is in A.

  ∴ n ∈ B.

If n = 2r . k + 1 where r ≥ 1, k odd and k = 4m - 1, then

2k + 2 - n = 2k - 2r. k + 1 = 2r(2k-r - k) + 1

where clearly 2k-r - k is odd and equals l (mod 4).

∴ 2k + 2 - n ∈ B.

Hence, n ∈ A. Similarly, it can be shown that if n = 2r . k + 1, where k ≡ 1 (mod 4), then 
n ∈ B. Thus, the conjecture is proved.

Now, 1988 is divisible by 4.

 ∴ 1988 ∈ A
1987 = 21 . 993 + 1 where 993 = 1 (mod 4)

 ∴ 1987 ∈ B
1989 = 22 . 497 + 1 where 497 = 1 (mod 4)

 ∴ 1989 ∈ B
2 |1998 but 4  1998

 ∴ 1998 ∈ B
1997 = 22 . 499 + 1 where 499 = 3 (mod 4)

 ∴ 1997 ∈ A.
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Check Your Understanding 

 1. Given p, q ∈ , prove that 
kp

q

kq

pk

q

k

p







 =











=

−

=

−

∑ ∑
1

1

1

1

 2. Prove that φ( ) ,d n
d n

=∑
|

 where ϕ(d) = number of positive integers coprime with d 

and less than or equal to d.

 3. Prove that τ ( )k
n

kk

n

k

n

= 


= =

∑ ∑
1 1

 where t(k) is number of divisors of k.

 4. Prove that 
2

2 2
1

1

n
n n

n
n

n
C

n
C C

+
= − −  and hence or otherwise, deduce that 2nCn is 

always divisible by (n + 1).

 5. Prove that | | ,P Q n n

Q XP X

∩ = −

⊆⊆
∑∑ 4 1 where X is a set of n elements.

 6. Let n and r be integers with 0 ≤ r ≤ n. Find a simple expression for 

S
n n n n

r
r

r=







 −








 +








 − + −








0 1 2

1� ( ) .

 7. Let n be positive integer not less than 3. Find a direct combinational interpretation 

of the identity 

n
n

2

2

3
1

4

























=

+







 .

 8. Find the number of functions f : {1, 2, 3, …, n} → {1947, 1951, 2018, 2020} such 
that f (1) + f (2) + … + f (n) is odd.

 9. Let n be a positive integer. Prove that the binomial coefficients 

n n n n

n1 2 3 1
























 −









, , , ,�  are all even if and only if n is a power of 2.

 10. Find all n∈, such that 
n

r








  is odd ∀r = 0, 1, 2, ..., n.

 11. Delete 1 0 1 digits from the number 1 3 5 7 9 11 13 15 17 19 … 109 111 in such 
a way that the remaining number is

   (i) as small as possible,

  (ii) as big as possible.

 12. You are given 7 sheets of paper and you cut any number of these into 7 small 
pieces. Out of the total sheets you get, you again cut some into 7 pieces and you 
continue the process. At every stage you count the total number of sheets you 
have. Show that you will never get 605 pieces.

 13. During election campaign, n different kinds of promises are made by various po-
litical parties, n > 0. No two parties have exactly the same set of promises. While 
several parties may make the same promise, every pair of parties have atleast one 
promise in common. Prove that there can be at most 2n-1 parties.
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 14. The number 3 can be expressed as an ordered sum of one or more positive inte-
gers in four ways as follows:

  3, 1 + 2, 2 + 1, 1 + 1 + 1.
  Show that the positive integer n can be so expressed in 2n-1 ways.
 15. Let n be any natural number. Find the sum of the digits appearing in the integers 

1, 2, 3, …, 10n − 2, 10n − 1.
 16. Let f(n) denote the number of solutions (x, y) of x + 2y = n for which both x and 

y are non-negative integers. Show that f(0) = f (l) = l, f (n) = f (n − 2) + 1, n = 2, 3, 
4, …. Find a simple explicit formula for f (n).

 17. At a party, there are more than 3 people. Every four of the people have the prop-
erty that one of the four is acquainted with the other three. Show that with the 
possible exception of three of the people, every one at the party is acquainted with 
all of the others at the party.

 18. What is the least number of plane cuts required to cut a block of size a × b × c into 
abc unit cubes if piling is permitted?

 19. In a mathematical competition, a contestant can score 5, 4, 3, 2, 1, or 0 points 
for each problem. Find the number of ways he can score a total of 30 points for 7 
problems.

 20. Every person, who has ever lived has upto this moment, made a certain number 
of hand-shakes. Prove that the number of people who have made an odd number 
of handshakes is even.

 21. Show that among any seven distinct positive integers not greater than 126, one 

can find two of them, say, x and y satisfying the inequalities 1 2< ≤
x

y
.

 22. Given a set of (n + 1) positive integers none of which exceeds 2n, show that 
atleast one member of the set must divide another member of the set.

 23. There are six closed discs in a plane such that none contains the centre of any 
other disc (even on the boundary). Show that they do not have a common point.

 24. Prove that if 5 pins are stuck on to a piece of cardboard in the shape of an equilat-
eral triangle of side length 2, then some pair of pins must be within distance 1 of 
each other.

 25. Given any (n + 2) integers show that for some pair of them either their sum or 
their difference is divisible by 2n.

 26. Two players, play the game. The first player selects any integer from 1 to 11 
inclusive. The second player adds any positive integer from 1 to 11 inclu-
sive to the number selected by the first player. They continue in this manner 
 alternatively. The player who reaches 56 wins the game. Which player has the 
 advantage?

 27. You are given 6 congruent balls two each of colours red, white and blue and in-
formed that one ball of each colour weighs 15 gram, while the other weighs 16 
grams. Using an equal arm balance only twice, determine which three are the 16 
gram balls.

 28. Find the number of integers in the set {1, 2, …, 103} which are not divisible by 5 
nor by 7 but are divisible by 3.

 29. Find the number of integers in the set {1, 2, …, 120} which are divisible by ex-
actly m of the integers 2, 3, 5, 7 where m = 0, 1, 2, 3, 4.

 30. For how many paths consisting of a sequence of horizontal and/or vertical line 
segments with each segment connecting a pair of adjacent letters in the diagram 
below is the word MATHEMATICS spelled out as the path is traversed from be-
ginning to end.
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M  A  T  H  E  M  A  T  I  C  S  C  I  T  A  M  E  H  T  A  M
M  A  T  H  E  M  A  T  I  C   I  T  A  M  E  H  T  A  M

M  A  T  H  E  M  A  T  I  T  A  M  E  H  T  A  M
M  A  T  H  E  M  A  T  A  M  E  H  T  A  M

M  A  T  H  E  M  A  M  E  H  T  A  M
M  A  T  H  E  M  E  H  T  A  M

M  A  T  H  E  H  T  A  M
M  A  T  H  T  A  M

M  A  T  A  M
M  A  M

M

 31. A group of 100 students took examination in English, Science and Mathematics. 
Among them, 92 passed in English, 75 in Science and 63 in Mathematics; at most 
65 passed in English and Science, at most 54 in English and Mathematics and 
at most 48 in Science and Mathematics. Find the largest possible number of the 
students that could have passed in all the three subjects.

 32. Lines L1, L2, …, L100 are distinct. All lines L4n, n being positive integer are paral-
lel to each other. All lines L4n-3, n a positive integer pass through a given point 
A. Find the maximum number of points of intersection of pairs of lines from the 
complete set (L1, L2, …, L100).

 33. How many integers with four different digits are there between 1,000 and 9999 
such that the absolute value of the difference between the first digit and the last 
digit is 2?

 34. A multi set is an ordered collection of elements, where elements can repeat. For 
example, {a, a, b, c, c} is a multiset of size five. Discover the number of multisets 
of size four, which can be constructed from the given 10 distinct elements.

 35. Find the number of numbers from 1 to 10100, having the sum of their digits equal 
to 3.

 36. Two students from Standard XI and several students from Standard XII participated 
in a chess tournament. Each participant played with every other once only. In each 
game, the winner has received one point, the loser zero and for the game drawn, 
both the players got 0.5 points each. The two students from Standard XI together 
scored 8 points and the scores of all the participants of Standard XII are equal.

   (i) How many students of Standard XII participated in the tournament?
  (ii) What was the equal score in Standard XII?
 37. Show that an equilateral triangle, cannot be covered completely by two smaller 

equilateral triangles.
 38. The diagonal connecting two opposite vertices of a rectangular parallelepiped is 

73 units. Prove that if the squares of the edges of the parallelepiped are integers, 
then its volume cannot exceed 120.

 39. In a group of 7 people, the sum of the ages of the members is 332 years. Prove 
that three members can be chosen, so that the sum of their ages, is not less than 
142 years.

 40. Ten students solved a total of 35 problems in a Mathematics contest; each problem 
was solved by exactly one student. There is one student who solved exactly one 
problem, at least one student who solved exactly two problems and at least 
one student who solved exactly three problems. Prove that, there is also at least 
one student, who has solved at least 5 problems.

 41. Let T be the set of triplets (a, b, c) of integers, such that 1< a < b < c < 6. 
For each triplet (a, b, c) consider the number a b c× × . Add all these numbers 
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corresponding to the triplets in T. Prove that the resulting sum is a multiple 
of seven.

 42. There are 9 cells in a 3 3×  square, when these cells are filled by numbers -1, 0, 
1. Prove that, of the 8 sums obtained, at least two sums are equal.

 43. How many 6-digit numbers are there such that
   (i) The digits of each number are all from the set {1, 2, 3, 4, 5}
  (ii) Any digit that appears in the number appears at least twice.
  (Example: 225252 is admissible while 222133 is not).
 44. Show that, in any group of 5 students there are two students who have identical 

number of friends within the group.
 45. Given 11 different natural numbers, none greater than 20. Prove that, two of these 

can be chosen, one of which divides the other.
 46. Find the number of 6-digit natural numbers, such that the sum of their digits is 10 

and each of the digits 0, 1, 2, 3, occurs at least once in them. 
 47. Prove that, among 18 consecutive 3-digit numbers, there is at least one number, 

which is divisible by the sum of the digits.
 48. A rectangle with sides 2m - 1 and 2n - 1 is divided into squares of unit length by 

drawing parallel lines to the sides. Find the number of rectangles possible with 
odd side lengths.

 49. A road network as shown in the figure connect four cities. In how many ways can 
you start from any city (say A) and come back to it without travelling on the same 
road more than once?

 50. Consider the lines x = k and y = k, k ∈ {1, 2, …, 9}. The number of non-congruent 
rectangles, whose sides are along these lines, is ______.

 51. A point P, is at a distance of 12 cm from the centre of a circle of radius 13 cm. Find 
the number of chords of the circle passing through P which have integral lengths.

 52. Let Pn denotes the number of ways of selecting 3 people out of ‘n’ sitting in a row, 
if no two of them are consecutive and Qn is the corresponding figure when they 
are in a circle. If Pn - Qn = 6, then find the value of n.

 53. Take a ΔABC. Take n points of sub-division on side AB and join each of them to 
C. Likewise, take n points of sub-division on side AC and join each of them to B. 
Into how many parts is ΔABC divided?

 54. Each side of an equilateral ΔABC is divided into 6 equal parts. The corresponding 
points of subdivision are joined. Find the number of equilateral triangles oriented 
the same way as ΔABC.

 55. Let n = 106. Evaluate ⋅∑ log .
/

10 d
d n

 56. Let n = 180. Find the number of positive integral divisors of n2, which do not 
divide n.

 57. Show that the number of positive integral divisors of 111 … 1(2010 times) is 
even.

 58. How many unordered pairs {a, b} of positive integers a and b are there such that 
LCM (a, b)= 1,26,000?

  (Note: An unordered pair {a, b} means {a, b} = {b, a})
 59. The sum of the factors of 7!, which are odd and are of the form 3t + 1 where t is 

a whole number, is ______.
 60. Consider a set {1, 2, 3,…, 100}. Find the number of ways in which a number can 

be selected from the set so that it is of the form xy, where x, y ∈ N and ≥ 2, is 
______.

A

B

D

C
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Challenge Your Understanding 

 1. Let A, B be disjoint finite sets of integers with the following property.
  If x ∈ (A ∪ B), then either x + 1 ∈ A or x − 2 ∈ B.
  Prove that n(A) = 2n(B) [i.e., | A | = 2 |B |].
 2. Find all positive integers k, for which the set A = {1996, 1996 + 1, 1996 + 2, …, 

1996 + k} with k + 1 elements can be partitioned into two subsets B and C such 
that the sum of the elements of B = sum of the elements of C.

 3. Suppose you and your husband attended a party with three other married couples. 
Several hand-shakes took place. No one shook hands with himself or (herself) 
or with his (or her) spouse, and no one shook hands with other more than once. 
After all the hand-shaking was completed, suppose you asked each person includ-
ing your husband, how many hands he or she had shaken? Each person gave a 
 different answer.

   (i) How many hands did you shake?
  (ii) How many hands did your husband shake?
 4. Let S = {1, 2, …, 100} and A be any subset of S containing 53 members. Show 

that A has two numbers a, b such that a - b = 12. Construct a subset B of S with 
52 numbers such that for any two numbers a, b of B, | a - b | ≠ 12.

 5. Let A be any set of 19 distinct integers chosen from the AP 1, 4, 7, 10, …, 100. 
Show that A must contain at least two distinct integers whose sum is 104. Find a 
set of 18 distinct integers from the same progression such that the sum of no two 
distinct integers from the set equals 104.

 6. In a room containing N people N > 3, at least one person has not shaken hands with 
every one else in the room. What is the maximum number of people in the room that 
could have shaken hands with every one else?

 7. A positive integer n has the decimal representation n = d1 d2 … dm . 
   (i) n is called ascending if 0 < d1 ≤ d2 ≤ … ≤ dm
  (ii) n is called strictly ascending if 0 < d1 < d2 < … < dm.
  Find the total number of type (i) and type (ii) numbers, which are less than 109.
 8. Let N(k) = {1, 2, …, k}. Find the number of:
    (i) functions from N(n) to N(m). 
   (ii) one-to-one functions from N(n) to N(m), n ≤ m.
  (iii) strictly increasing functions from N(n) to N(m), n ≤ m.
  (iv) non- decreasing functions from N(n) to N(m).
 9. Let n = 26 ⋅ 34 ⋅ 52 ⋅ 74 . Find the number of positive integral divisors of n which 

are greater than n.

 10. Let m m p n n pi
i

i
i

i

k

i

k

= =
==
∑∑ , ;

00

 mi, ni ∈ {0, 1, 2, …, p - 1} and p is a prime 

number, prove that 
m

n

m

n
i

ii

k







 ≡











=
∏

0

 (mod p).

 11. Let T(n) denote the number of non-congruent triangles with integer side lengths 
and perimeter n.

  Thus T(1) = T(2) = T(3) = T(4) = 0, while T(5) = 1. Prove that
   (i) T(2006) < T(2009)
  (ii) T(2005) = T(2008).
 12. Let A1, A2, A3, A4, A5, A6 be distinct points in a plane. Let D and d be the longest 

and the shortest distances respectively between pairs of points among them. Prove 

that,
D

d
≥ 3.
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 13. Several football teams enter a tournament, in which, each team play every  other 
team exactly once. Show that, at any moment, during the tournament, there will be 
two teams, which have played up to that moment, an identical number of games.

 14. Given 7-element of set A = {a, b, c, d, e, f, g}. Find a collection T of 3-element 
subsets of A, such that each pair of elements from A, occurs exactly in one of the 
subsets of T.

 15. In how many different ways, can the digits 1 through 5, be arranged to form a 
five digit number, in which, the digits, alternately rise and fall? These numbers 
are called Mountain Numbers; for example, 13254 is a Mountain Number while 
12354 is not.

 16. If A is a 50 element subset of the set {1, 2, 3, …, 100} such that, no two numbers 
from A, add upto 100, show that A contains a square.

 17. Show that, there exist two powers of 1999, whose difference is divisible by 1998.
 18. If the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 are divided into three groups, show that, the 

product of the numbers in one of the groups, exceeds 71.
 19. Show that, there exists a power of 3 which ends in the digits 001.
 20. If 181 square integers are given, prove that, one can find a subset of 19 numbers 

among these such that, the sum of these elements is divisible by 19.
 21. Given any 13 distinct real numbers, prove that, there are two of them, say x and y, 

such that, 0
1

2 3<
−
+

< −
x y

xy
.

 22. Suppose that each of n people knows exactly one piece of information, and all n 
pieces are different. Every time person A phones to person B and tells B every-
thing what he knows, while B tells A nothing. What is the minimum number of 
phone calls between pairs of people needed for everyone to know everything?

 23. Consider a rectangular array of dots with an even number of rows and an even 
number of columns. Colour the dots, each one red or blue, subject to the condi-
tion that a each row, half the dots are red and the other half are blue and in each 
column also, half the, dots are red and the other half are blue. Now, if two points 
are adjacent and like coloured, join them by an edge of their colour. Show that the 
number of blue segments is equal to the number of red segments.

 24. Teams T1, T2, …, Tn take part in a tournament in which every team plays every 
other team just once. One point is awarded for each win and it is assumed that 
there are no draws. Let s1, s2, …, sn denote the total scores of T1, T2, …, Tn respec-

tively. Show that for 1 < k < n, s1 + s2 + … + sk ≤ nk −
1

2
 k(k + 1).

 25. Seventeen people correspond by mail with one another each one with all the rest. 
In their letters only three different topics are discussed. Each pair of correspon-
dents deals with only one of the topics. Prove that there are atleast three people 
who write to one another about the same topic.

 26. No matter which 55 positive integers one may select from 1, 2, 3, …, 100. Prove 
that there will be some two that differ by 9, some two that differ by 10, some two 
that differ by 12, some two that differ by 13, but surprisingly their need not be any 
two that differ by 11.

 27. There is a 2n × 2n array (matrix) consisting of 0’s and 1’s and there are exactly 3n 
zeroes. Show that it is possible to remove all the zeroes by deleting some n rows 
and some n columns.

 28. Let a(n) denote the number of ways of expressing the positive integer n as an or-
dered sum of l’s and 2’s, e.g., a(5) = 8 because 5 = 1 + 1 + 1 + 1 + 1 = 2 + 1 + 1 + 
1 = 1 + 2 + 1 + 1 = 1 + 1 + 2 + 1 = 1 + 1+1 + 2 = 2 + 2+1 = 2 + 1 + 2 = 1 + 2 + 2. 
Let b(n) denote the number of ways of expressing n as an ordered sum of integers 
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greater than 1, for example, b(7) = 8 because 7 = 3 + 2 + 2 = 2 + 3 + 2 = 2 + 2 + 
3 = 3 + 4 = 4 + 3 = 2 + 5 = 5 + 2 = 7. Prove that a(n) = b(n + 2) for n = 1, 2, ….

 29. A pack of 13 distinct cards is shuffled in some particular manner and then re-
peatedly in exactly the same manner. What is the maximum number of shuffles 
required for the cards to return to their original positions?

 30. Each of n boys attends a school-gathering with both his parents. In how many 
ways can the 3n people be divided into groups of three such that each group con-
tains a boy, a male parent and a female parent, and no boy is with both his parents 
in his group?

 31. A permutation a1, a2, …, an are 1, 2, 3, …, n is said to be good if and only if (aj − j) 
is constant for all j, 1 ≤ j ≤ n. Determine the number of good permutations for n 
= 1999, n = 2000.

 32. An international society has its members from six different countries. The list of 
members contains 1978 names numbered 1, 2, 3, …, 1978. Prove that there is at 
least one member whose number is the sum of the numbers of two members from 
his own country, or twice as large as the number of one member from his own 
country. [IMO, 1978]

 33. Let A and E be opposite vertices of a regular octagon. A frog starts jumping at 
vertex A. From any vertex of the octagon except E, it may jump to either of the 
two adjacent vertices. When it reaches vertex E, the frog stops and stays there. 
Let an be the number of distinct paths of exactly n jumps ending at E. Prove that 

a2n-1 = 0, a x yn
n n

2
1 11

2
= −− −( ),  n = 1, 2, 3, …, where x = 2 + 2, y = 2 − 2.

  Here a path of n jumps is a sequence of vertices (P0, …, Pn) such that
    (i) P0 = A, Pn = E.
   (ii) for every i, 0 ≤ i ≤ n − 1, Pi is distinct from E.
  (iii) for every i, 0 ≤ i ≤ n − 1, Pi and Pi + 1 are adjacent. [IMO, 1979]

 34. Let n and k be given relatively prime natural numbers k < n. Each number in the 
set M = {1, 2, …, n − 1} is coloured either blue or white. It is given that

   (i) for each i ∈ M both i and (n − i) have the same colour;
  (ii) for each i ∈ M, i ≠ k, both i and (f − k) have the same colour.
  Prove that all numbers in M have the same colour. [IMO, 1985]
 35. 2 × 2 × n hole in a wall is to be filled with 2n, 1 × 1 × 2 bricks. In how many dif-

ferent ways can this be done if the bricks are indistinguishable?
 36. Let P1, P2, …, Pn be distinct two element subsets of the set of elements {a1, a2, 

…, an} such that if Pi ∩ Pj ≠ ϕ, then (ai, aj) is one of the P’s. Prove that each of 
the as appears in exactly two of the P’s.

 37. Ten airlines serve a total of 1983 cities. There is direct service without a stop over 
between any two cities and if an airline offers a direct flight from A to B, it also 
offers a direct flight from B to A. Prove that at least one of the airlines provides a 
round trip with an odd number of landings.

 38. Five students A, B, C, D, E took part in a contest. One prediction was that the contes-
tants could finish in the order A B C D E. This prediction was very poor. In fact, no 
contestant finished in the position predicted and no two contestants predicted to finish 
consecutively did so. A second prediction had the contestants finishing in the order 
D A E C B. This prediction was better. Exactly two of the contestants finished in the 
places predicted and two disjoint pairs of students predicted to finish consecutively 
actually did so. Determine the order in which the contestants finished.

 39. Suppose five points in a plane are situated so that no two of the straight lines 
joining them are parallel, perpendicular or coincident. From each point perpen-
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diculars are drawn to all the lines joining the other four points. Determine the 
maximum number of intersections these perpendiculars can have.

 40. In a plane, a set of n points (n ≥ 3) is given. Each pair of points is connected by 
a segment. Let d be the length of the segment we define a diameter of the set to 
be any connecting segment of length d. Prove that the number of diameters of the 
given set is at most n.

 41. In a mathematical contest, the three problems A, B and C were posed. Among the 
participants there were 25 students who solved at least one problem each. Of all 
the contestants who did not solve problem A, the number who solved problem B, 
was twice the number who solved C. The number of students who solved only 
problem A was one more than the number of students who solved A and at least 
one other problem. Of all students who solved just one problem, half did not solve 
problem A. How many students solved only problem B?

 42. In a sports contest, there were m medals awarded on n successive days (n > 1), on 

the first day, one medal and 
1

7
 of the remaining (m − 1) medals were awarded on 

the second day, two medals and 
2

7
of the now remaining medals were awarded; 

and so on. On the nth and last day, the remaining n medals were awarded. How 
many days did the contest last, and how many medals were awarded altogether? 

 43. Given n > 4 points in the plane such that no three are collinear. Prove that there 

are at least 
n−









3

2
 convex quadrilaterals whose vertices are four of given points. 

 44. A certain organization has n members and it has (n + 1) three member commit-
tees, no two of which have identical membership. Prove that there are two com-
mittees which share exactly one member. [USA MO, 1979]

 45. In a party with 1982 persons, among any group of four there is at least one person 
who knows each of the other three. What is the minimum number of people in the 
party who know everyone else? [USA MO, 1982]

 46. On an infinite chess board, a game is played as follows: At the start n2 pieces are 
arranged on the chess board in n × n block of adjoining squares, one piece in each 
square. A move in the game is a jump in a horizontal or vertical direction over 
an adjacent occupied square immediately beyond the piece who has been jumped 
over is then removed. Find those values of n for which the game will end with 
only one piece remaining on chess board. [IMO, 1993]

 47. Find the number of ways in which one can place the numbers 1, 2,…, n2 on square 
of n × n chess board, one on each such that the numbers in each row and each 
column are in AP (assume n ≥ 3). [INMO, 1992]

 48. Consider nine points in space, no four of which are coplanar. Each pair of points 
is joined by an edge (that is, a line segment) and each edge is either coloured blue 
or red or left uncoloured. Find the smallest value of n such that whenever exactly 
n edges are coloured, the set of coloured edges necessarily contains a triangle all 
of whose edges have the same colour. [IMO, 1992]

 49. Nine mathematicians meet at an international conference and discover that among 
any three of them, at least two speak a common language. If each of the mathema-
ticians can speak utmost three languages, prove that there are atleast three of the 
mathematicians who can speak the same language. [USA MO, 1979]

 50. Is it possible to choose 1983 distinct positive integers, all less than or equal to 105, 
no three of which are consecutive terms of an AP? Justify your answer.

 [IMO, 1983]
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8.1 Angle

An angle is the figure formed by two rays, called the sides of the angle and sharing a 
common endpoint, called the vertex of the angle.

8.1.1 Complementary Angles

Complementary angles are angle pairs whose measures add up to one right angle (1/4 
turn, 90°, or π/2 radians). If the two complementary angles are adjacent their non-
shared sides form a right angle.

8.1.2 Supplementary Angles

Two angles whose measures add up to a straight angle (1/2 turn, 180°, or π radians) are 
called supplementary angles.

If the two supplementary angles are adjacent (i.e., have a common vertex and share 
just one side), their non-shared sides form a straight line. Such angles are called a 
linear pair of angles.

8.1.3 Vertically Opposite Angles (VOA)

A pair of angles opposite to each other, formed by two intersecting straight lines that 
form an ‘X’-like shape, are called vertical angles or opposite angles or vertically oppo-
site angles. They are abbreviated as vert. opp. ∠s. They are always equal.

8.1.4 Corresponding Angles Postulate or CA Postulate

If two parallel lines are cut by a transversal, then corresponding angles are
congruent

Vertex

8
Chapter

Geometry

Euclid of AlexandriaI. II. III. IV.

V.
VI.α

β
α β+ < °180

 I. A straight line segment can be drawn joining any two points.
 II. Any straight line segment can be extended indefi nitely in a straight line.
 III. Given any straight lines segment, a circle can be drawn having the segment as radius and one endpoint as center.
 IV. All right angles are congruent.
 V. If two lines are drawn which intersect a third in such a way that the sum of the inner angles on one side is less 

than two right angles, then the two lines inevitably must intersect each other on that side if extended far enough. 
This postulate is equivalent to what is known as the parallel postulate.

 VI. Given any straight line and a point not on it, there exists ‘one and only one straight line’ which passes through 
that point and never intersects the fi rst line, no matter how far they are extended. This statement is equivalent 
to the fi fth of Euclid’s postulates, called parallel postulate.
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8.1.5  Alternate Interior Angles Theorem 
or AIA Theorem

If two parallel lines are cut by a transversal, then alternate interior angles are congruent 
to each other.

8.1.6 Angle Sum Theorem

Sum of all the angles of a triangle is 180°.
Construction: Draw a line XY through the vertex A and parallel to base BC.

∠XAB = ∠ABC
(alternate interior angles between two parallels)

Similarly ∠YAC =∠ACB 
Now, ∠ABC + ∠BAC + ∠ACB = ∠XAB + ∠BAC + ∠YAC = 180°

Corollary 1: Exterior angle of a triangle is equal to sum of two opposite interior 
angles.

Construction: Extend BC to point X such that C lies in between B and X.

Proof: Exterior angle at vertex C is
∠ACX = 180° − ∠ = ∠ +∠ACB BAC ABC
(using previous theorem)

Corollary 2: In any n sided convex polygon sum of all angles is 
(n - 2) × 180° and also sum of all exterior angles (taken in one direction, i.e., either 
clockwise or counter clockwise) in any convex polygon is 360°.

Construction: Take a point P inside the polygon Join it with all the vertices.

Proof: As there are n triangle having P as common vertex, sum of all angles of all 
triangles is n × 180°. Now remove from it sum of angles at vertex P which is 360°.
Hence sum of all interior angles of the polygon is n n× ° − ° = − × °180 360 2 180( )

Example 1 If the bisectors of ∠ABC and ∠ACB of a triangle meet at a point I. then 

prove that ∠ = °+ ∠BIC A90
1

2
.

Solution:
Given: In DABC, BI, CI bisects ∠B and ∠C

To Prove: ∠ = °+ ∠BIC A90
1

2

Proof: In DABC, ∠ +∠ +∠ = °A B C 180

⇒∠ + + = °A x y2 2 180

⇒ + = °− ∠x y A90
1

2
 (1)

In DIBC, ∠ + + = °I x y 180

⇒∠ + °− ∠ = °I A90
1

2
180  (From Eq. (1))

⇒∠ = °+ ∠I A90
1

2
.

A

B C

X Y

A

B C x

A4 A3

A2

A1

P

An

A

B C
x y

yx

I
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Example 2 The sides AB and AC of a triangle ABC are produced to P and Q 
respectively. If the bisectors of ∠PBC and ∠QCB intersects at Ia then prove that 

∠ = °− ∠BI C Aa 90
1

2

Solution:
A

B

P
Ia

1

180 − 2x 180 − 2y

Q

C

x y
yx

BIa bisects ∠PBC and CIa bisects ∠QCB

Let ∠ = ∠ =I BP I BC xa a  and ∠ = ∠ =I CB I CQ ya a

∠ = °−ABC x180 2  and ∠ = °−ACB y180 2

In ∆ABC A B C, ∠ +∠ +∠ = °180

⇒∠ + °− + °− = °A x y180 2 180 2 180

⇒ + = °+ ∠x y A90
1

2
 (1)

In ∆BI C x y Ia a, + +∠ = °180

⇒ °+ ∠ +∠ = °90
1

2
180A Ia  (From Eq. (1))

⇒∠ = °− ° − ∠I Aa 180 90
1

2

⇒∠ = °− ∠BI C Aa 90
1

2
.

Example 3 PS is the bisector of ∠QPR and PT ⊥ QR show that ∠ = ∠ −∠TPS Q R
1

2
( )

Where ∠Q < ∠R.

Solution: 
Let ∠QPS = ∠SPR = a and ∠TPS = x 

∴∠ = −QPT a x

In DPTR, by using exterior angle property

∠ = ° = + +∠QTP a x R90  (1)

In DPTQ, by using exterior angle property
∠ = ° = − +∠PTR a x Q90  (2)

\ From Eq. (1) and Eq. (2)

a x R a x Q+ +∠ = − +∠

⇒ = ∠ −∠2x Q R

⇒ = ∠ −∠x Q R
1

2
( ).

Q T S R

P

a
a − x x
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Note: If ∠R > ∠Q, then x R Q= ∠ −∠
1

2
( )

Example 4 In above question if PM is the circum-diameter of DPQR then prove that 
PS bisects ∠TPM.

Solution:

Construction: Join QM, RM 

Proof: Since POM is a diameter, ∠ = °PRM 90

⇒∠ = °−∠QRM R90

⇒∠ = ∠ = °−∠QPM QRM R90  (Angle in same segment)

 ⇒∠ = ∠ −∠TPM QPM QPT

  = °−∠ − °−∠( ) ( )90 90R Q

 ⇒ ∠ = ∠ −∠TPM Q R

Since ∠ = ∠ −∠TPS Q R
1

2
( )  (From Previous problem) 

∴∠ = ∠ −∠SPM Q R
1

2
( )

\ PS bisects ∠TPM.

Example 5 Prove that the angle between internal bisector of one base angle and 
the external bisector of the other base angle of a triangle is equal to one half of the 
vertical angle.

Solution: 

Given: BT bisects ∠ABC and CT bisects ∠ACD

To prove: ∠ = ∠BTC A
1

2
 

Proof: In DABC, by using exterior angle property of a triangle 

∠ = ∠ +∠ACD ABC A  

⇒ = +∠2 2y x A

⇒∠ = ∠ + ∠y x A
1

2
 (1)

In DTBC, by using exterior angle property

∠ = ∠ +∠y x T  (2)

\ From Eqs. (1) and (2), we get, ∠ +∠ = ∠ + ∠x T x A
1

2
 

⇒∠ = ∠T A
1

2
.

Example 6 The side BC of DABC is produced, such that D is on ray BC. The bisector 
of ∠A meets BC in L as shown in the figure. Prove that ∠ +∠ = ∠ABC ACD ALC2 .

Solution: 
In DABC, by using 

Exterior angle property

M

R
O

TQ

P

S

A

B

x
x

y
y

T

C D

A

x

B L C D
1 3 2

x
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∠ = ∠ + ∠2 1 2 x
Adding ∠1 to both sides
∠ +∠ = ∠ +∠ + ∠1 2 1 1 2 x

= ∠ + ∠ = ∠ +∠2 1 2 2 1x x( )

⇒ ∠ +∠ = ∠1 2 2 3

∴∠ +∠ = ∠ABC ACD ALC2 .

Example 7 The given figure shows a five point star. Find sum of the angle ∠A + ∠B 
+ ∠C + ∠D + ∠E.

Solution: Let BE intersects AC and AD at L and M respectively
Now, in DMBD, by using exterior angle property ∠ = ∠ +∠2 B D  (1)

Similarly, in ∆LCE C E,∠ = ∠ +∠1  (2)

In ∆ALM A, ∠ +∠ +∠ = °1 2 180

⇒ ∠ +∠ +∠ + ∠ +∠ = °A C E B D 180  (From Eqs. (1) and (2))

Or ∠ +∠ +∠ +∠ +∠ = °A B C D E 180

Note: In n point star sum of all the angles at its vertices is ( ) .n− × °4 180  

Example 8 In a quadrilateral ABCD, AO and BO are the bisectors of ∠A and ∠B 

respectively, prove that ∠ = ∠ +∠AOB C D
1

2
( ).

Solution:
In quadrilateral ABCD, ∠ +∠ +∠ +∠ = °A B C D 360

⇒ + +∠ +∠ = °2 2 360x y C D

⇒ + = °− ∠ +∠x y C D180
1

2
( )

In ∆AOB x y, + +∠ = °1 180

⇒ °− ∠ +∠ +∠ = °180
1

2
1 180( )C D

⇒∠ = ∠ +∠1
1

2
( ).C D

Example 9 In the figure bisectors of ∠B and ∠D of quadrilateral ABCD meets CD 

and AB produced at P and Q respectively. Prove that ∠ +∠ = ∠ +∠P Q ABC ADC
1

2
( ).

Solution:

Let ∠ = ∠ = = ∠ABP PBC y B
1

2

and∠ = ∠ = = ∠ADQ QDC x D
1

2

⇒∠ = °−PDQ x180  and ∠ = °−PBQ y180  (1)

In quadrilateral PDQB P PDQ Q QBP,∠ +∠ +∠ +∠ = °360

⇒∠ + °− +∠ + °− = °P x Q y180 180 360  (From Eq. (1))

∠ +∠ = + = ∠ +∠P Q x y B D
1

2
( ).

AB

L
1

2
M

C

D

E

A B

CD

O

1

x
x

y
y

A

P

x
x

y
y

D C

Q
B
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Build-up Your Understanding 1

 1. Of the three angles of a triangle, one is twice the smallest and another is three 
times the smallest. Find the angles.

 2. Can two internal angle bisector in a triangle be perpendicular? 

 3. If the angles of a triangle are in the ratio 5 : 7 : 6, determine the three angles.

 4. The difference between two angles of a triangles is 24°. All angles are numeri-
cally double digits. Find the number of possible values of third angle.

 5. In DABC, the angle bisectors of the exterior angles of ∠A and ∠B intersect op-
posite sides CB produced and AC produced at D and E respectively, and AD = AB 
= BE. Then find angle A.

 6. Prove that, in n point star sum of all the angles at its vertices is ( ) .n− × °4 180

 7. In a regular polygon an interior angle is four times bigger than corresponding 
external angle. Find the number of sides of the polygon.

 8. The interior angle of a n sided regular polygon is 48° more than the interior angle 
of a regular hexagon. Find n.

 9. The interior angles of a polygon are in Arithmetic Progression. The smallest inte-
rior angle is 120° and common difference is 5°. Find the number of sides.

 10. If in a convex polygon, the sum of all interior angles excluding one is 2210°, then 
find the excluded angle and number of sides of the polygon.

 11. In a convex polygon the sum of all interior angles is less than 2017°. Find the 
maximum number of sides.

 12. If all exterior angles of a polygon are obtuse then find the number of sides of the 
polygon.

 13. In the adjacent diagram, Find ∠A + ∠B + ∠C + ∠D + ∠E + ∠F + ∠G.

 14. There are four points A, B, C, D on the plane, such that any three points are not 
collinear. Prove that in triangles ABC, ABD, ACD, BCD there is at least one tri-
angle which has an interior angle not greater than 45°.

 15. Prove that a convex polygon cannot have more than three acute internal angles.

 16. In DABC, AB = AC. D is a point on BC such that AB = CD. E on AB such that DE 
⊥ AB. Prove that 2 ∠ADE = 3∠B.

 17. Given a quadrilateral ABCD, E is a point on AD. F is a point inside ABCD such 
that CF, EF bisects ∠ACB and ∠BED respectively. Prove that

  ∠CFE = 90° + 
1

2
 (∠CAD + ∠CBE).

 18. Two regular octagons and one square completely cover the part of a plane around 
a point without any overlapping shown in the figure. Find all the other possible 
combinations of three regular polygons, two of which are congruent and one 
different.

 19. Three regular polygons have one vertex in common and just fill the whole space 
at that vertex. If the number of sides of the polygons are a, b, c respectively, prove 

that 
1 1 1 1

2a b c
+ + = .  Also find all possible (a, b, c) with a ≤ b ≤ c.

 20. Quadrilateral ABCD has ∠BDA = ∠CDB = 50°, ∠DAC = 20° and ∠CAB = 80°. 
Find angles ∠BCA and ∠DBC.

A

B
C

D

E

F

G

135°135°

90°
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8.2 Congruent Triangles

Two triangles are congruent if and only if one of them can be made to superpose on the 
other so as to cover it exactly.

Some of the following congruencies are often used: 

8.2.1 Side Angle Side (SAS) Congruence Postulate

Two triangles are congruent, if two side and the included angle of one are equal to the 
corresponding sides and the included angle of the other triangle.

8.2.2 Angle Side Angle (ASA) Congruence Postulate

Two triangles are congruent, if two angles and the included side of one triangle are 
equal to the corresponding two angles and the included side of the other triangle.

8.2.3 Angle Angle Side (AAS) Congruence Postulate

If any two angles and a non-included side of one triangle are equal to the correspond-
ing angle and side of another triangle, then the two triangles are congruent.

8.2.4 Side Side Side (SSS) Congruence Postulate

Two triangles are congruent if the three sides of one triangle are equal to the corre-
sponding three sides of the other triangle.

8.2.5 Right Angle Hypotenuse Side (RHS) Congruence Postulate

Two right triangles are congruent, if the hypotenuse and one side of one triangle are 
respectively equal to the hypotenuse and one side of the other triangle.

Example 10 In the adjacent diagram it is given that AB = CF, EF = BD and  ∠AFE = 
∠CBD. Prove that ∆ ∆AFE CBD≅

Solution:

We have, AB CF=

⇒ + = +AB BF CF BF

⇒ =AF CB  (1)
In DAFE and DCBD

AF CB=  (From Eq. (1))

∠ = ∠AFE CBD  (Given)

FE BD=  (Given)

So by SAS congruence, we have 

∆ ∆AFE CBD≅

Example 11 In the figure PQRS is a quadrilateral and T and U respectively are points 
on PS and RS, such that PQ RQ PQT RQU= ∠ = ∠,  and ∠ = ∠TQS UQS.  Prove that 

QT QU= .

A

E

B

D

F C
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Solution:
P

T

5
1

3
4

2
6Q

R

U

S

Proof: In DPQS and DRQS
We have PQ = RQ

∠ = ∠1 2
∠ = ∠3 4

∴∠ +∠ = ∠ +∠1 3 2 4
⇒∠ = ∠PQS RQS

QS QS=  (Common)

⇒ ≅∆ ∆PQS RQS  (By SAS)

⇒ ∠ = ∠5 6  (CPCT-Corresponding parts of congruent triangles) 

In DTQS and DUQS
∠ = ∠3 4
QS QS=
∠ = ∠5 6
\ By ASA congruences

∆ ∆TQS UQS≅
⇒ =QT QU (CPCT).

Example 12 In the figure AC AE AB AD= =,  and ∠ = ∠BAD EAC,  prove that 
BC DE= .

Solution:
Construction: Join DE
Proof: In DABC and DADE

AB = AD (Given) (1)
Also ∠ = ∠1 2
⇒∠ +∠ = ∠ +∠1 3 2 3

⇒∠ = ∠BAC DAE  (2)

Also AC AE=  (Given) (3)
Using Eqs. (1), (2) and (3) and applying SAS congruences 

∆ ∆ABC ADE≅
⇒ =BC DE  (CPCT).

Example 13 Prove that angles opposite to two equal sides of a triangle are equal.

Solution:
Given: In DABC, AB = AC.

To prove: ∠ = ∠B C

A
E

B D C

1
2
3
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Construction: Draw the bisector AD of ∠A which meets BC at D.

Proof: In ∠BAD and ∠CAD
AB = AC (Given)

∠ = ∠BAD CAD  (Construction)
AD = AD (Common)

\ By SAS congruences

∆ ∆BAD CAD≅

⇒∠ = ∠ABD ACD (CPCT)
Hence proved.

Note: If two angles of a triangle are equal, then sides opposite to them are also equals 
(proof is left for the reader).

Example 14 If the altitude from one vertex of a triangle bisects the opposite side, then 
prove that triangle is an isosceles.

Solution:

Given: In DABC, AD ⊥ BC and BD = DC

To prove: AB = AC

Proof: In DADB and DADC
AD = AD (Common)

∠ = ∠ = °ADB ADC 90

DB = DC (Given)
\ By SAS congruences, DADB ≅  DADC
⇒ AB = AC (CPCT).

Example 15 If the bisector of the vertical angle of a triangle bisects the base of the 
triangle, then prove that the triangle is isosceles.

Solution:

Given: AD bisects ∠BAC of DABC and BD = DC

To prove: AB = AC

Construction: Draw DM AB⊥ , DN AC⊥

Proof: In DAMD and DAND

∠ = ∠ = °AMD AND 90

∠ = ∠1 2  (Given)

AD = AD (Common)
\ By AAS congruence

∆ ∆AMD AND≅

⇒ =DM DN  (CPCT)

In DMDB and DNDC

∠ = ∠ = °DMB DNC 90

DM DN=  (Proved above)

DB DC=  (Given)

\ By RHS congruence, ∆ ∆MDB NDC≅

⇒ ∠ = ∠MBD NCD

A

B D C

A

B D C

A

B

M N

CD

1 2
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Aliter:

Construction: Produce AD to E such that AD = DE join EC

Proof: In DADB and DEDC

AD ED=  (Construction)

∠ = ∠ADB EDC  (VOA)

DB DC=  (Given) 

\ By SAS congruences, ∆ ∆ADB EDC≅

⇒ AB = EC (CPCT)

⇒∠ = ∠1 3,  i.e., ∠ = ∠BAD CED  (CPCT)

But ∠ = ∠1 2  (Given) 

⇒∠ = ∠2 3

⇒ =AC CE

But CE = AB

⇒ =AC AB
Hence proved.

Example 16 Line ‘l’ is the bisector of ∠A and B is any point on l. BP and BQ are 
perpendiculars from B to the arms of A. Prove that  BP = BQ or B is equidistant from 
the arms of ∠A.

Solution:
In DAPB and DAQB, we have

∠ = ∠ = °APB AQB 90

∠ = ∠1 2  (Given l is the angle bisector)

AB AB=  [Common]

\ By AAS congruences, ∆ ∆APB AQB≅

⇒ =PB QB.

Note: Each point on the angle bisector is equidistant from the arms of an angle.

Example 17 In the figure AD is a median and BL, CM are perpendiculars drawn from 
B and C respectively on AD and AD produced. Prove that BL = CM

Solution:

Proof: In DBDL and DCDM

∠ = ∠ = °BLD CMD 90

∠ = ∠BDL CDM  (VOA—Vertically Opposite Angle)

BD CD=  (Given) 

\ By AAS congruences 

∆ ∆BDL CDM≅

⇒ =BL CM  (CPCT).

Note: In this figure BLCM will be a parallelogram.

A

B CD

E

1 2

3

A

B

D

Q

1
2

3

A

B D C

M

L
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Example 18 In a right angled triangle, if one acute angle is double of another. Prove 
that the hypotenuse is double the smallest side.

Solution:

Given: In ∆ABC B, ∠ = °90  and ∠ = ∠ACB CAB2

To prove: AC BC= 2

Construction: Produce CB to D such that CB BD= .  Join AD.

Proof: In DABD and DABC

AB AB=  (Common) 

∠ = ∠ = °ABD ABC 90

BD BC=  (Construction)

\ By SAS congruences, ∆ ∆ABD ABC≅

⇒∠ = ∠ =ADB ACB x2 (CPCT)

And ∠ = ∠ =BAD BAC x

∠ = ∠ = ∠DAC ACD CDA

\ DADC is an equilateral triangle 

⇒ AC = DC = +DB BC = +BC BC

⇒ =AC BC2 .

Note: In 30°-60°-90° triangle, sides are a a a, ,3 2  respectively.

Example 19 ABC is a triangle in which ∠ = ∠B C2 .  D is a point on BC such that AD 
bisects ∠BAC and AB CD= .  Prove that ∠ = °BAC 72 .

Solution:

A

B D C

E

y

y

2y

y

x x
x

Given: In ∆ABC B C, ∠ = ∠2  

AD bisects ∠BAC
AB = CD.

To prove: ∠BAC = 72°

Construction: Draw BE the angle bisector of ∠ABC which meets AC at E. Join DE.

A

BD

x

2x

C

A

a

√3a

2a30

60

B C
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Proof: Let ∠C = x then ∠B = 2x and ∠ = ∠ =BAD CAD y  

Since BE bisects ∠ABC

∴∠ = ∠ =ABE EBC x

Then in DBEC,

∠ = ∠ =EBC ECB x  

∴ =BE CE
In DABE and DDCE,

AB DC=  (Given)

∠ABE = ∠DCE = x
BE = CE (Proved above)
\ By SAS congruence

∆ ∆ABE DCE≅  

\ AE = DE (CPCT)

∠ = ∠ =BAE CDE y2  

Since AE = DE \ ∠EAD = ∠EDA = y

In DABD,

3 2y x y= +  (Exterior angle property)

∴ =2 2y x

y x=
In DABC, by ASP (Angle Sum Property) of a triangle 

∠ +∠ +∠ = °A B C 180

⇒ + + = °2 2 180y x x

⇒ = °5 180y  (As x = y)

⇒ = °y 36

⇒∠ = = °BAC y2 72

Hence proved.

Example 20 Prove that in any triangle, the three points of intersection of the adjacent 
angle trisectors form an equilateral triangle.

A

U
F

P R

T

I

ED
Q

S

a

B C

a a

y y

b
b
b

c
c

c

x
xz

z
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Solution:
Given: AP, AR trisects angle A; BP, BQ trisects angle B; CQ, CR trisects angle C;
To Prove: DPQR is an equilateral triangle.
Proof: In DABC 3a + 3b + 3c = 180°

⇒ a + b + c = 60° (1)
In DABE, AP, BP are the angle bisectors 
\ P is the incentre of DAEB
\ PE bisects ∠AEB ⇒ ∠PEA = ∠PEB = x (say)
Similarly Q is the incentre of DBFC and R is the incentre of DADC.
QF bisects ∠BFC  ⇒ ∠BFQ = ∠CFQ = y (say) 
RD bisects ∠ADC ⇒ ∠RDA = ∠RDC = z (say)
Also in DAEB,  2a + 2b + 2x = 180°
⇒ a + b + x = 90°
⇒ 60° - c + x = 90° (From Eq. (1))
⇒ x = 30° + c (2)
Similarly, y = 30° + a
and z = 30° + b
In DAPB,
∠APB = 180° - (a + b)
 = 180° - (60° - c) (From Eq. (1))
⇒ ∠APB = 120° + c
⇒ ∠BPS = ∠APF = 180° - ∠APB =  60° - c
In DBPS,
∠PSQ = 60° - c + b (Exterior angle property)
In DPSE,
∠SPE + (60° - c + b) + x = 180°
⇒ ∠SPE + 60° + b - c + 30° + c = 180° (From Eq. (2))
⇒ ∠SPE = 90° - b (3)
In DPDI,
90° - b + z + ∠PID = 180°
⇒ 90° - b + 30° + b + ∠PID = 180°
⇒ ∠PID = 60°
Similarly ∠DIQ = 60°
So ∠PIQ = 120°
Similarly ∠QIR = 120°
 ∠PIR = 120°
In DPID and DQID
∠PID = ∠QID = 60°
∠IPD = ∠IQD = 90° - b (From Eq. (3))
 ID = ID
\ By AAS congruency
DPID ≅ DQID
⇒ PI = QI and PD = QD (CPCT)
DI is the ⊥ bisector of PQ
As DIR is a straight line, DR is the ⊥ bisector of PQ
⇒ PR = QR (4)
Similarly PE is the ⊥ bisector of QR
⇒ PQ = PR (5)
From Eqs. (4) and (5)
PQ = QR = PR
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Note: The above problem, is known as Morley’s trisector theorem, was discovered 
in 1899 by Anglo-American mathematician Frank Morley. It has various generaliza-
tions; in particular, if all of the trisectors are intersected, one obtains four other equi-
lateral triangles.

Build-up Your Understanding 2

 1. ‘O’ is the circumcentre of DABC. M is the mid-point of the median through A. 
Join OM and produce it to N such that OM = MN. Show that, N lies on the altitude 
through A.

 2. In a given quadrilateral ABCD, AB = AD, ∠BAD = 60°, ∠BCD = 120°. Prove that 
BC + DC = AC.

 3. Given that DABC is an isosceles right triangle with AC = BC and ∠ACB = 90°. D 
is a point on AC and E is on the extension of BD such that AE ⊥ BE.

  If AE = 1/2 BD, prove that BD bisects ∠ABC.
 4. In the figure point D is an interior point of equilateral triangle ABC. It is given that 

DA = DB. Point E is also given so that ∠DBE = ∠DBC and BE = AB. Find ∠E.

A  

E  

D  

C  B  

 5. In the fi gure, given that in DABC, AB = AC, D is on AB and E is on the exten-
sion of AC such that BD = CE. The segment DE intersects BC at G. Prove that
DG = GE (see Figure 8.1).

 6. Given BE and CF are the altitudes of the DABC. P, Q are on BE and the extension 
of CF respectively, such that BP = AC, CQ = AB, Prove that AP ⊥ AQ.

 7. In the square ABCD, E is the mid-point of AD, BD and CE intersect at F. Prove 
that AF ⊥ BE.

 8. In figure, AD, BE are the altitudes of DABC with orthocentre H, which lies in the 
interior of the triangle. If BH = AC, Find ∠B.

A

H
E

 

D CB

 9. Triangle ABC is a right triangle with ∠A = 30° and ∠C = 90°. Segment DE is 
perpendicular to AC at D and AD = CB as indicated in the fi gure.

  Find DE, if DE + AC = 4.

A E

D

C

B

Frank Morley

9 Sep 1860–17 Oct 1937 
Nationality: English

A

B

D

G
C

E

Figure 8.1
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 10. Each side of square ABCD has length 1 unit. Points P and Q belong to AB and DA, 
respectively. Find ∠PCQ if the perimeter of DAPQ is 2 units. The square is shown 
in the fi gure. 

CD  

Q

A  B
P

 11. As shown in the fi gure, in DABC, D is the mid-point of BC, ∠EDF = 90°, 
DE intersects AB at E and DF intersects AC at F. Prove that BE + CF > EF
(see Figure 8.2).

 12. Given that ABC is an equilateral triangle of side 1, DBDC is isosceles with DB 
= DC outward of DABC and ∠BDC = 120°. If points M and N are on AB and AC 
respectively such that ∠MDN = 60°, fi nd the perimeter of DAMN.

A E

D

C

B

 13. In the equilateral DABC, the points D and E are on AC and AB respectively, such 
that BD and CE intersect at P, and the area of the quadrilateral ADPE is equal to 
area of DBPC, fi nd ∠BPE.

 14. In the fi gure, DABD and BEC are both equilateral with A, B, C being
collinear, M and N are midpoints of AE and CD respectively, AE intersects BD 
at G and CD intersects BE at H. Prove that (i) DMBN is equilateral, (ii) GH || AC 
(see Figure 8.4).

 15. Squares ABDE and BCFG are drawn outside of triangle ABC. Prove that triangle 
ABC is isosceles if DG is parallel to AC. [Leningrad MO, 1988]

 16. Given that DABC is right angled isosceles triangle with ∠ACB = 90°. D is the 
mid-point of BC, CE is perpendicular to AD, intersecting AB and AD at E and F 
respectively. Prove that ∠CDF = ∠BDE.

 17. In an isosceles triangle ABC, AB = BC, ∠B = 20°. M, N are on AB and BC respec-
tively such that ∠MCA = 60°, ∠NAC = 50°. Find ∠NMC in degrees. 
 [Moscow MO, 1952]

 18. Isosceles triangle ABC is shown in the fi gure. In that triangle, ∠A = ∠B = 80° and 
cevian AM is drawn to side BC so that CM = AB. Find ∠AMB (see Figure 8.5).

 19. In DABC, ∠ABC = ∠ACB = 80°. The point P is on AB such that ∠BPC = 30°. 
Prove that AP = BC.

 20. In DABC, ∠C = 48°. D is any point on BC, such that ∠CAD = 18° and AC = BD. 
Find ∠ABD.

 21. D is an inner point of an equilateral DABC satisfying ∠ADC = 150°. Prove that 
the triangle formed by taking the segments AD, BD, CD as its three sides is a right 
triangle. [North Europe MO, 2003]

 22. In the isosceles right triangle ABC of the fi gure, ∠A = 90° and AB = AC. Suppose 
that D is the interior point of the triangle, so that ∠ABD = 30° and AB = DB. Prove 
that AD = CD (see Figure 8.6).

A

B D

E
F

C

Figure 8.2

A B C

D

G
M H N

E

Figure 8.4

M

C

BA

Figure 8.5

D  

A  

C  B  

Figure 8.6
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8.3 Triangle Inequality

8.3.1 Theorem 1

If two sides of a triangle are unequal, the longer sides has greater angle opposite to it.

Given: In DABC, AC > AB

To prove: ∠B > ∠C

Construction: Mark a point D on AC such that AB = AD. Join BD.

Proof: In DABD, AB = AD

⇒∠ = ∠1 2

In DBDC, by exterior angle property 

∠ = ∠ +∠2 3 4

⇒∠ > ∠2 4

⇒∠ > ∠1 4  (As ∠1 = ∠2)

⇒ ∠ +∠ > ∠ > ∠1 3 1 4

⇒ ∠ > ∠ABC ACB.

8.3.2 Theorem 2

(Converse of theorem 1) In a triangle, the greater angle has the longer side opposite 
to it. 

Given a DABC in which ∠ > ∠ABC ACB

To prove: AC > AB.

Proof: In DABC, we have the following three possibilities 

(i) AC = AB    (ii) AC < AB   (iii) AC > AB
Out of these there are three possibilities among those exactly one must be true.

Case 1: When AC = AB
⇒∠ = ∠B C  (Angles opposite to equal sides are equal)

But it is given that ∠ > ∠B C
\ Which is a contradiction and hence AC ≠ AB.

Case 2: When AC < AB
Then ∠ABC < ∠ACB ( \ Longer side has the greater angle opposite to it)
But it is given that ∠B > ∠C which is again a contradiction 
Thus we are left with the only possibility 
AC > AB which must be true and hence AC > AB.

8.3.3 Theorem 3

The sum of any two sides of a triangle is greater than the third side.

Given: DABC

To prove: AB AC BC+ > ,  AB BC AC+ >  and AC BC AB+ >

Construction: Produced side BA to D such that AD = AC. Join CD

Proof: In DACD,

A

B C

D

1

2

43

A

B C

A

D

B C

1
3

2
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AC AD=
∴∠ = ∠1 2
Also ∠ +∠ > ∠1 3 1

∴∠ +∠ > ∠1 3 2

In DBCD, ∠C > ∠D

\ In DBCD, BD > BC (The side opposite to greater angle is longer)

BA + AD > BC 
⇒ BA + AC > BC (As AD = AC)
Similarly we can prove others.

Corollary: The difference of any two sides of a triangle is less than the third side.

Proof: 

To prove: AC - AB < BC; BC - AC < AB; BC - AB < AC 
Let if possible AC > AB 
Take a point D on AC such that AD = AB, join BD. 
Since AD = AB 
So ∠ = ∠1 2  

Also ∠ +∠ = °2 3 180  and ∠ +∠ < °1 4 180

⇒∠ +∠ < ∠ +∠1 4 2 3

⇒∠ < ∠4 3  (As ∠1 < ∠2)

⇒ > = −BC CD AC AD

BC AC AB> −  (As AD = AB by construction)

⇒ AC - AB < BC
Similarly we can prove others.

8.3.4 Theorem 4

Of all the line segments that can be drawn to a given line, from a point not lying on it 
the perpendicular line segment is the shortest.

Given: A straight line l and a point P not lying on l. PM ⊥ l and N is any point on l 
other than M.

To prove: PM < PN 

Proof: ∆PMN M, ∠ = °90

So, ∠ < °N 90

⇒∠ < ∠N M

⇒ PM < PN (Side opposite to greater angle is larger) 
Thus PM is the shortest of all line segments from P on line ‘l’ 

Example 21 Show that the sum of the three altitudes of a triangle is less than the sum 
of three sides of the triangle. 

Solution:

Given: In DABC, AD ⊥ BC, BE ⊥ AC, CF ⊥ AB

To prove: AD BE CF AB BC CA+ + < + +

A

B C

D

1 4
3

2

P

M N
l

A

F

C
D

B

H

E
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Proof: Since in a right angled triangle, hypotenuse is the longest side.
In DABD, AB > AD
In DBCE, BC > BE
In DACF, AC > CF
Adding all we get AB BC CA AD BE CF+ + > + + .

Example 22 In the figure PQRS is a quadrilateral. PQ is its longest side and RS is its 
shortest side. Prove that ∠R > ∠P and ∠S > ∠Q.

Solution:
Given: In quadrilateral PQRS, PQ is the longest side and RS is the shortest 

To prove: (i) ∠ > ∠R P   (ii) ∠ > ∠S Q

Construction: Join PR and SQ

Proof:
 (i) In DPQR, PQ > QR (as PQ is the longest side)

  ⇒∠ > ∠3 2  (1) 

  In DPRS RS < PS (as RS is the shortest side) 

  ⇒∠ > ∠4 1  (2)
  Adding Eqs. (1) and (2)

  ∠ +∠ > ∠ +∠3 4 1 2

  ⇒∠ > ∠R P

 (ii) In DPQS, PQ > PS (As PQ is the longest side)

  ⇒∠ > ∠6 7  (3) 

  In DQRS, QR > RS (As RS is the shortest side)

  ⇒∠ > ∠5 8  (4)
  Adding Eqs. (3) and (4) we get ∠ +∠ > ∠ +∠5 6 7 8

  ⇒∠ > ∠S Q.

Example 23 In quadrilateral PQRS, diagonals intersect at O. Show that 

 (i) PQ + QR + RS + SP > PR + QS
 (ii) PQ + QR + RS + SP < 2 (PR + QS)

Solution:

Proof: Since the sum of any two sides of a triangle is greater than the third side 
(i) \ In DPQR, PQ + QR > PR

In DQRS, QR + RS > QS
In DPRS, RS + SP > PR
In DPSQ, PS + PQ > QS 
Adding all four we get, 2 2( ) ( )PQ QR RS SP PR QS+ + + > +  

⇒ + + + > +PQ QR RS SP PR QS

(ii) In DOPQ, OP + OQ > PQ
In DORQ, OQ + OR > RQ
In DORS, OR + OS > RS
In DOPS, OS + OP > PS
Adding all the above four inequality we get,
2( )OP OR OQ OS PQ QR RS SP+ + + > + + +  

⇒ + > + + +2( ) .PR QS PQ QR RS SP

or PQ + QR + RS + SP < 2(PR + QS)

R

S

5

3

7
8

4

6 1
2

P

Q

P Q

R
S

O
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Example 24 In DABC, AD ⊥ BC if DC > DB prove that AC > AB.

Construction: Take a point E on DC such that DB = DE. Join AE.

Proof: since in DABE, AB = AE
\ ∠1 = ∠2

Now ∠ +∠ = °2 3 180  (Linear pair) 

Also ∠ +∠ < °1 4 180

⇒∠ +∠ < ∠ +∠1 4 2 3

⇒∠ < ∠4 3  ( )∵∠ = ∠1 2

In DAEC, AC > AE

⇒ >AC AB  (As AE = AB).

Example 25 O is any point in the interior of ∠ABC. Prove that 

 (i) AB + AC > OB + OC 

 (ii) AB + BC + CA > OA + OB + OC 

(iii) OA + OB + OC > 
1

2
 (AB + BC + CA) 

Solution:

Constructions: Produce BO to cut AC at T.

Proof: In ∠ABT, since sum of any two sides is greater than the third side 

  (i) ∴ + >AB AT BT
⇒ + > +AB AT BO OT  (1)
In DOTC,

OT TC OC+ >  (2)

Adding Eqs. (1) and (2), AB AT OT TC BO OT OC+ + + > + +

⇒ + > +AB AC OB OC

 (ii) Join OA

Since AB AC OB OC+ > +  (3)

Similarly AB BC OA OC+ > +  (4)

AC BC OA OB+ > +  (5)
Adding Eqs. (3), (4) and (5) we get, 2 2( ) ( )AB BC AC OA OB OC+ + > + +

⇒ + + > + +AB BC CA OA OB OC

(iii) Since in DOBC, OB OC BC+ >  (6)
Also in ∆OAC OC OA AC, + >  (7)

And In ∆OAB OA OB AB, + >  (8)

Adding Eqs. (6), (7) and (8), we get 2( ) ( )OA OB OC AB BC AC+ + > + +

Note: (iii) is also true if O is any point in the plane of DABC but not (i).

Example 26 Prove that any two sides of a triangle are together greater than twice the 
median drawn to the third side. 

Solution: 

Given: In DABC, AD is a median 

To prove: AB + AC > 2AD 

A

B D
2 31 4

E C

C

O
T

B

A

C

O

B

A
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Construction: Produce AD to E such that AD = DE, join CE.

Proof: In DADB and DEDC 

AD ED=  (Construction)

∠ = ∠ADB EDC  (VOA)

And BD = CD (Given)

\ By SAS Congruency, ∆ ∆ADB EDC≅

∴ =AB EC

In DACE,

AC CE AE+ >

⇒ + > +AC AB AD DE  (As CE = AB)

⇒ + >AC AB AD2  (As DE = AD)

Example 27 In DABC, If AD, BE, CF are the medians than prove that 

3

4
( )AB BC CA AD BE CF AB BC CA+ + < + + < + +

Solution:
Since by previous question 

AB AC AD+ > 2  (1)

Similarly

AB BC BE+ > 2  (2)

AC BC CF+ > 2  (3)

Adding Eqs. (1), (2) and (3), we get 

2(AB + BC + CA) > 2(AD + BE + CF)

⇒ + + > + +AB BC CA AD BE CF

Or AD BE CF AB BC CA+ + < + +  

Also in DGBC,

GB GC BC+ >  (4)

Similarly, GC GA AC+ >  (5)

And GA GB AB+ >  (6)

Adding Eqs. (4), (5) and (6), we get
2(GA + GB + GC) > AB + BC + CA 

⇒ + +





 > + +2

2

3

2

3

2

3
AD BE CF AB BC CA  (As G being centroid of the triangle 

divides median in 2 : 1 ratio, See proof of it on pp. 8.27–8.28)

⇒ + + > + +AD BE CF AB BC CA
3

4
( )

Thus 
3

4
( ) .a b c m m m a b ca b c+ + < + + < + +

Example 28 Let ABC be an equilateral triangle. Let E be the mid-point of the segment 
AD, which is drawn through A to meet the side BC at D. Show that AE < CE.

CB

A

D

E

 

B  

A  

C  D  

 F E  
G 
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Solution: 

30°

30°

A

B CD
•

• E

60°

60°

•

θ
ϕ

Given: DABC is equilateral, ∠ = ∠ = ∠ = °A B C 60 ;  AE ED=

To prove: AE CE<  or AE ED EC= <  or ED EC<

Proof: ∠ ≤ < −∠B Cθ π ⇒ ° ≤ < °− ° = °60 180 60 120θ

π
φ

2
−∠ < <B C ⇒ ° ≤ ≤ °30 60φ ⇒ <φ θ ⇒ <ED EC

⇒ <AE EC  (As ED = AE)

Hence proved.

Build-up Your Understanding 3

 1. Find the number of triangles with integral side lengths such that second largest 
side is 4 and only one side being largest.

 2. Let each side of the triangle is a prime number and divisor of 2001. Find the num-
ber of such triangles.

 3. Find the number of isosceles triangles with integral side lengths and having pe-
rimeter 144 and only one side being largest.

 4. If a, b, c be the sides of a triangle prove that a b c, , and will also represents 
sides of a triangle.

 5. Find a point P, inside a convex quadrilateral ABCD, such that PA + PB + PC + PD 
is minimum.

 6. Prove that in a convex quadrilateral ABCD,

  max{ , } .AB CD AD BC AC BD AB BC CD DA+ + < + < + + +

  Also prove that, if AB BD AC CD+ ≤ + ,  then AB < AC.

 7. A line l is given in a plane and two points A and B are also in the same plane. 
Find P on the line such that AP + PB is minimum. Give your answer in two cases 
separately A, B on same side of the line or on opposite side of the line.

 8. A line l is given in a plane and two points A and B are also in the same plane 
such that AB not perpendicular to line l. Find P on the line such that |AP - PB| is 
minimum. Give your answer in two cases separately A, B on same side of the line 
or opposite side of the line.

 9. A line l is given in a plane and two points A and B are also in the same plane such 
that A and B are not at same distance from the line l. Find P on the line such that 
|AP - PB| is maximum. Give your answer in two cases separately A, B on same 
side of the line or opposite side of the line.
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8.22  Chapter 8

 10. Two villages A and B lie opposite side of a river whose banks are parallel lines. 
A bridge is to be built over the river, perpendicular to the bank. Where the bridge 
should be built so that the path from one village to other is as short as possible.

 11. In an acute angle there is a fi xed  point A, locate points B and C, one on each arm 
of the angle such that perimeter of the DABC be minimum.

 12. In the preceding problem if angle is 90°, then prove that perimeter of the DABC is 
always greater than twice the distance of A from the vertex of the right angle.

 13. A line l is given in 3-D space and A and B are two fi xed points in 3-D space. Find 
P on the line such that AP + PB is minimum.

 14. An ant sits on one vertex of a solid cube. Find the shortest path on the surface to 
reach opposite vertex.

 15. An ant sits on the outside surface of a cylindrical drinking glass. There is a honey 
drop at some point on inside surface of the glass. Find the shortest possible length 
the ant must crawl to reach the point of honey drop.

 16. An ant sits on the circumference of a right circular cone. Without changing its 
sense of motion about the axis of cone, it completes one round trip and reaches 
the starting point. Find the shortest possible path. The semi vertical angle of cone 
is less than 30°. Also discuss the case if semi vertical angle is more than 30°.

 17. An ant sits at P, on the circumference of a right circular cone of semi-vertical 

angle  such that θ < 







−sin .1 1

4
 Without changing its sense of motion about the 

axis of cone, it completes one round trip and reaches on the line OP where ‘O’ is 
the vertex of the cone. Find the shortest possible path.

 18. P is a point inside the acute angle triangle ABC, prove that 

  min{ , , }PA PB PC PA PB PC AB BC CA+ + + < + +

 19. Let P be inside or on the triangle. Locate P such that PA + PB + PC is maximum.
 20. In a DABC with all angles smaller than 120°, locate a point P such that
  PA + PB + PC is minimum.

Note: The point P is called Torricelli’s (or Fermat’s) Point.

 21. Let ABCD and PQRS be two convex quadrilaterals whose corresponding sides 
are equal. Prove that if ∠A > ∠P, then ∠B < ∠Q, ∠C > ∠R, and ∠D < ∠S.

 22. The lengths of the sides of a quadrilateral are positive integers. The length of each 
side divides the sum of the lengths of other three sides. Prove that two of the sides 
have the same length.

8.4 Ratio and Proportion Theorem (or Area Lemma)

If D is any point on the side BC of a triangle ABC then [ABD] : [ADC] = BD : DC.

Here [XYZ] denotes area of DXYZ.
Construction: Draw AE ⊥ BC

Proof: 
[ ]

[ ]

ABD

ADC

BD AE

DC AE
=

× ×

× ×

1

2
1

2

∴
[ ]
[ ]

=
ABD

ABC

BD

DC

Village B

Village A

River d

A

B E D C

Evangelista Torricelli

15 Oct 1608–25 Oct 1647 
Nationality: Italian
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Corollary: Let DABC be a triangle, D BC∈ (internally or externally) and P AD∈ .

Then 
DP

DA

BCP

BCA
=
[ ]
[ ]

.

A

B

P

D C     

A

B

D

C

P

In other words, common base of two triangles, divides the line joining their third ver-
tex, in the ratio of their areas.

Example 29 ABCD is any quadrilateral. Diagonals AC and BD intersects at M. Prove 
that [AMD] × [BMC] = [DMC] × [AMB].

Solution: By Ratio proportion theorem

[ ]

[ ]

AMD

AMB

DM

MB
=  (1)

Also, 
[ ]

[ ]

DMC

AMC

DM

MB
=  (2)

Equating Eqs. (1) and (2)

[ ]

[ ]

[ ]

[ ]

AMD

AMB

DMC

BMC
=

⇒ [AMD] × [BMC] = [AMB] × [DMC].

Example 30 D, E, F are points on the sides BC, CA, AB respectively of DABC, such 
that AD, BE, CF are concurrent at P, show that 

 (i) 
PD

AD

PE

BE

PF

CF
+ + =1

 (ii) 
AP

AD

BP

BE

CP

CF
+ + = 2

 (iii) 
AP

PD

AF

FB

AE

EC
= +  

Solution:
 (i) Let [BPC] = D1, [APC] = D2, [APB] = D3 and [ABC] = D

 In DABD, 
PD

AD

BPD

BAD
=

[ ]

[ ]
 also 

PD

AD

PDC

CAD
=

[ ]

[ ]

 

∴ = = =
+
+

=
PD

AD

BPD

BAD

PDC

CAD

BPD PDC

BAD CAD

BPC

A

[ ]

[ ]

[ ]

[ ]

[ ] [ ]

[ ] [ ]

[ ]

[ BBC

PD

AD

]

∴ =
∆
∆

1

A B

C
D

M

EF

A

P

B D C
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8.24  Chapter 8

 Similarly 
PE

BE

PF

CF
=
∆
∆

=
∆
∆

2 3 and 

 ∴ + + =
∆
∆
+
∆
∆
+
∆
∆
=
∆ + ∆ + ∆

∆
=
∆
∆
=

PD

AD

PE

BE

PF

CF
1 2 3 1 2 3 1

 ⇒ + + =
PD

AD

PE

BE

PF

CF
1

 (ii) Now, 
AP

AD

APB

ADB

APC

ADC

APB APC

ADB ADC
= = =

+
+

[ ]

[ ]

[ ]

[ ]

[ ] [ ]

[ ] [ ]

  ⇒ =
+

=
∆ + ∆

∆
AP

AD

APB APC

ABC

[ ] [ ]

[ ]
3 2

  Similarly 
BP

BE
=
∆ + ∆
∆

1 3  and 
CP

CF
=
∆ + ∆

∆
1 2

  

∴ + + =
∆ + ∆

∆
+
∆ + ∆
∆

+
∆ + ∆

∆
=

∆ + ∆ + ∆
∆

=
∆
∆
=

⇒

AP

AD

BP

BE

CP

CF
AP

3 2 1 3 2 1 1 2 32
2 2

( )

AAD

BP

BE

CP

CF
+ + = 2

 (iii) Since 
AP

PD

APB

BPD

APC

PDC

APB APC

BPD PDC
=
[ ]
[ ]

=
[ ]
[ ] =

[ ]+ [ ]
[ ]+ [ ]

  
AP

PD

APB APC

BPC

APB

BPC

APC

BPC
=
[ ]+ [ ]

[ ] =
[ ]
[ ] +

[ ]
[ ]

  ⇒ =
∆
∆

+
∆
∆

AP

PD
3

1

2

1

 (1)

  Also 
AE

EC

ABE

CBE

APE

CPE

ABE APE

CBE CPE

APB

CBP
=
[ ]
[ ] =

[ ]
[ ] =

[ ]−[ ]
[ ]−[ ] =

[ ]
[[ ] =

∆
∆

3

1

  Similarly 
AF

FB

AFC

BFC

AFP

BFP

AFC AFP

BFC BFP

APC

BPC
=
[ ]
[ ] =

[ ]
[ ]

=
[ ]−[ ]
[ ]−[ ]

=
[ ]
[[ ] =

∆
∆

2

1

  ⇒
∆
∆

+
∆
∆

= +3

1

2

1

AE

EC

AF

FB
 (2)

  ⇒ = +
AP

PD

AE

EC

AF

FB
(From Eqs. (1) and (2))

Note: Result (iii) is known as van Aubel’s theorem. 

Build-up Your Understanding 4

 1. Let ABC be a triangle and D, E are points on the segment BC, CA respectively, 
such that AE = λAC and BD = µBC. Let AD, BE intersects at F. Find, in terms of 
λ and µ, the ratio AF : FD.

 2. In DABC, AB = AC = 115, AD = 38, and CF = 77 where D lies on AB and F lies 

on AC produced. DF intersects BC at E. Compute 
[ ]

[ ]
.

CEF

DBE
 3. As shown in the fi gure, triangle ABC is divided into six smaller triangles by lines 

drawn from the vertices through a common interior point. The areas of these tri-
angles are as indicated. Find the area of the triangle ABC. [AIME, 1985] 

Henricus Hubertus
van Aubel

20 Nov 1830–3 Feb 1906 
Nationality: Belgian
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C

A B

DP
E

F

y

x

40

84

30
35

 4. In DABC, E, F, G are points on AB, BC, CA respectively such that AE : EB = BF: 
FC = CG : GA = 1 : 3. K, L, M are the intersection points of the lines AF and CE, 
BG and AF, CE and BG, respectively. Suppose the area of DABC is 1; find the area 
of DKLM.

 5. Suppose P, Q are two points on the same side of the line AB. R is a point on the 
segment PQ such that PR = λPQ. Prove that [ABR] = (1 - λ) [ABP] + λ[ABQ].

 6. In rectangle ABCD, G and H are trisection points of AD, and E and F are trisec-
tion points of BC. If AB = 360 and BC = 450, compute the area of PQRS.

 7. Let D, E, F be points on the sides BC, CA, AB respectively such that 
BD

DC

CE

EA

AF

FB

m

n
= .= =  Prove that if AD, BE, and CF are joined, then they will 

form a triangle by their intersections, whose area is to that of the triangle ABC as

( ) .m n m mn n− = + +2 2 2

 8. In the figure ABCD is a convex quadrilateral. AC and BD intersect at E. P, Q 
are the mid-points of AC and BD respectively. Given that AE = λAC and BE = 
µBD.

   (i) Find the ratios AR : RD and BS : SC (in terms of λ and µ).
  (ii) Suppose the area of ABCD is 1. What is the area of ABSR?

 9. Given non-collinear points A, B, C, segment BA is trisected by points D and E, 
and F is the mid-point of segment AC. DF and BF intersect CE at G and H, 
respectively. If [EDG] = 18, compute [FGH]. 

 10. In the figure there is a convex quadrilateral ABCD. The lines DA and CB intersect 
at K, the lines AB and DC intersect at L, the lines AC and KL intersect at G, the 

lines DB and KL intersect at F. Prove that 
KF

FL

KG

GL
= .

 11. A given convex pentagon ABCDE has the property that the area of each of the 
five triangles ABC, BCD, CDE, DEA, and EAB is unity. Show that all pentagons 
with the above property have same area, and calculate the area. Show, further that 
there are infinitely many non-congruent pentagons having the above property. 
 [USA MO, 1972]

 12. Given a convex quadrilateral ABCD. Let P1, P2 be the trisection points of the seg-
ment AB and Q1, Q2 be the trisection points of the segment CD as shown in the 

figure. Prove that 
[ ]

[ ]
.

P P Q Q

ABCD
1 2 2 1 1

3
=

  In the adjacent figure, we trisect BC, DA by the points R1, R2, S1, S2. Prove that 
[ ]

[ ]
.

KLMN

ABCD
=

1

9

 13. In trapezoid ABCD with bases AB and CD, AB = 14 and CD = 6. Points E and F 
lie on AB, such that AD || CE and BC || DF. Segments DF and CE intersect at G, 

and AG intersects BC at H. Compute 
[ ]

[ ]
.

CGH

ABCD
 

B E F C

A G

P

Q

R

S

H D

A

R
P

Q

E
D

C

S

B

K

A

D

F

B
C

L G

C

D

BA

O2O1

P2P1

C

D

B

L

M
N

K

A

R2

O2O1

S1

S2

P2P1

R1
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 14. Let P be an interior point of the triangle ABC and extend lines from the vertices 
through P to the opposite side. Let a, b, c and d denote the lengths of segments 
indicated in the figure. Find the product abc if a + b + c = 43 and d = 3. 
 [AIME, 1988]

 15. Let P be an interior point of DABC. Let BP, CP meet AC, AB in E and F respec-
tively. If [BPF] = 4, [BPC] = 8 and [CPE] = 1, find [AFPE].

 16. If S is the circumcentre of DABC, AS meets BC at M, BS meets CA at N and CS 

meets AB at P, prove that, 
1 1 2

AM BN CP R
+

1
+ = ,  where R is the circumradius of 

the triangle.
 17. P is in the interior of DABC. The lines AP, BP, CP meet the opposite sides BC, 

CA, AB in D, E, and F respectively.

   (i) Prove that, 
AP

PD

BP

PE

CP

PF
+ + ≥ 6.

  (ii) When does the equality hold?

8.5 Mid-point Theorem

The line segment joining the mid-points of any two sides of a triangle is parallel to the 
third side and is equal to half of it.

Given: In DABC, D, E are the mid-points of AB and AC respectively 

To prove: DE || BC and DE BC=
1

2
Construction: Produce DE to F such that DE = EF. Join CF.

Proof: In DAED and DCEF,
AE = CE (Given)
∠1 = ∠2 (VOA)
ED = EF (Construction)
\ By SAS congruence DAED ≅ DCEF
\ AD = CF
but AD = BD
\ BD = CF
Also ∠3 = ∠4 (CPCT)
⇒ AB || CF
In quadrilateral BDFC,
BD = CF and BD || CF
Since in a quadrilateral if one pair of opposite side is equal and parallel then it is a 

parallelogram.
\ BCFD is a parallelogram
\ DF = BC and DF || BC
\ DE + EF = BC and DE || BC
⇒ 2DE = BC

⇒ DE BC=
1

2
, DE || BC.

8.5.1 Converse of Mid-point Theorem

The line drawn through the mid-point of one side of a triangle parallel to another side, 
bisects the third side.

C

A

a

c

d

dd

b

E

P

B

D
F

A

D

B C

E F

3

1
2

4
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Given: In DABC, D is mid-point of AB. DE || BC
To prove: AE = EC
Construction: Draw CF || BA
Which cuts DE produced at F.

Proof: Since DF || BC and BD || CF
\ BDFC is a parallelogram
 BD = CF
But BD = AD
 \ AD = CF
In DEAD and DECF
 ∠1 = ∠2 (VOA)

 ∠3 = ∠4 (Alternate interior angles)

 AD = CF
\ By AAS congruence DEAD ≅ DECF
 AE = CE (CPCT)

Hence proved.
Also DE = FE (CPCT)
As DF = BC
⇒ DE + EF = BC
⇒ 2DE = BC

⇒ DE BC=
1

2
.

Example 31 Prove that in a triangle all the medians are concurrent and their point of 
intersection, i.e., centroid divides the median in the ratio 2:1.

Solution:

Given: In DABC
Let BE, CF are the medians and let they intersect at G. Join AG and produce it to cut 
BC at D.

To prove:  (i) BD = DC

  (ii) 
AG

GD

BG

GE

CG

GF
= = =

2

1
Construction: Produce AD to K such that AG = GK.

Proof: In DABK,
F, G are the mid-points of AB and AK respectively.
\ By mid-point theorem, 

FG || BK and FG BK=
1

2
 (1)

⇒ GC || BK
In DAKC,
G, E are the mid-points of AK and AC respectively.
\ By mid-point theorem,

GE || KC, GE KC=
1

2
 (2)

⇒ BG || KC
Since in a quadrilateral BGCK
BG || KC and GC || BK
\ BGCK is a parallelogram.

A

D

B C

E F

3

1
2

4

A

F

C
D

K

B

G
E
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And in a parallelogram diagonals bisects each other
\ BD = DC and hence AD is a median
Also GD = DK = x
\ AG = GK = GD + DK = 2x

∴ = =
AG

GD

x

x

2 2

1

Also GE KC BG= =
1

2

1

2

∴ =
BG

GE

2

1

And GF KB CG= =
1

2

1

2

∴ =
CG

GF

2

1
.

Note: In DABC, the mid-points of the sides BC, CA and AB are D, E and F respec-
tively. The lines AD, BE and CF are called medians of the triangle ABC, the points of 
concurrency of three medians is called centroid and usually denoted by G.

AG AD=
2

3
; BG BE=

2

3
; CG CF=

2

3
 median of a triangle divides the triangle 

into two parts of equal areas
In adjacent diagram, area of all six triangles are equal, i.e.,

[ ] [ ] [ ] [ ] [ ] [ ] [ ]BGD CGD CGE AGE AFG BFG ABC = = = = = =
1

6

Example 32 Prove that the mid-point of the hypotenuse of a right angled triangle is 
equidistant from all its vertices.

Solution: Given In DABC, ∠B = 90°, AD = DC

To prove: BD AC=
1

2

Construction: Draw DE || CB

Proof: In DABC, D is a mid-point of AC and DE || CB

\ By converse of mid-point theorem E is a mid-point of AB, i.e., AE = EB

also ∠E = 90° \ DE ⊥ AB

In DAED and DBED

AE = BE (Proved above)

∠AED = ∠BED = 90°

ED = ED (Common)

\By SAS congruence DAED ≅ DBED

\ AD = BD

but AD = CD

∴ = = =BD AD CD AC
1

2
.

B  

A  

C  D  

 F E  
G 

A

C

DE

B
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Example 33 Prove that the line segment joining the mid-points of the diagonals of a 
trapezium is parallel to each of the parallel sides and is equal to half the difference of 
these sides.

Solution: Given In trapezium ABCD, AB || CD, P and Q are the mid-points of diagonal 
AC and BD respectively

To prove: PQ || AB || DC and PQ AB DC= −
1

2
( )

Construction: Join DP and produce it to cut AB at R.

Proof: In DCPD and DAPR
∠1 = ∠2 (Alternate interior angles)
CP = AP (As P is the mid-point of AC)
∠3 = ∠4 (VOA)
\ By ASA congruence DCPD ≅ DAPR
\ CD = AR and DP = RP
In DDRB
P and Q are the mid-points of DR and DB respectively

PQ || RB and PQ RB=
1

2

⇒ PQ ||AB || DC and PQ AB AR= −
1

2
( )  (As RB = AB - AR)

⇒ PQ AB CD= −
1

2
( ).  (As AR =CD) 

Example 34 In the figure BE ⊥ AC. AD is any line from A to BC intersecting BE in H. 
P, Q and R are respectively the mid-points of AH, AB and BC. Prove that ∠PQR = 90°.

Solution:

Given: In DABC, BE  ⊥ AC. Q, R are the mid-points of AB, BC respectively AD is any 
line which cuts   BE  at H. P is a mid-point of AH.

To prove: ∠PQR = 90°

Construction: Join QR which cuts BE at K

Proof: Since In DABC, Q, R are the mid-points of AB, BC respectively.
\ By mid-point theorem QR || AC,
also, ∠BEC = 90°
\ ∠BKR = 90° = ∠HKR
In DABH, Q and P are the mid-points of AB and AH respectively
\ By mid-point theorem
QP || BH
\ ∠PQR = ∠HKR = 90° (Corresponding angles)

PQ ⊥ QR.

8.6 BasiC Proportionality Theorem (Thales’ Theorem)

If a line is drawn parallel to one side of a triangle intersecting the other two sides, at 
distinct points, then it divides the other two sides in the same ratio.

Given: In DABC, DE || BC

A

P

D C

B

Q

R

2

1

4

3

A

B

Q MK

E
P

CD R

Thales of Miletus

C. 624 BC–C. 546 BC

Nationality: Greek
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To prove: 
AD

DB

AE

EC
=

Construction: Draw EF ⊥ AD, and DG ⊥ AE. Join BE and CD

Proof: 
[ ]

[ ]

ADE

BDE

AD

DB
=  (1)

Also 
[ ]

[ ]

AED

CED

AE

EC
=  (2)

Since DE || BC
\ Triangles having same base and between the same parallel are equal in area
\ [BDE] = [CED]

⇒ =
[ ]

[ ]

[ ]

[ ]

ADE

BDE

ADE

CDE
 (3)

\ From Eqs. (1), (2) and (3) we get 
AD

DB

AE

EC
= .

Corollary: If in a triangle ABC, DE || BC intersects AB in D and AC in E, then

(i) 
AB

AD

AC

AE
=   (ii) 

AB

DB

AC

EC
=

(i) Since 
AD

DB

AE

EC
=   (by BPT)

⇒ =

⇒ + = +

⇒
+

=
+

⇒ =

DB

AD

EC

AE
DB

AD

EC

AE
AD DB

AD

AE EC

AE
AB

AD

AC

AE

1 1

(ii) Again using 
AD

DB

AE

EC
=

Adding 1 to both sides

AD

DB

AE

EC
AD DB

DB

AE EC

EC
AB

DB

AC

EC

+ = +

⇒
+

=
+

=

1 1

.

Note: In DABC, if DE || BC, we have

 (i) 
AD

DB

AE

EC
=   (ii) 

DB

AD

EC

AE
=   (iii) 

AB

AD

AC

AE
=

 (iv) 
AD

AB

AE

AC
=   (v) 

AB

DB

AC

EC
=   (vi) 

DB

AB

EC

AC
=

D E

F G

A

B C
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8.6.1 Converse of Basic Proportionality Theorem

If a line divides any two sides of a triangle in the same ratio then the line must be paral-
lel to the third side.

Given: In DABC
AD

DB

AE

EC
=  (1)

To prove: DE || BC

Proof: Let if possible

DE BC||

Let DF || BC
Then by BPT in DABC

AD

DB

AF

FC
=  (2)

\ From Eqs. (1) and (2)

AE

EC

AF

FC
=

Adding 1 to both sides

AE

EC

AF

FC
+ = +1 1

AE EC

EC

AF FC

FC
AC

EC

AC

FC

+
=

+

=

⇒ = ⇒ =
1 1

EC FC
EC FC

This is possible only if E and F coincides and thus DE || BC.

Example 35 In a triangle ABC, points D and E respectively divide the sides BC 

and CA in the ratio 
BD

DC
m and

AE

EC
n= =, .  The segments AD and BE intersect in a 

point X. Find the ratio 
AX

XD
.

Solution:

Given: In DABC, 
BD

DC

m AE

EC

n
= =

1 1
;  and AD, BE intersect at X.

To find: 
AX

XD
.

Construction: Draw DF || BE.

Proof: Since DF || BE.
In DCEB

\ By BPT, 
EF

FC

BD

DC

m
= =

1

D E
F

A

B C

C

D

F

E

A B

X
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⇒ =
+

EF

EC

m

m 1
.

In DADF, EX || FD
\ By BPT

AX

XD

AE

EF

AE

EC

EC

EF

n m

m
= = ⋅ = ⋅

+
1

1( )

∴ =
+AX

XD

n m

m

( )
.

1

Note: 
AX

XD

AE

EC

BC

BD

AE

EC
BD

BC

= ⋅ or .

Example 36 On the sides BC, CA, AB of DABC, points D, E, F are taken in such a way 

that 
BD

DC

CE

EA

AF

FB
= = =

2

1
.  Show that the area of the triangle determined by the lines 

AD, BE, CF is 
1

7
 th of area of DABC.

Solution:

Given: In DABC,

BD

DC

CE

EA

AF

FB
= = =

2

1

To prove: [ ] [ ]XYZ ABC=
1

7
By previous question

AX

XD

AE

EC
BD

BC

= = = × =

1

2
2

3

1

2

3

2

3

4

∴ =
AX

AD

3

7

Also, 
[ ]

[ ]

ABD

ABC

BD

BC
= =

2

3

∴ =[ ] [ ]ABD ABC
2

3

Now 
[ ]

[ ]

ABX

ABD

AX

AD
= =

3

7

[ ] [ ] [ ]ABX ABD ABC= = ×
3

7

3

7

2

3

∴ =[ ] [ ]ABX ABC
2

7

Similarly [ ] [ ]BCZ ABC=
2

7

A

E
X

Y
Z

C D B

F
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[ ] [ ]ACY ABC=
2

7

Thus [XYZ] = [ABC] - ([ABX] + [BCZ] + [ACY])

 = − + +















1

2

7

2

7

2

7
[ ]ABC

 =
1

7
[ ]ABC

Aliter: See alternate of it in example 82 on Page 8.84.

Example 37 In DABC, BM and CN are perpendiculars from B and C respectively on 
any line passing through A. If L is the mid-point of BC prove that ML = NL.

Solution:

Given: DABC,  XAY   is any line passes through A. BM  ⊥  XY and CN  ⊥  XY. And 
BL = CL,  L is mid-point of BC.

To prove: LM = LN

Construction: Draw LK ⊥ XAY

Proof: Since perpendiculars drawn on the same line are parallel to each other 
\ BM || LK || CN
Also by proportional intercept property

BL

LC

MK

KN
=

1=
MK

KN
 [ ]∵ BL LC=

⇒ MK = KN

In DMKL and DNKL

MK = NK

∠MKL = ∠NKL = 90°
KL = KL (Common)

\ By SAS congruence, DMKL ≅ DNKL

⇒ LM = LN. (CPCT)

Example 38 Inscribe a square in a given triangle, so that, one side of the square may 
lie along a side of the triangle and the other two vertices lie on the other two sides (one 
in each) of the triangle. Justify your construction.

Solution: Let ABC be the triangle in which a square is to be inscribed as desired.

Construct a square BCDE on the opposite side of ∠A.

Join AE and AD to cut BC at P and Q respectively.

Erect perpendiculars at P and Q to cut AB at S and AC at R, join SR.

Then PQRS is the square inscribed in DABC as desired.

Proof: PQRS is a right angled trapezium (or right trapezoid) by construction and by 
application of Thales’ Theorem we will show that PQ = PS = QR to prove PQRS is a 
square.

B

M
A K

N

X

Y

L C

A

S R

B C
P Qa

a

E
a D

a
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Consider D AED, where PQ || ED.

∴ =
AP

AE

PQ

ED
 (1)

PQ
AP

AE
a= 






 (As PQ = a) (2)

Consider DAEB, where PS || BE.

Here
PS

BE

AP

AE
=

⇒ = 





 = 






PS

AP

AE
BE

AP

AE
a  (3)

Consider DACD, where QR || CD.

Here
QR

CD

AQ

AD

AP

AE
= =  (From Eq. (1))

⇒ = 





RQ

AP

AE
a  (4)

From Eqs. (2), (3) and (4), we see PQ = PS = RQ ⇒ PQRS is a square.

Example 39 L is a point on the side QR of DPQR. LM, LN are drawn parallel to PR 
and QP meeting QP, PR at M and N respectively. MN produced meets QR produced in 
T. Prove that LT is the geometric mean between RT and QT.

Solution:
In DMLT, NR || ML

∴ =
TR

TL

TN

TM
( )BPT  (1)

In DTQM,

 
TL

TQ

TN

TM
= ( )BPT  (2)

By equating Eqs. (1) and (2) we get, 
TR

TL

TL

TQ
TL TR TQ= ⇒ = ⋅2

That is,  is the geometric mean between  and TL TR TQ.

Example 40 ABCD is a rectangle, E is the mid-point of AD. F is the mid-point of EC. 
[ABCD] = 120 cm2; find [BDF].

Solution:

Construction: Draw perpendicular from F to CD and BC to meet them at G and H 
respectively.
Let the sides of the rectangle have lengths 2a and b. Now [ABCD] = 120
That is, (2a) ⋅ (b) = 120 ⇒ ab = 60 (1)
Because of Thales theorem, FG || ED in DCED and F being the midpoint of CE, G will 

be the midpoint of DC; also CG = GD = 
b

2

P

Q L R T

N
M

a

2a

aE D

F
G

A

b

b/2

b/2

B C
H
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Now [ ] [ ] [ ] [ ]BDF BDC DFC FBC= − −  

                     = − × ×





 − × ×






60

1

2 2

1

2
2

2
b

a
a

b

∴ = − − = − − =[ ] .BDF ab ab60
1

4

1

2
60

60

4

60

2
15 2 cm

8.6.2 Internal Angle Bisector Theorem

The internal bisector of an angle of a triangle divides the opposite side internally in the 
ratio of the sides containing the angle

Given: In DABC, AD bisects ∠BAC

To prove: 
AB

AC

BD

DC
=

Construction: Draw CE || DA which cuts BA produced at E.

Proof: Since AD || EC

\ ∠1 = ∠4 (Corresponding angles)

∠2 = ∠3 (Alternate interior angles)

But ∠1 = ∠2 (Given)

⇒ ∠3 = ∠4 ⇒ AC = AE

In DBCE, AD || EC,

\ By BPT

BA

AE

BD

DC
=

⇒ =
AB

AC

BD

DC
.  (As AE = AC)

Aliter:

Construction: Draw BM ⊥ AD
CN ⊥ AD (AD produced)
In DAMB and DANC
∠1 = ∠2 (Given) 
∠AMB = ∠ANC = 90°
\ By AA similarity
DAMB ∼ DANC

\ 
AB

AC

BM

CN
=  (1)

In DMDB and DNDC
∠3 = ∠4 (VOA)
∠DMB = ∠DNC = 90°
\ By AA similarity
DMDB ∼ DNDC

\ 
BM

CN

BD

CD
=  (2)

A

E

B CD

21

3

4

A

B C

N

M

D 4

21

3
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\ From Eqs. (1) and (2)

AB

AC

BD

DC
= .

Note: In DABC, if AD is the bisector of ∠A, then 
[ ]

[ ]
.

ABD

ACD

AB

AC
=

8.6.3 Converse of Internal Angle Bisector Theorem

If a line through one vertex of a triangle divides the opposite sides in the ratio of other 
two sides, then the line bisects the angle at the vertex.

Given: In DABC, 
AB

AC

BD

DC
=

To prove: AD bisects ∠A

Construction: Produce BA to E such that AE = AC ⋅ Join EC.

Proof: Since AE = AC

\ ∠3 = ∠4

Since 
AB

AC

BD

DC
=

⇒ =
AB

AE

BD

DC
 (As AC = AE)

\ By converse of BPT, In DBCE, we have AD || EC
\ ∠1 = ∠4 (Corresponding angles)
∠2 = ∠3 (Alternate interior angles)
But ∠3 = ∠4
⇒ ∠1 = ∠2.
Hence AD bisects the angle ∠A.

8.6.4 External Bisector Theorem

The external bisector of an angle of a triangle divides the opposite side externally in 
the ratio of the sides containing the angle.

Given: In DABC, in which AD is the bisector of the exterior angle ∠A and intersects 
BC produced in D.

To prove: 
BD

CD

AB

AC
= .

Construction: Draw CE || DA, meeting AB in E.

Proof: Since AD bisects ∠CAX
\ ∠1 = ∠2

also, AD || EC

∠3 = ∠1 (Alternate interior angles)

∠4 = ∠2 (Corresponding angles)

Since ∠1 = ∠2 ⇒ ∠3 = ∠4

AC = AE.

X

A

E

B CD

21

3

4

X

A

E

B DC

2

1

3

4
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In DBAD, CE || DA
\ By BPT

AB

AE

DB

DC
=

⇒ =
AB

AC

BD

DC
.  (As  AE = AC) 

Note: This result is not true for isosceles triangle because in that case exterior angle 
bisector is parallel to the base.

8.6.5 Converse of External Angle Bisector Theorem

If a line through one vertex of a triangle divides the opposite sides externally in the 
ratio of other two sides, then the line bisects the external angle at the vertex.

Prove of the theorem is left as an exercise. 

Example 41 ABCD is a quadrilateral in which AB = AD. The bisector of ∠BAC and 
∠CAD intersect the sides BC and CD at the points E and F respectively. Prove that 
EF || BD.

Solution:

Given: In quadrilateral ABCD, AB = AD, AE bisects ∠BAC, AF bisects ∠CAD

To prove: EF || BD

Construction: Join BD and EF

Proof: In DABC, since AE bisects ∠BAC
So by internal angle bisector theorem

BE

EC

AB

AC
=  (1)

In DADC, AF bisects ∠CAD
\ By internal angle bisector theorem

DF

FC

AD

AC
=

⇒ =
DF

FC

AB

AC
 (As  AD = AB) (2)

\ From Eqs. (1) and (2)

BE

EC

DF

FC
=

\ By converse of BPT in DBCD
BD || EF.

Example 42 In a quadrilateral ABCD, if bisector of the ∠ABC and ∠ADC meet on the 
diagonal AC, prove that the bisector of ∠BAD and ∠BCD will meet on the diagonal 
BD.

D

A
B

E

F

C
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Solution:

Given: ABCD is a quadrilateral in which the bisectors of ∠ABC, ∠ADC meet on the 
diagonal AC at P.

Construction: Let the bisector of ∠BAD meet on the diagonal BD at Q.  Join CQ.
To prove: Bisectors ∠BAD and ∠BCD meet on the diagonal BD. Which is equivalent 
to prove that CQ bisects ∠BCD.

Proof: Since in DABC, BP bisects ∠ABC

\ By internal angle bisector theorem, 
AB

BC

AP

PC
=  (1)

Similarly in DADC, 
AD

DC

AP

PC
=  (2)

\ From Eqs. (1) and (2), we get  
AB

BC

AD

DC
=

⇒ =
AB

AD

BC

DC
 (3)

In DABD, AQ bisects ∠BAD

\ By internal angle bisector theorem 
AB

AD

BQ

QD
=  (4)

From Eqs. (3) and (4), we get  
BQ

QD

BC

CD
=

\ By converse of internal angle bisector theorem, CQ bisects ∠BCD.

8.7 Similar Triangles

Two triangles are similar if and only if
 1. their corresponding angles are equal
 2. their corresponding sides are proportional

Note: If DABC and DPQR are directly similar then 

∠A = ∠P, ∠B = ∠Q and ∠C = ∠R also, 
AB

PQ

BC

QR

AC

PR
= = .

We have following criterion for similarity:

8.7.1 SSS Similarity (Side Side Side Similarity)

If in two triangles the sides of one triangle are proportional to those of the other then 
the corresponding angles of the two triangles are equal, i.e., in the figure on p. 8.49 

(Similar Triangles) if 
AB

PQ

BC

QR

AC

PR
= =  then ∠A = ∠P; ∠B = ∠Q and ∠C = ∠R.

8.7.2 AAA Similarity (Angle Angle Angle Similarity)

If in two triangle the angles of one triangle are equal to those of the other, then sides 
opposite to those angles are proportional. In the figure on p. 8.49 (Similar Triangles) 
if ∠A = ∠P; ∠B = ∠Q; ∠C = ∠R

D

A

Q

B

P C

A

B C

P

Q R
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Then 
AB

PQ

BC

QR

AC

PR
= = .  

AA similarity also sufficient for the triangle to be similar

8.7.3 SAS Similarity (Side Angle Side Similarity)

If in two triangles, one angle of one triangle is equal to one angle of the other triangle 
and the sides containing these angle are proportional, then two triangles are similar.

In the the figure on p. 8.49 (Similar Triangles) if ∠A = ∠P  and 
AB

PQ

AC

PR
= , then 

DABC ∼DPQR.

8.7.4 Area Ratio Theorem for Similar Triangles

The ratio of the areas of two similar triangles are equal to the ratio of the squares of 
any two corresponding sides.
Given: DABC ∼ DPQR

That is, 
AB

PQ

BC

QR

AC

PR
= =  (1)

And ∠A = ∠P,  ∠B = ∠Q, ∠C = ∠R

To prove: 
[ ]

[ ]

ABC

PQR

AB

PQ

BC

QR

AC

PR
= = =

2

2

2

2

2

2

Construction: Draw AX ⊥ BC, PY ⊥ QR

Proof: 
[ ]

[ ]

ABC

PQR

BC AX

QR PY

BC

QR

AX

PY
=

× ×

× ×
=








 ⋅








1

2
1

2

 (2)

In DABX and DPQY

∠ABX = ∠PQY

∠AXB = ∠PYQ = 90°
\ By AA similarity

DABX ∼ DPQY

\ 
AB

PQ

AX

PY
=  (3)

\ From Eqs. (1), (2) and (3)

[ ]

[ ]

ABC

PQR

AB

PQ

AB

PQ

AB

PQ
=

















 =

2

2

⇒ = = =
[ ]

[ ]
.

ABC

PQR

AB

PQ

BC

QR

AC

PR

2

2

2

2

2

2  (Using Eq. (1))

Note: In DABC and DPQR if AD, PM are the medians, AX, PY are the altitudes and 
AL, PK are the angle bisectors and D1 and D2 be their areas respectively then the fol-
lowing results also hold true, if DABC ∼ DPQR.

AB

PQ

BC

QR

AC

PR

AX

PY

AD

PM

AL

PK

AB BC CA

PQ QR PR
= = = = = =

+ +
+ +

=
∆

∆
1

2

.

A

B CX

A

B D L CX

P

Q M K RY

P

Q RY
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Example 43 Given a parallelogram OBCA, a straight line is constructed such that, it 

cuts off 
1

3
 part of OB and 

1

4
 part of OA. Find the fraction of length this line cuts off 

from the diagonal OC.

Solution:
Construction: Extend the line to meet CB extended at G.

DOFD ~ DCFG and DOED ~ DBEG

∴ = =
+

= + = + = + =

= ⇒

CF

OF

CG

OD

CB BG

OD

CB

OD

BG

OD

OA

OD

BE

OE
OF

CF

OF

4 2 6

1

6
Thus

OOC
=

1

7

Thus the line cuts OC at F in the ratio of OF : FC = 1 : 6

That is, 
1

7
part of OC.

Example 44 Let A, B, C be an acute angled triangle in which, D, E, F are points on 
BC, CA, AB respectively, such that AD ⊥ BC, AE = EC, CF bisects ∠C internally. Sup-
pose CF meets AD and DE in M and N  respectively. If FM = 2, MN = 1, NC = 3, show 
that the perimeter and area of this triangle are equal numerically.

Solution:
FN = FM + MN = 2 + 1 =  3 and NC = 3

\ FN = NC ⇒ N is the mid-point of CF.
Also E is the mid-point of AC ⇒ NE || AF (By mid-point theorem)
\ DE || AB
\ BD = DC (by converse of mid-point theorem)
Thus AD is both altitude and median to BC
\ DABC is isosceles ⇒ AB = AC (1)
Also AD is the angle bisector of ∠A
\ DAMF ~ DDMN (AA)

∴ = =
AM

MD

FM

MN

2

1
This proves that M is the centroid of DABC (as AD is median)
Thus CF is both angle bisector and median to DABC
i.e., DABC is isosceles ⇒ AC = BC. (2)
\ AB = AC = BC (From Eqs. (1) and (2))
\ DABC is equilateral.
Let the side of the equilateral triangle be ‘a’.
CF, being the altitude,

CF a a= ⇒ = ⇒ =

∴ = × =

=








 =

6
3

2
6 4 3

3 4 3 12 3

3

4
4 3 4 3

Perimeter

Area ( )( ) 112 3

Thus area and perimeter are equal numerically.

Example 45 Show that there is a unique triangle, whose side lengths are consecutive 
integers and one of whose angles is twice the other.

A

D F

B

G

O

C

1
3

E 2
3

1
4

3
4

A

E
F M

CDB

N
2
C

2
C
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Solution:

Let ∠B = 2α

The bisector of ∠B intersects AC at B′, so that, CB
ab

a c
AB

bc

a c
′ =

+
′ =

+
and

Now ∆ ∆ ′ABC BB C~

∴
′

= ⇒ = ⋅ ′

=
+







 =

+

BC

B C

AC

BC
BC AC B C

a b
ab

a c
a

ab

a

2

2 2
2

That is, or( )
cc

i.e., a(a + c) = b2 (1)
According to our assumption of the angles, b > a holds.
\ Either b a b a a b c= + = +( ) ( ) ( , ,1 2or as  are consecutive)

 In the first case, i.e., b = a + 1 ⇒ b2 = a(a + c)

⇒ + = +( ) ( ), . .,a a a c i e1 2   a2 + 2a + 1 = a2 + ac
⇒ + = ⇒ ⇒ = ⇒ =2 1 1 1 3a ac a a c| and b = 2

Which is impossible, thus b a≠ +1.

Then, let b = a + 2 then c = a + 1, now ( ) ( )a a a a a a+ = + + = +2 1 22 2

⇒ − − =
∴ = − ≠ −
∴ = = =

a a

a a

a b c

2 3 4 0

1 4 1

4 6

or  but (reject)

; thus  and 

,

55.

\ There is only one triangle satisfying the conditions of the problem, i.e., the tri-
angle whose measures are 4, 5, and 6.

Example 46 If a perpendicular AD is drawn from the right angled vertex A of a right 
angled triangle ABC to the hypotenuse BC then prove that triangles on both sides of 
the perpendicular are similar to the whole triangle and to each other. Also prove that 
BA2 = BD ⋅ BC, CA2 = CD ⋅ CB and DA2 = DB ⋅ DC

Given: In DABC, ∠A = 90° and  AD ⊥ BC

To prove: (i) DBDA ∼ DBAC, (ii) DCDA ∼ DCAB and (iii) DBDA ∼ DADC

Proof:
 (i) In DBDA and DBAC
  ∠DBA = ∠ABC (Common)
  ∠BDA = ∠BAC = 90°
  \ By AA similarity
  DBDA ∼DBAC

  
BD

BA

BA

BC
=  ⇒ BA2 = BD ⋅ BC

 (ii) In DCDA and DCAB
  ∠DCA = ∠ACB (Common)
  ∠CDA = ∠CAB = 90°
  \ By AA similarly
  DCDA ∼ DCAB

  
CD

CA

CA

CB
=

  \CA2 = CD ⋅ CB

B

c
a

b
AC ab

a + c
B′

α α

α2α
bc

a + c

A

B D C

2

1

3
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 (iii) Since ∠1 + ∠2 = 90°
  also ∠2 + ∠3 = 90°
  \ ∠1 + ∠2 = ∠2 + ∠3
  ⇒ ∠1 = ∠3
  \ In DBDA and DADC
  ∠1 = ∠3 (Proved above)
  ∠BDA = ∠ADC = 90°
  \ By AA similarity
  DBDA ∼ DADC

  
BD

AD

AD

CD
=

  AD2 = BD ⋅ CD.

Note: 
AB

AC

BD BC

CD CB

BD

CD

2

2
=

⋅
⋅

= .

Build-up Your Understanding 5

 1.  In the given figure, what is the ratio of the areas of the two shaded triangles?

3 4

4

5

5

 2. In the given figure, what is the ratio of the shaded area to the area of one of the 
five congruent triangles?

 3. In DABC, BE and CF are the angular bisector of ∠B and ∠C meeting at I. Prove 

that 
AF

FI

AC

CI
= .

 4. If the bisector of ∠A in DABC meets BC at D, prove that BD =
ac

b c+
 and DC = 

ab

b c+
.

 5. P is any point within DABC and Q is a point outside DABC such that ∠CBQ = 
∠ABP and ∠BCQ = ∠BAP. Show that the triangles PBQ and ABC are similar.

 6. PM and PN are the perpendiculars from a point to two given straight line OA and 

OB. If 
PM

PN
 is a constant, prove that the locus of P is a straight line through O.

 7. From A perpendiculars AX, AY are drawn to the bisectors of the exterior angles of 
B and C of DABC. Prove that XY || BC.

 8. A straight line, perpendicular to AI, is drawn through the incentre I of DABC, 
meeting AB, AC in D and E respectively. Prove that BD ⋅ CE = ID2.

 9. Prove that the feet of the four perpendiculars dropped from a vertex of a triangle 
upon the four bisectors of the other two angle are collinear.

 10. In triangle ABC, X and Y be the feet of perpendiculars from vertex A to the inter-
nal angle bisector of ∠B and ∠C respectively. Line XY meets AB at P and AC at 
Q. If AB = 7 cm, BC = 8 cm and CA = 5 cm then find PQ and XY. 
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 11. We are given a triangle with the following property: One of its angles is quadri-
sected (divided into four equal angles) by the altitude, the angle bisector, and the 
median from that vertex. This property uniquely determines the triangle (up to 
scaling). Find the measure of the quadrisected angle.

 12. Show that the sum of the reciprocals of the internal bisectors of a triangle is 
greater than the sum of the reciprocals of the sides of the triangle.

 13. The internal bisector of the ∠B of DABC meets the sides B′C′ and B′A′ of the 
medial triangle in the points A″, C″ respectively. Prove that AA″, CC′ are perpen-
dicular to the bisector of ∠B and that B′A″ = B′C″.

 14. In DABC, D, E, F are points on the sides BC, CA, AB respectively. Also A, B, C 
are points on YZ, ZX, XY of DXYZ respectively for which EF || YZ, FD || ZX, DE || 
XY. Prove that area of [ABC]2 = [DEF] ⋅ [XYZ].

 15. In DABC, find points X, Y, Z on AB, BC, CA such that AXYZ is a rhombus. Show 

that [AXYZ] ≤ 
1

2
 [ABC].

 16. Points O and H are the circumcentre and orthocentre of acute triangle ABC, re-
spectively. The perpendicular bisector of segment AH meets sides AB and AC at 
D and E, respectively. Prove that ∠DOA = ∠EOA.

 17. Let A and B be two distinct point on the same side of a line l and let L and M 
be foot of perpendiculars to l from A and B respectively. Let AM and BL inter-
sects each other at P and Q be the foot of perpendicular from P to l. Prove that 

1 1 1

PQ AL BM
= + .

 18. Let ABC be a triangle. Construct two parallelograms BADE and BCFG on sides 
BA and BC, respectively. Suppose DE, FG produced meet at H. Show that the sum 
of the areas of the parallelograms is equal to the area of the parallelogram ACIJ, 
with sides CI, AJ equal and parallel to BH.

 19. Let M be the mid-point of the side AB of DABC. Let P be a point on AB, between 
A and M and Let MD be drawn parallel to PC and intersecting BC at D. If the ratio 

of [BPD] to [ABC] be x, show that, x = 
1

2
, independent of the position of P. 

 20. The mid-point of the hypotenuse of a right angled triangle ABC, right angled at B 
is M. A line is drawn perpendicular to the hypotenuse through M, in such a way, 
that the portion of it lying inside the triangle is 3 cm long and outside the triangle, 
up to the other side is 9 cm. Find the length of the hypotenuse.

 21. P, Q, and R are arbitrary points on the sides BC, CA, and AB respectively of tri-
angle ABC. Prove that the three circumcentres of triangles AQR, BRP, and CPQ 
form a triangle similar to triangle ABC. [British MO, 1984]

 22. OB is the perpendicular bisector of the segment DE. A is a point on OB. AF ⊥ OB, 
meeting OD at F. EF intersects OB at C. Prove that, OC is the harmonic mean 
between OA and OB.

 23. The point P lies in the interior of DABC. A line is drawn through P, parallel to 
each side of a triangle. The line divides AB into three parts length (in that order); 
BC into three parts, length (in that order); CA into three parts length (in that 
 order). Prove the following result: a b c = a′b′c′ = a″b″c″.

 24. Let the inscribed circle of triangle ABC touches side BC at D, side CA at E and side 

AB at F. Let G be the foot of the perpendicular from D to EF. Show that 
FG

EG

BF

CE
= .

 25. Find the angle x in adjacent figure. A

10°

70° 60°

20°

E

C

D

B

x
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8.8 Baudhayana (Pythagoras) Theorem

In a right angled triangle the square of the hypotenuse is equal to the sum of the 
squares of the other two sides

Given: In DABC, ∠A = 90

To prove: BC2 = AB2 + AC2

Construction: Draw AD ⊥ BC

Proof: In DBDA and DBAC

∠DBA = ∠ABC (Common)

∠BDA = ∠BAC = 90°
\By AA similarity

DBDA ∼ DBAC

∴ =
BD

BA

BA

BC

⇒ BA2 = BD ⋅ BC (1)

In DCDA and DCAB

∠DCA = ∠ACB (Common)

∠CDA = ∠CAB = 90°
\By AA similarity

DCDA ∼ DCAB

CD

CA

CA

CB
=

⇒ CA2 = CD ⋅ CB (2)
Adding Eqs. (1) and (2)

 BA2 + CA2 = BD ⋅ BC + CD ⋅ BC

 = BC ⋅ (BD + CD)

 = BC ⋅ BC

 AB2 + AC2 = BC2.

Note: AB2 + DC2 = AC2 + BD2

8.8.1 Converse of Baudhayana(or Pythagoras) Theorem

In a triangle if square of the longest side is equal to the sum of the squares of other two 
sides then angle opposite to the longest side is a right angle.

Given: In DABC, AC2 = AB2 + BC2

To prove: ∠ABC = 90°

Construction: Construct a right angle triangle PQR right angled at Q and PQ = AB 
and QR = BC.

Proof: Since in right angle triangle PQR, ∠Q = 90°
\ By Baudhayana (or Pythagoras) theorem,

 PR2 = PQ2 + QR2

Baudhāyana Sulbsūtra
(Compiled around 8th to 7th
centuries BCE)
�ी����ु����ा���ा ��ु: �ा���ा�ी 
ि���
 ा�ी � �	 �ृ�
 �ु�े 
�ु�����ु�ं ��ाेि�॥
dirghachatursrasyãks

˚
an
˚
ayã rajjuh 

pãrśvamãni, tiryagmãni, cha 
yatpr

˚
thagbhūte kurutastadub-

hayãn̊ karoti.
A rope stretched along the 
length of the diagonal produces 
an area which the vertical and 
horizontal sides make together.

The lines are referring to a 
rectangle, It states that the 
square of hypotenuse equals 
the sum of the squarer of sides!

A

B D C

Pythagoras of Samos

c. 570 BC–C. 495 BC
Nationality: Greek

A

B C

P

Q R
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But PQ = AB and QR = BC
\ PR2 = AB2 + BC2 (1)
But it is given that
 AC2 = AB2 + BC2 (2)
\From Eqs. (1) and (2),
 PR2 = AC2

 ⇒ PR = AC
In DABC and DPQR

 AB = PQ
 BC = QR
 AC = PR
\ By SSS congruences

DABC ≅ DPQR

\ ∠ABC = ∠PQR = 90°
Some important result based on Baudhayana theorem:

8.8.2  Acute Angled Triangle Theorem

In DABC, if ∠B < 90° and AD ⊥ BC, prove that AC2 = AB2 + BC2 - 2BD ⋅ BC

Proof: In DADC, by using Baudhayana (Pythagoras) theorem

 AC2 = AD2 + DC2

 = AD2 + (BC - BD)2

 = AD2 + BD2 + BC2 - 2BD ⋅BC

 ⇒ AC2 = AB2 + BC2 - 2BD ⋅ BC(As AD2 + BD2 = AB2).

Corollary: Let AC be the largest side and AC2 < AB2 + BC2 implies DABC is an acu-
teangle triangle. 

8.8.3 Obtuse Angled Triangle Theorem

DABC is an obtuse triangle, obtuse angled at B. If AD ⊥ CB, prove that AC2 = AB2 + 
BC2 + 2BD ⋅ BC

Proof: In DADC, by using Baudhayana (Pythagoras) theorem

 AC2 = AD2 + DC2

 = AD2 + (DB + BC)2

 = AD2 + DB2 + BC2 + 2 BD ⋅ BC

 ⇒ AC2 = AB2 + BC2 + 2BD ⋅ BC (As AD2 + DB2= AB2)

Corollary: In DABC, AC2 > AB2 + BC2 implies DABC is an obtuseangle triangle. 

8.8.4 Apollonius Theorem

In any triangle, the sum of the squares of any two sides is equal to twice the square of 
half of the third side together with twice the square of the median which bisects the 
third side.

A

CDB

A

D B C

Apollonius of Perga

262 BC–190 BC
Nationality: Greek
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Given: In DABC, AD is a median.

To prove: AB2 + AC2 = 2AD2 + 2BD2

Or AB AC AD BC2 2 2 22
1

2
+ = + .

Construction: Draw AM ⊥ BC

Proof: InDADB, ∠D < 90°
\ By acute angled triangle theorem

AB2 = AD2 + BD2 - 2DM ⋅ BD

 = AD2 + BD2 - DM ⋅ BC (1)

 (As 2BD = BC)
In DADC, ∠D > 90°
\By obtuse angled triangle theorem

AC2 = AD2 + DC2 + 2DM ⋅ DC

 \ AC2 = AD2 + BD2 + DM ⋅ BC (2)

(As 2DC = BC and DC = BD)

\ Eq. (1) + Eq. (2) gives,

AB2 + AC2 = 2AD2 + 2BD2 = + 





 = +

⋅
2 2

2
2

2

4
2

2
2

2

AD
BC

AD
BC

⇒ + = +AB AC AD BC2 2 2 22
1

2
.

8.8.5 Stewart’s Theorem

Let D be a point on side BC such that BD = m and DC = n and AD = d. Then 
a d mn b m c n( ) .2 2 2+ = +

Proof: WLOG (Without loss of generality) Let ∠ < ∠ADB ADC

⇒∠ADB  is acute and ∠ADC  is obtuse.
In DABD, by using acute angle theorem, we get

AB AD BD BD MD2 2 2 2= + − ⋅

⇒ = + −c d m mx2 2 2 2  (1)

In DADC, by using obtuse angle theorem, we get

AC AD DC DC DM2 2 2 2= + + ⋅

⇒ = + +b d n nx2 2 2 2  (2)

\ From n m× + ×Eq. Eq.( ) ( ),1 2 we get,

nc mb d m n mn m n

b m c n d m n mn m n d mn m

2 2 2 2 2

2 2 2 2

+ = + + +

⇒ + = + + + = + +

( )

( ) ( ) ( )( nn

b m c n d mn a

)

( )⇒ + = + ⋅2 2 2

A

B M D C

Matthew Stewarts

28 Jun 1717–23 Jan 1785 
Nationality: Scottish

A

B C

c

X nm
a

p
b

θ 180−θ
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Notes:
 1. A mnemonic of final result as ‘man + dad = bmb + cnc’ or ‘A man and his dad 

put a bomb in the sink’.
 2. Another version of Stewart’s theorem is as follows:
  Let AD be of length d dividing BC into segments BD and DC such that BD : DC 

= λ : µ. Then λ µ λ µ λ µAC AB AD DC BD2 2 2 2 2+ = + + +( ) .

Proof:

To prove: λ µ λ µ λ µAC AB AD DC BD2 2 2 2 2+ = + + +( ) .

Now, AB BE AE2 2 2= + = − +( )λk ED AE2 2

⇒ = + − +µ µλ µ µλ µAB k ED kED AE2 2 2 2 22  (1)

 Similarly AC k ED AE2 2 2= + +( )µ

⇒ = + + +λ λµ λ µλ λAC k ED kED AE2 2 2 2 22  (2)

From adding Eqs. (1) and (2), we get
µ λ µ λ µ λ µ λAB AC BD CD ED AE2 2 2 2 2 2+ = + + + + +( ) ( )

⇒ + = + + +λ µ µ λ λ µAC AB BD CD AD2 2 2 2 2( )  (As AE ED AD2 2 2+ = )

 3. If AD is a median then m n
a

= =
2

and AD = ma

  By applying Stewarts theorem we get 
b a c a

m
a

aa

2 2
2

2

2 2 4
+ = +









  ⇒ + = +b c m aa
2 2 2 22

1

2
 (Apollonius theorem)

  Or length of the median

  m
b c a

m b c aa a
2

2 2 2
2 2 22 2

4

1

2
2 2=

+ −
⇒ = + −

  Similarly, 

  m c a bb = + −
1

2
2 22 2 2 and m a b cc = + −

1

2
2 22 2 2 .

 4. If AD is the angle bisector,then m
ca

b c
n

ba

b c
=

+
=

+
,  AD = ta

  By applying Stewarts theorem we get 
b ca

b c

c ba

b c
t

a bc

b c
aa

2 2
2

2

2+
+

+
= +

+










( )

  

⇒
+

+
= +

+










⇒ = +
+

⇒

abc b c

b c
t

a bc

b c
a

bc t
a bc

b c

t

a

a

a

( )

( ) ( )

( )

2
2

2

2
2

2

2 == −
+

⇒ = −
+

















 ⇒ = −

+







bc
a bc

b c

t bc
a

b c
t bc

a

b c
a a

2

2

2
2

1 1

( )












2

.

A

B CDE
k μkλ
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Aliter 1: If AD is the angle bisector 

[ ] [ ] [ ]

sin sin sin

sin

ABD ACD ABC

t c
A

t b
A

bc A

t

a a

a

+ =

⇒ ⋅ + ⋅ =

⇒

1

2 2

1

2 2

1

2
1

2

AA
b c bc

A A

2

1

2
2

2 2
( ) sin cos+ = ⋅

⇒ =
+

t
bc

b c

A
a

2

2
cos

A special case: If ∠A = 120° then the length of angle bisector AD is 

t
bc

b c

bc

b c
a = +

⋅ ° =
+

2
60cos .

Aliter 2: If AD is the angle bisector of ∠A in DABC and cuts the circumcircle at E.
Then by using the result obtain in example 91 (on page 8.97), we get,

AD BD DC AB AC2 + ⋅ = ⋅

⇒ = ⋅ − ⋅AD AB AC BD DC2

= ⋅ −
+

⋅
+

= −
+

b c
ca

b c

ba

b c

bc
a bc

b c

2

2( )

⇒ = −
+



















⇒ = −
+



















AD bc
a

b c

t bc
a

b c
a

2
2

2

1

1 .

8.8.6 Lemma

Let A, B, P, Q be four distinct points on a plane. Then AB ⊥ PQ if and only if PA2 - PB2 
= QA2 - QB2.

Proof: First we will assume PA2 - PB2 = QA2 - QB2 and we will prove AB ⊥ PQ.
Let foot of perpendicular from P and Q on AB be L and M respectively. Now we 

will prove L = M.
By Baudhayana theorem we have
PA2 = PL2 + AL2 and PB2 = PL2 + BL2

⇒ PA2 - PB2 = AL2 - BL2 = (AL + BL) (AL - BL) = AB(AB - 2BL) (1)
Similarly, QA2 - QB2 = AB(AB - 2BM) (2)
Now From Eqs. (1) and (2), we get
AB(AB - 2BL) = AB(AB - 2BM) (As PA2 - PB2 = QA2 - QB2)
⇒ BL = BM
⇒ L = M (As L, M on AB and same side of B)
Now we will assume AB ⊥ PQ and we will prove PA2 - PB2 = QA2 - QB2.
Let point of intersection of AB and PQ be L.
By Baudhayana theorem we have
PA2 = PL2 + AL2 and PB2 = PL2 + BL2

⇒ PA2 - PB2 = AL2 - BL2 = (QL2 + AL2) - (QL2 + BL2) = QA2 - QB2.

A

P

B

Q

A

P

B

Q
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Note: This Lemma is very useful when we need to prove two lines are perpendicular.

Example 47 In a given triangle ABC, in the usual notation, it is given that, a, b, c are in 
geometric progression. Also it is true that, log log , log log , log loga b b c c a− − −2 2 3 3
are in arithmetic progression. Prove that this triangle must be obtuse angled triangle.

Solution:
a, b, c are in GP ⇒ =b ac2

log log , log log , log loga b b c c a− − −2 2 3 3 are in AP

∴ − = − + −

∴ 





 =

2 2 3 2 3

2
2

3

(log log ) (log log ) (log log )

log l

b c a b c a

b

c
oog log

. . log log l

a

b

c

a

i e
b

c

a

b

c

a

2

3

2

3 2

3
2

+













 = ×









 =, oog

3

4

9

3

2
8 27

2 3

4

2

2
3 3

c

a

b

c

c

b
b c

b c

∴ = ⇒ =

∴ = (Taking cube roots)

Also bb c ac c a c2 2 29 4 9 4 9= ⇒ = ⇒ =

Thus (Say)

Here, 

4 6 9

4 6 9

16 36
2

2
2

2

a b c k

a
k

b
k

c
k

a
k

b
k

c

= = =

∴ = = =

= =

; ;

; ; 22
2

81
=

k

We see that, 

 

k k k
a b c

i e A

2 2 2
2 2 2

16 36 81
90

> + ⇒ > +

∠ > °. .,

\ The triangle is obtuse.

Example 48 ABCD is a rectangle. Points M and N are on BD such that AM ⊥ BD and 
CN ⊥ BD prove that BM2 + BN2 = DM2 + DN2

Solution:
 BM2 = AB2 - AM2

 BN2 = BC2 - CN2

 \ BM2 + BN2 = (AB2 - AM2) + (BC2 - CN2)

 = (DC2 - CN2) + (AD2 - AM2) (As AB = DC, BC = AD )

 ⇒ BM2 + BN2 = DN2 + DM2.

Example 49 In a quadrilateral ABCD, given that ∠A + ∠D = 90° prove that AC2 + 
BD2 = AD2 + BC2.

Solution: 

Construction: Produce AB and DC to cut at M
Since∠A + ∠D = 90°
By ASP (angle sum property) of  the triangle
In DAMD, ∠M = 90°

A B

CD

M

N

M

A D

CB
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\ In DAMC, AC2 = AM2 + MC2

In DBMD,

 BD2 = BM2 + MD2

 \ AC2 + BD2 = (AM2 + MC2) + ( BM2 + MD2)

 = (AM2 + DM2) + (MC2 + MB2)

 ⇒ AC2 + BD2 = AD2 + BC2.

Example 50 Let ABCD be a square. P and Q are any two points on BC and CD 
respectively. Such that AP = 4 cm, PQ = 3 cm, AQ = 5 cm. Find the side of the square.

Solution: 

Since 5 3 42 2 2= +
i.e., ∠ +∠ = °2 3 180

∠ +∠ < °1 4 180  By converse of Baudhayana (Or Pythagoras) theorem

∠ = °APQ 90

Let ∠ =PAB θ

⇒∠ = °−APB 90 θ
∠ =QPC θ .

Let AB = a

In ∆APB
a

a, cos cosθ θ= ⇒ =
4

4

Also in ∆APB
PB

PB, sin sinθ θ= ⇒ =
4

4

In ∆PCQ
PC

PC, cos cosθ θ= ⇒ =
3

3

Since ABCD is a square

AB BC=
AB BP PC= +
∴ = +4 4 3cos sin cosθ θ θ

∴ =cos sinθ θ4

⇒ =tanθ
1

4
 ⇒ =cosθ

4

17

∴ = = = × =AB a 4 4
4

17

16 17

17
cosθ cm.

Example 51 In the figure ABCD is a square of side ‘a’ units. Find the radius ‘r’ of a 
smaller circle. Where arc DB and arc AC has centres at A and B respectively.

Solution: 

Proof: Since if two circles are touching then the line segment joining their centres 
passes through their point of contact 

\ BO = a + r
∴ = −MO a r

And BM
a

=
2

 by symmetry 

A
a

B

C
Q

P

3

4

5

D

θ

θ

A
a

B

CD O
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\ In right angle DOMB

BO2 = MO2 + BM2

⇒ + = − + 





( ) ( )a r a r

a2 2
2

2
 ⇒ + − − =( ) ( )a r a r

a2 2
2

4

⇒ =4
4

2

ar
a  ⇒ =r

a

16

Example 52 Two sides of a triangle are 3  and 2 units. The medians to these two 
sides are mutually perpendicular. Prove that the third side has an integer measure.

Solution: Let the medians BE and CF be perpendicular to each other.

Now BG2 + CG2 = BC2 (1)

Also 4BE2 = 2BC2 + 2BA2 - AC2 (2)
 (From Apollonius theorem)

But BG BE BG BE= =
2

3

4

9
2 2and so  (3)

\ BG BC BA AC2 2 2 21

9
2 2= + −( )  (From Eqs. (2) and (3))

Similarly CG BC CA AB2 2 2 21

9
2 2= + −( )

Thus, BG CG BC BA AC BC CA AB2 2 2 2 2 2 2 21

9
2 2 2 2+ = + − + + −( )

i e BC BC AB AC. ., ( )2 2 2 21

9
4= + +

∴ = + + ⇒ = +9 4 52 2 2 2 2 22

BC BC AB AC BC AB AC

i e BC BC. ., ( ) ( )5 3 2 5 12 2 2= + = ⇒ =
which is an integer.

Aliter: Let FG be y GC y⇒ = 2  and GE be x BG x⇒ = 2

In DEGC, by Baudhayana (or Pythagoras) Theorem,

x y EC2 2 2

2

4
2

2

1

2
+ = =









 =  (1)

Similarly in DBGF,

4
3

4
2 2x y+ =  (2)

Now adding Eqs. (1) and (2), we get,

5 5
5

4
2 2 12 2 2 2x y x y+ = ⇒ + =( ) ( )

⇒ + =BG GC2 2 1

⇒ =BC 2 1

⇒ =BC 1.

a

A M
a

B

CD O

A

F E

B

G

D C

√2√3

A

B C

EF G
x

2x 2y

y
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Example 53 Two sides of a triangle are 10 cm and 5 cm in length and the length of 

the median to the third side is 6.5 cm. If the area of the triangle is 6 2p cm ,  find the 
value of p.

Solution: Let D be the mid-point of BC. By Apollonius theorem,

AB AC BD AD2 2 2 22+ = +( )  (By Apollonius Theorem) 

or 4 2 2

2 2 4

2 10 2 5 4
13

2

2 2 2 2

2 2 2 2

2 2

AD AB AC BC

BC AB AC AD

= + −

∴ = + −

= + − 
( ) ( )






 =

∴ = ⇒ =
+ +

=

2

81

9
9 10 5

2
12

( )on simplification

cmBC s

Area = − − − =

= × × × = ⇒ =

s s a s b s c p

p p

( )( )( )

.

6

12 3 7 2 6 14

Example 54 The internal bisector of ∠A of DABC meets BC at P and b = 2c in the 
usual notation. Prove that (9AP2 + 2a2) is an integral multiple of c2.

Solution: As AP is bisector in the problem, we have

BP

PC

c

c
= = =

2

1

2

λ
µ

 (Say)

Also BP PC BP a PC a: : ;= ⇒ = =1 2
1

3

2

3
By applying Stewart’s theorem in DABC, we get,

µ λ λ µ µ λAB AC AP BP PC2 2 2 2 2+ = + + +( )

⇒ ⋅ + ⋅ = +( ) + ⋅ + ⋅

⇒ = +

⇒ + =

2 1 4 2 1 2
9

1
4

9

6 3
2

3

9 2 1

2 2 2
2 2

2 2 2

2 2

c c AP
a a

c AP a

AP a 88 2c .

Example 55 In triangle ABC, the medians from B and A to the opposite sides are 
mutually perpendicular to each other. If a, b, c are the measures of BC, CA, AB respec-
tively, prove that,

1

2
2< <

b

a
.

Solution: Let G be the centroid of DABC.
Since it trisect each median, let AG = 2x, GD = x, BG = 2y, GE = y.
Now from right triangles AGB and AGE and BGD, respectively we get,

4
4

2 2
2

x y
b

+ =  (1)

4 42 2 2x y c+ =  (2)

A

B
D C

10 5
61

2

A

c 2c

B C

1
3a 2

3a

Pm n

E

B

y

D C

A

2x

2y
x

a/2 a/2

b/2

b/2
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4
4

2 2
2

y x
a

+ =  (3)

Adding Eqs. (1) and (3), we get

5 5
4

2 2
2 2

x y
a b

+ =
+

⇒ + =
+

x y
a b2 2

2 2

20
 (4)

From Eqs. (2) and (4) we get c x y
a b2 2 2

2 2

4
5

= + =
+

( )

Thus a b c2 2 25+ =  (5)

Also from Eqs. (2) and (3) we can infer that c2 < a2

And similarly from Eqs. (1) and (3) c2 < b2 so that ‘c’ is the smallest side.

∴
+

<
+

<
a b

a
a b

b
2 2

2
2 2

2

5 5
and  (from Eq. (5))

i e b a a b

i e
b

a

a

b

b

a
b

a

. .

.

.

, and

., and

Thus

2 2 2 24 4

2 2
1

2
1

2
2

< <

< < ⇒ >

< <

Example 56 Let ABC be scalene triangle. The medians from A, B, C meet the circum-
circle of DABC again at L, M and N respectively. If LM = LN, prove that, AB2 + AC2 
= 2BC2.

Solution:

A

B
CD

F
E

M

L

G

N

Let G be the centroid of DABC.
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Now, 

∆ ∆

∴ =

∆ ∆

∴ =

LNG CAG

LN

AC

GL

GC
LMG BAG

LM

AB

GL

GB
AB

~

~

( )

( )

( )

( )

AA

AA

Thus

1

2

AAC

GB

GC
LN LM

AB

AC

GB

GC

= ÷ =

∴ =

=

( ( ) ( ) )From Eq. Eq. and using 1 2

1

2

2

2

2

99
2 2

1

9
2 2

2 2 2

2 2 2

( )

( )
( )

AB BC AC

AC BC AB

+ −

+ −
By Apollonius Theorem

⇒
−

=
−

+ −
AB AC

AC

AB AC

AC BC AB

2 2

2

2 2

2 2 2

3

2 2

( )
(Substracting 1 from botth sides)

⇒ + − = ≠

⇒ =

2 2 3

2

2 2 2 2 2 2

2

AC BC AB AC AB AC

BC

(As trinagle is scalene, )

AAB AC2 2+ .

Example 57 In an equilateral DABC, a point P is taken in the interior of DABC such 

that PA PB PC2 2 2= + find∠BPC.

Solution: Construct ∠BCD = ∠ACP and CD = CP
In DACP and DBCD

AC = BC (Given)

∠ACP = ∠BCD (Construction)

CP = CD (Construction)

\By SAS Congruency

DACP ≅ DBCD

\ AP = BD

Also ∠1 + ∠3 = ∠2 + ∠3 = 60° (As ∠3 = ∠2)

And PC = CD

\ DPCD is an equilateral D with PC = PD = CD and ∠DPC = 60°
Since

PA2 = PB2 + PC2

BD2= PB2 + PD2 (As PA = BD, PC = PD)

\ By converse of Baudhayna (or Pythagoras) theorem

∠BPD = 90°

 \ ∠BPC = ∠BPD + ∠DPC

 = 90° + 60°
\ ∠BPC = 150°.

A  

C  

D  

B  

P 

2 

3 

1 
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Build-up Your Understanding 6

 1. Two sides of a triangle are 4 and 9. The median drawn to third side has length 6. 
Find the length of the third side.

 2. ABC is an isosceles triangle with AC = BC. The medians AD and BE are per-
pendicular to each other and intersect at G. If GD = a unit, fi nd the area of the 
quadrilateral CDGE.

 3. A right triangle has legs a and b and the hypotenuse c. Two segments from the 
right angle to the hypotenuse are drawn, dividing it into three equal parts of length 

x
c

=
3

.  If the segments have length p and q, prove that p q x2 2 25+ = .

 4. Let ABC be a triangle and let D, E, F lie on the sides BC, CA, AB respectively, 
such that AD, BE and CF are concurrent at P. Given that AP = 6, BP = 9, PD = 6, 
PE = 3, and CF = 20, fi nd the [ABC].

 5. In DABD, DB is perpendicular to AC at B so that AB = 2 and BC = 3 as shown 
in the fi gure. Furthermore, ∠ADC = 45°. Use this information to fi nd the area of 
DADC.

 6. On side AB of square ABCD right DABF with hypotenuse AB is drawn externally 
to the square. If AF = 6 and BF = 8, fi nd EF where E is the point of intersection 
of diagonals of the square. Also fi nd EF when DABF is drawn internally to the 
square.

 7. Point P on side AB of right DABC is such that BP = PA = 2. Point Q is on the
hypotenuse AC so that PQ is perpendicular to AC. If CB = 3 find the length of BQ. 
Also fi nd the area of the quadrilateral CBPQ.

 8. (i)  Let G be the centroid of triangle ABC and P is an arbitrary point. Prove that 

PA2 + PB2 + PC2 = 3PG2 + 
1

3
 (a2 + b2 + c2).

Note: This result is known as Leibniz Theorem.

  (ii)  Hence, or otherwise, fi nd the formula of OG in terms of a, b, c, where O is 
the circumcentre.

 9. Let DABC be right angle triangle with ∠A = 90° and AL be its altitude. Let r, r1, 
r2 the inradii of DABC, DABL, DACL, respectively. Prove that r r r1

2
2
2 2+ = .

 10. ABCD and A′B′C′D′are two non-congruent squares in a plane, placed by a dis-

placement; (i.e., A′B′ || AB, etc.) Prove that, AA CC BB DD′ + ′ = ′ + ′2 2 2 2 .

 11. Quadrilaterals ABCP and A′B′C′P′ are inscribed in two concentric circles. If tri-
angles ABC and A′B′C′ are equilateral, prove that P′A2 + P′B2 + P′C2 = PA′2 + 
PB′2 + PC′2

 12. Let Q be the centre of the inscribed circle of a triangle ABC. Prove that for any 
point P, a(PA2) + b(PB2) + c(PC2) = a(QA)2 + b(QB)2 + c(QC)2 + (a + b + c)QP2,

  where a = BC, b = CA and c = AB.

8.9 Quadrilaterals

A quadrilateral is a polygon with four edges (or sides) and four vertices or corners. 
They may be concave or convex. In our present discussion we are taking convex only.  
There are following important convex quadrilaterals:

D  

C  A23 B  

Gottfried
Wilhelm Leibniz

1 Jul 1646–14 Nov 1716 
Nationality: German
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8.9.1 Parallelogram

In a quadrilateral if both the pairs of opposite sides are parallel then it is called a 
parallelogram.

Some properties of a parallelogram:
 1. A diagonal of a parallelogram divides it into two congruent triangles.
 2. In a parallelogram, opposite sides are equal.
 3. Two opposite angles of a parallelogram are equal.
 4. The diagonals of a parallelogram bisect each other.
 5. In a parallelogram, the bisectors of any two consecutive angles intersects at right 

angle.
 6. The angle bisectors of a parallelogram from a rectangle.
 7. In a parallelogram sum of any two consecutive angles is 180°.
 8. In a quadrilateral, if both opposite sides are equal then it is a parallelogram.
 9. In a quadrilateral, if both opposite angles are equal then it is a parallelogram.
 10. If the diagonals of a quadrilateral bisects each other then it is a parallelogram.
 11. If one pair of opposite side of a quadrilateral is equal and parallel then it is a 

 parallelogram.

Example 58 The diagonals of a parallelogram ABCD intersects at O. A line through O 
intersects AB at X and DC at Y another line passing through O intersects AD at P and 
BC at Q. Prove that XQYP is a parallelogram.

Solution:

Given: ABCD is a parallelogram; AC, BD interests at O. XOY, POQ are two lines cut-
ting AB at X, CD at Y also AD at P and BC at Q.

To prove: XQYP is a parallelogram 

Proof: In DCOY and DAOX

∠1 = ∠2 (Alternate interior angles)

CO AO=

∠ = ∠3 4  (VOA)

\ By ASA congruence

∆ ∆COY AOX≅
⇒ OY = OX (1)

Similarly in DPOD and DQOB

∠ = ∠4 5  (Alternate interior angles)

OD OB=  (Given)

∠ = ∠6 7  (VOA)

\ By ASA congruence

∆ ∆POD QOB≅

∴ =OP OQ  (2)

\ From (1) and (2), in quadrilateral XQYP diagonals bisects each other and hence 
it is a parallelogram.

A BX

Y

Q

C

2
5

7

1

4

36
4

P O

D
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Examples 59 ABCD is a parallelogram. Through C a straight line RQ is drawn out-
side the parallelogram and AP, BQ, DR are drawn perpendiculars to RQ. Show that 
DR + BQ = AP

Solution: 

Given: ABCD is a parallelogram. DR AP BQ, ,  are perpendiculars on any line passes 
through C and out side the parallelogram.

To prove: DR BQ AP+ =

Construction: Draw DT ⊥ AP

Proof: In quadrilateral DRPT , ∠ = ∠ = ∠ = °R P T 90

∴DRPT  is a rectangle ∴ =DR TP  (1)

In ∆DAT ⋅  and ∆CBQ ⋅

DA = CB
∠ = ∠DAT CBQ  (Angle between two parallel lines) AO || BC and AT || BQ

∠ = ∠ = °DTA CQB 90

\ By AAS congruence

∆ ∆DAT CBQ≅
∴ =AT BQ  (2)

(1) + (2) \ DR BQ AT TP+ = +
⇒ + =DR BQ AP

Example 60 L and M are the mid-points of the diagonals BD and AC respectively of 
the quadrilateral ABCD. Through D draw DE equal and parallel to AB. Show that EC 
is parallel to LM and is double of it. 

Solution: 

Given quadrilateral ABCD, L and M are the mid-points of diagonals BD and AC 
respectively.

To prove: LM EC||  and LM EC=
1

2

Proof: Since DE AB DE AB= , ||  and in a quadrilateral if one pair of opposite side is 
equal and parallel then it is a parallelogram 

∴ ABED  is a parallelogram 
Its diagonals bisects each other so L is also the midpoint of AE
In ⋅∆AEC,  L and M are the midpoint of AE and AC respectively
\ By midpoint theorem LM EC||

⇒ =LM EC
1

2
 (Proved)

Example 61 In a parallelogram ABCD, AB = 2BC ⋅ AD is produced both ways so that 
AM = AD = DN. Show that BN is perpendicular to CM

Solution: 

Given: ABCD is a parallelogram with AB = 2BC, AM = AD = DN

To proof: MC ⊥ BN

R
P

C
Q

BA

T

D

D

A B

C

E

M

L
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Proof: In DPMA and DPCB
∠1 = ∠2 VOA
∠3 = ∠4 (Alternate interior angles)
\ AM = BC (As AM = AD = BC)
\ By AAS congruence
DPMA ≅ DPCB
AP BP P= ⇒  is the midpoint of AB

⇒ = = =BC AP PB AM  (As AB = 2BC)

∴∠ = ∠ = ∠ = ∠1 3 2 4

Also in ∆ABN AB BC, ,= 2

AN AD BC= =2 2
∴ =AB AN

∴∠ = ∠5 6

∠ = ∠ +∠PAN 1 3  (Exterior angle proparty, in DAPM)

= ∠ +∠ = ∠ = ∠2 2 2 2 BAN

In ∆ABN BAN BNA ABN, ∠ +∠ +∠ = °180

⇒ ∠ +∠ +∠ = °2 2 5 6 180

⇒ ∠ + ∠ = °2 2 2 5 180

⇒∠ +∠ = °2 5 90

In ∆POB, ∠ +∠ +∠ = °2 5 7 180

⇒ °+∠ = °90 7 180
⇒∠ = °7 90
⇒ ⊥CM BN

Example 62 The side AB of parallelogram is produced both ways to F and G, so that 
AF = AD and BG = BC. Prove that FD and GC produced intersect at right angles.

Solution:
G

1

D

F A

C

x
y

2x
yx

Given: ABCD is a parallelogram AB is produced both ways AF = AD and BG = BC.

To prove: FD and GC produced cut at right angles

Proof: Since in DAFD, AF = AD ∴∠ = ∠ =AFD ADF x  (Say)

∠ =DAB x2  (Exterior angle theorem)
AD CB||  ⇒∠ = ∠ =CBG DAB x2

In ∆BCG BC BG BCG BGC y, = ⇒ ∠ = ∠ =  (Say)

And 2 180 90x y y x y+ + = °⇒ + = °

In DFGH, x + y + ∠1 = 180°
⇒ ∠1 = 90°. (As x + y = 90°)

M

P B

O

C

A

D

N

3

1
2 5

4
6

6
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Example 63 In the sides AB, AQ of DAQB, the points P and D are so chosen that 
[APQ] = [ABD]. DC is drawn parallel to AB to cut BQ in R. BC drawn parallel to AD 
meets DR produced in C. Prove that RC = AP.

Solution: 

Construction: Join PD

Proof: Since [APQ] = [ABD], subtract area of DAPD to both sides.
[APQ] - [APD] = [ABD] - [APD] ⇒ [PDQ] = [PDB] 
Triangles having same base and equal areas must lie between the same parallel
⇒ PD | | BQ Or PD | | BR also DR | | PB (Given)
\ DPBR is a parallelogram BP = DR  (1)
Also DC | | AB and AD | | BC
\ ABCD is also a parallelogram ⇒ AB = DC (2)
From Eq. (2) - Eq. (1) we get AB - BP = DC - DR
AP = RC proved.

Example 64 In DABC, ∠A is a right angle. Squares ACDE and ABGF are described 
on AC and AB externally to the triangle. BD cuts AC in M and CG cuts AB in N. Show 
that AM = AN.

Solution: 

F
E

D

CB

G
A

N M

Constructions: Join FN and ME.

Proof: Since if a triangle and a parallelogram having the same base and between the 
same parallel then area of triangle is half the area of parallelogram.

GNF GBAF[ ] = [ ]1

2

And GBN AFN GBAF[ ]+ [ ] = [ ]1

2

Also [ ] [ ]GBC GBAF=
1

2
 (Between two parallels FC and GB with same base GB)

⇒ [GBN] = [AFN] = [GBC] = [GBN] + [NBC]

⇒ [AFN] = [NBC]

Adding [ANC] to both sides, we get,

[ ] [ ] [ ] [ ]AFN ANC NBC ANC+ = +
⇒ =[ ] [ ]FNC ABC  (1)

Similarly [ ] [ ] [ ] [ ]DCM EAM ACDE DCB+ = =
1

2

A P B

R C
D

Q
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⇒ + = +[ ] [ ] [ ] [ ]DCM EAM DCM BCM

⇒ =[ ] [ ]EAM BCM

⇒ [EAM] + [AMB] = [BCM] + [AMB] (Adding [AMB] to both sides)

⇒ [EMB] = [ABC] (2)

\ From Eqs. (1) and (2), we get, [FNC] = [EMB]

⇒ × = ×
1

2

1

2
FC AN EB AM

⇒ AN = AM. (FC = EB as FC = FA + AC = AB + AE = EB)

Aliter: ∆ ∆CAN CFG

AN

FG

CA

CF

∼

=

⇒ =
+

AN

AB

CA

AC AB
 (As FG = AB)

⇒ =
⋅
+

AN
AB CA

AC AB
 (1)

Also DBAM ∼ DBED

AM

ED

BA

BE
=

⇒ =
+

AM

AC

AB

AB AC
 (As ED = AC)

⇒ =
⋅
+

AM
AB AC

AB AC
 (2)

From Eqs. (1) and (2)
AN = AM

Example 65 Prove that the feet of the perpendiculars drawn from the vertices of a 
parallelogram onto its diagonals are the vertices of another parallelogram.

Solution: 
Let the diagonals of the given parallelogram ABCD intersects at O and P, Q, R, S are 
the feet of the perpendiculars from the vertices on the diagonals. In triangles OSD and 
OQB, we have ∠ = ∠ = °OSD OQB 90 .

∠ = ∠SOD QOB  (VOA)

OD OB=  (Diagonals bisects each other)

By AAS congruence

∆ ∆OSD OQB≅

⇒ =OS OQ  (CPCT)

Similarly ∆ ∆ORA OPC≅

⇒ =OR OP  (CPCT)

Thus in quadrilateral PQRS, diagonals bisects each other and consequently PQRS 
is a parallelogram.

A B

CD

R Q

S

O

P
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8.9.2 Rectangle

A parallelogram in which any one angle is right angle is called rectangle.

Properties:
 1. Opposite sides are parallel and equal.
 2. Opposite angles are equal and of 90°.
 3. Diagonals are equal and bisects each other.
 4. When a rectangle is inscribed in a circle the diameter of the circle is equal to the 

diagonal of the rectangle.
 5. For the given perimeter of rectangle, a square has the maximum area.
 6. The figure formed by joining the mid-points of the adjacent sides of a rectangle is 

a rhombus.
 7. The quadrilateral formed by joining the intersection of the angle bisectors of a 

parallelogram is a rectangle.
 8. If P is any point in the plane of the rectangle ABCD, then PA2 + PC2 = PB2 + PD2.

8.9.3 Rhombus

A parallelogram in which any two adjacent sides are equal is called rhombus.

Properties:
 1. Opposite sides are parallel.
 2. All sides are equal.
 3. Diagonals are perpendicular bisectors to each other.
 4. Diagonals bisects the opposite pair of angles.
 5. Figure formed by joining the mid-points of the adjacent sides of a rhombus is a rectangle.
 6. A parallelogram is a rhombus if its diagonals are perpendicular to each other.
 7. Any parallelogram circumscribing a circle is a rhombus.

 8. Area of rhombus = ×
1

2
 Product of diagonals

  = Base × Height 
  = Product of adjacent sides × Sine of the included angle

8.9.4 Square

Square is a rectangle whose all sides are equal or a rhombus whose all angles are  equal 
thus each square is a parallelogram, a rectangle and a rhombus.

Properties:
 1. All sides are equal.
 2. Opposite pair of sides are equal.
 3. Diagonals are equal and are perpendicular bisector to each other.
 4. Diagonal of an inscribed square is equal to the diameter of the circumscribing circle. 
 5. Side of a circumscribed square is equal to the diameter of the inscribed circle.
 6. The figure formed by joining the mid-points of the adjacent side of a square is a square 
 7. Angles formed by the diagonals and a side of square is each equal to 45°.

8.9.5 Trapezium

A quadrilateral whose one pair of side is parallel.

Properties:
 1. The line joining the mid-points of the oblique (non-parallel) sides is half the sum 

of the parallel sides.
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 2. If the non-parallel sides are equal then the diagonals will also be equal to each other 
and converse is also true. The corresponding trapezium is called isosceles trapezium.

 3. Diagonals intersects each other proportionally in the ratio of lengths of parallel 

sides, i.e.,
AP

PC

BP

PD

AB

DC
= = .

 4. By joining the mid-points of adjacent sides of a trapezium four similar triangles 
are obtained.

 5. If a trapezium is inscribed in a circle then it is an isosceles trapezium with equal 
oblique sides.

 6. Area of trapezium = ×
1

2
 (sum of the parallel sides) × Height.

 7. If ABCD is a trapezium with AB || CD then AC BD AD BC AB CD2 2 2 2 2+ = + + ⋅
 8. In an isosceles trapezium base angles are equal and other two angles are also equal.
 9. If ABCD is an isosceles trapezium with DORS and diagonals intersects at P then 

following results are true.
      (i) AD = BC
     (ii) AC = BD
    (iii) AP = PB; PD = PC
    (iv) PA PC PB PD× = ×

     (v) PC

PA

PD

PB
=

    (vi) ∠PAB = ∠PBA = ∠PDC = ∠PCD
   (vii) ∠DAB = ∠CBA; ∠ADC = ∠BCD 
  (viii) ∠PAD = ∠PBC; ∠ADB = ∠ACB
    (ix) AC2 = AD2 + AB ⋅ CD

     (x) If PM || AB || CD then 
1 1 1

PM AB CD
= +  or 

AB CD

AB CD

⋅
+

    (xi)  ABCD is a cyclic quadrilateral and then all the properties of cyclic quadri-
lateral also apply. In this case it will be an isosceles trapezium.

Trapezium

Acute Right

Isosceles Rectangle Parallelogram

Square
Rhombus

3-Sides equal

Obtuse

8.9.6 Kite

In a kite two pairs of adjacent sides are equal 

Properties:
 1. AB = BC and AD = CD.
 2. Diagonals intersects at right angle.
 3. Longer diagonal is the perpendicular bisector of shorter diagonal.
 4. The quadrilateral formed by the mid-points of the adjacent the sides of a kite is a rectangle.

 5. Area is 1

2
 product of diagonals 

A

P

D C

B

A

P

D S

M

B

C

B

A
O

D
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Note: Area of any quadrilateral = ×
1

2
Product of diagonals × Sine of the included 

angle between diagonals. 

Example 66 ABCD is a square. M is a mid-point of CD. PQRS is a square of maximum 
possible area in trapezium ABMD. KLNT is another square as shown in diagram whose 
area is 180 2cm .  Find area of square PQRS and area of square ABCD.

Solution:

B

LD

K

S

A P

2x

θ

θ 90° − θ

a

R

Q

N

T a

a
θ

C
x

M

b
b

b

b
θ

θ

Let AB = BC = 2x ⇒ CM = x, Let PQ = a, KL = b, Let ∠CBM = q

In ∆CBM
x

x
, tan sin cosθ θ θ= = ⇒ = =

2

1

2

1

5

2

5
and

In ∆BPQ
a

BP
BP

a
, cosθ = = ⇒

2

5

5

2

In ∆APS
AP

a
AP

a
, sinθ = = ⇒ =

1

5 5

And cosθ = = ⇒ =
AS

a
AS

a2

5

2

5

In ∆KTS
b

KS
KS

b
, cosθ = = ⇒ =

2

5

5

2

In ∆KDL
KD

b
KD

b
, sinθ = = ⇒ =

1

5 5

Since AD = AB

KD KS SA AP PB+ + = +

b b a a a

5

5

2

2

5 5

5

2
+ + = +

⇒ + + = +2 5 4 2 5b b a a a  (Multiplying 2 5 on both side)

⇒ =7 3b a

∴ = ⇒ =
b

a

b

a

3

7

9

49

2

2
⇒ =

180 9

492a
 (As b2 = [KLNT] = 180)

⇒ = = × = ⇒ =[ ]PQRS a a2 20 49 980 14 5

⇒ = = + = + = =
×

=2
5

5

2

7

2 5

7 14 5

2 5
49x AB AP PB

a a a

⇒ = = =[ ] ( ) .ABCD x2 49 24012 2 2cm
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Example 67 In the figure ABCD is a square. E is the mid-point of CB. AF is drawn 
perpendicular to DE. If side of the square is 2017 cm find the length of FB in cm.

Solution:

Construction: Produce DE to cut AB produce at M.

Proof: In DECD and DEBM
∠1 = ∠2 (VOA)

EC = EB (Given)
∠ECD = ∠EBM = 90°
\ By ASA congruences
DECD ≅ DEBM
\ CD = BM
But CD = AB
\ AB = BM
i.e., In right angled triangle AFM, B is the mid-point of the hypotenuse AM
BF = BA = 2017 cm.

Example 68 Let ABCD be a rectangle such that BC = 3AB. P and Q are points on the 
side BC such that BP = PQ = CQ. Using geometrical or trigonometrical relations or 
otherwise show that ∠DBC + ∠DPC = ∠DQC.

Solution: Let CD = x then AD = 3x = BC
\ BP = PQ = QC = x

In DDBC, tanα = =
x

x3

1

3

In DDPC, tan β = =
x

x2

1

2

DDQC, tan tanγ γ= = = °⇒ = °
x

x
1 45 45

Let us consider tan( )
tan tan

tan tan
α β

α β
β

+ =
+

−1 a
=

+

− ⋅
= = = °

1

3

1

2

1
1

3

1

2

5

6
5

6

1 45tan

\α + β = 45° = γ
\∠DQC = ∠DBC + ∠DPC.

Aliter: Using Baudhayana theorem we get

BD x DP x DQ x= = =10 5 2,  and 

Since, 
BD

DP

DQ

PQ

BQ

DQ
= = =

2

1

\ By SSS similarly

\ DBDQ ∼ DDPQ

∠DBQ = ∠PDQ = α
In DDPQ

∠DQC = ∠DPQ + ∠PDQ [By exterior angle property]

⇒ γ = α + β

A B M

E

CD

F

2

1

D

x

x CQPB xx

A

γα β
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Build-up Your Understanding 7

 1. ABCD is a parallelogram. The side CD is bisected at P and BP meets AC at X. 
Prove that 3AX = 2AC.

 2. ABCD is a parallelogram. X divides AB in the ratio 3 : 2 and Y divides CD in the 
ratio 4 : 1. If XY cuts AC at Z, Prove that 7AZ = 3AC.

 3. ABCD is a trapezium with AB || CD and AB = 2CD. If the diagonals meet at O, 
then prove that 3AO = 2AC. If AD and BC meet at F, then prove that AD = DF.

 4. ABCD is a parallelogram. A straight line through A meets BD at X, BC at T and 
OC at Z. Prove that AX : XZ = AY : AZ.

 5. ABCD and AECF are two parallelograms and side EF is parallel to AD. Suppose 
AF and DE meet at X and BF, CE meet at Y, then prove that XY || AB.

 6. In square ABCD, line segments are drawn from A to the mid-point of BC, from B 
to the mid-point of CD, from C to the mid-point of DA, and from D to the mid-
point of AB. The four segments form a smaller square within square ABCD. If AB 
= 1, what is the area of the smaller square?

 7. If area of a parallelogram is 6 units square and an octagon is formed by inter-
sections of lines joining each vertex of the parallelogram to the mid-points of 
opposite sides of it, then find the area of the octagon.

 8. Consider trapezium ABCD such that AB || DC, AB = 4, DC =10, diagonals AC and 
BD are perpendiculars to each other. Sides DA and CB extended meets each other 
at E. ∠DEC = 45°. Find the area of the trapezium.

 9. The distance between two parallel sides AB  and CD  of a trapezoid is 12 units. 

AB = 24 units; CD = 15 units. E is the mid-point of AB . ‘O’ is the point of in-

tersection of DE  with AC . Prove that the area of this quadrilateral EBCO is 

112 sq. units.
 10. ABCD is a quadrilateral and Q, P are mid-points of AB, CD respectively, AP and 

DQ meet at X; BP and CQ meet at Y; Prove, in the usual notation [ADX] + [BCY] 
= [PXQY].

 11. A trapezoid was formed by truncating an isosceles triangle ABC, through two 
points, taken as follows: D on AB and E on AC. BE and CD are connected. 

BE CD F∩ = { }.  The area of the original triangle ABC is 60 cm2 and that of the 

trapezoid is 45 cm2. Find the area of DBFC.
 12. Squares ABDE and ACFG are drawn outside DABC. Let P, Q be points on EG 

such that BP and CQ are perpendicular to BC. Prove that BP + CQ ≥ BC + EG. 
When does equality hold?

 13. Let ABCD be a non-isosceles trapezium in which AB || CD and AB > CD. Further, 
ABCD possesses in-centre I, which touches CD at E. Let, M be the mid-point of 
AB and MI meet CD at F. Show that DE = FC, if and only if, AB = 2 CD.

 14. Let, ABCD be a square, F be the mid-point of DC, and E be any point on AB, such 
that AE > EB. H is a point on BC, such that FH is parallel to DE. Prove that EH is 
tangent to the inscribed circle of the square ABCD.

 15. ABCD is a parallelogram. E and F are the mid-points of AB and AD. Show 
that the area of the quadrilateral AECF is half the area of the parallelogram 
ABCD.

 16. ABCD is a parallelogram and BF is drawn to intersect AC, DC and AD  produced 
at E, G and F, respectively. Prove that EB is the geometric mean of EG and 
EF.

A

CD

B

F

H

E

Geometry Theory Part-1.indd   65 8/11/2017   2:36:26 PM



8.66  Chapter 8

8.10 CONcUrreNcY AND COlliNeAriTY

8.10.1 Definitions

 1. A line segment joining a vertex of a triangle to any point on the opposite side (the 
point may be on the extension of the opposite side also) is called a cevian.

 2. Three straight lines are said to be concurrent if all three passes through a common 
point.

 3. Three points are said to be collinear, if they lie on a straight line.
 4. Directed length: Given are any two distinct points A, B on a straight line. They 

determine a line segment of defi nite length. If we associate with this line segment, 
the direction from A to B, and denote it as AB. Then, the same line segment with 
the direction from B to A is denoted as BA, and we have AB = – BA or AB + BA = 
0. If M is a point on AB, such that M lies between A and B, then we may say that 
M divides the line segment AB in the ratio AM : MB, internally and, if the point 
N lies outside AB, then N divides AB in the ratio AN : NB, externally. Here, NB is 
negative, if we consider the direction from A to B as positive and hence, the ratio 
AN : NB is negative on the other hand ratio AM : MB is positive.

  If A, B, C are three points on a straight line in the order, we introduce a direction 
in the following manner

  AB, BC, AC are taken to be positive and BA, CB, CA are taken to be negative. Thus 
AB + BC = AC and AB + BC + CA = 0

8.10.2 Theorem

If A, B, C and A′, B′, C′ are points on two parallel lines such that 
AB

A B

BC

B C′ ′
=

′ ′
 then 

AA′, BB′, CC′ are concurrent if they are not parallel.

Proof: Let AA′ and BB′ meet at O. where AA′ and BB′ are not parallel. Join OC and 
let it cut A′B′ at C1.
By similarity

BC

B C

OB

OB

AB

A B′
=

′
=

′ ′1

∴
′

=
′ ′

BC

B C

BC

B C1
 As  

AB

A B

BC

B C′ ′
=

′ ′








⇒ ′ = ′ ′B C B C1

⇒ C1 and C′ coincide
Thus CC′ passes through O.

8.10.3 Carnot’s Theorem

Let points D, E, and F be located on the sides BC, AC, and respectively AB of ∆ABC. 
The perpendiculars to the sides of the triangle at points D, E, and F are concurrent if 
and only if

BD2 – DC2 + CE2 – EA2 + AF2 – FB2 = 0

A B C

A

A′
B′

C′

O

B C

C1

Lazare Nicolas
Marguerite, Count Carnot

13 May 1753–2 Aug 1823
Nationality: French

Geometry
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Geometry
Proof: Let us first prove if perpendiculars are concurrent then results hold.
Let O be point of concurrency and  OD, OE, OF are drawn perpendicular to the sides 
BC, CA, AB respectively of a triangle ABC

 BD2 = OB2 – OD2

 DC2 = OC2 – OD2

 ⇒ BD2 – DC2 = OB2 – OC2 (1)

Similarly

 CE2 – EA2 = OC2 – OA2 (2)

 AF2 – FB2 = OA2 – OB2 (3)

Adding Eqs. (1), (2) and (3), we get, 

BD2 – DC2 + CE2 – EA2 + AF2 – FB2 = OB2 – OC2 + OC2 – OA2 + OA2 – OB2 = 0.

Proof of Converse: If D, E, F be points on the sides BC, CA, AB of a triangle ABC 
such that BD2 – DC2 + CE2 – EA2 + AF2 – FB2 = 0, then the perpendiculars at D, E, F 
to the respective sides are concurrent.

Proof: Let the perpendiculars at D, E, to BC, CA respectively meet at O. Let OF’ be 
the perpendicular from O to AB
Using previous result:

 BD2 – DC2 + CE2 – AE2 + AF′2 – F′B2 = 0 (1)

But it is given that

 BD2 – DC2 + CE2 – AE2 + AF2 – FB2 = 0 (2)

∴ From Eqs. (1) and (2)

AF′2 – F′B2 = AF2 – FB2

( )( ) ( )( )

( ) ( )

AF F B AF F B AF FB AF FB

AB AF F B AB AF FB

′ + ′ ′ − ′ = + −

′ − ′ = −

⇒ ′− ′ = −AF F B AF FB  (As  AB ≠ 0)

∴ − ′ = − ′

⇒ ′ = − ′
AF AF FB F B

FF F F

⇒ ′ = ⇒ ′ =2 0 0FF FF

That is, F and F′ coincide

8.10.4 Ceva’s Theorem

If points D, E, F are taken on the sides BC, CA, AB of ΔABC so that the lines AD, BE, 
CF are concurrent at a point P, then

BD

DC

CE

EA

AF

FB
⋅ ⋅ =1  (OR)  BD ⋅ CE ⋅ AF = DC ⋅ EA ⋅ FB

O

A

E

CB D

F

A

E

CDB

O

F′

F

Giovanni Ceva

7 Dec 1647–15 Jun 1734 
Nationality: Italian
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Proof: By Ratio proportion theorem (or area lemma), we have 
[ ]

[ ]

ABD

ADC

BD

DC
=  (1)

And    
[ ]

[ ]

BPD

CPD

BD

DC
=  (2)

∴ From Eqs. (1) and (2)

BD

DC

ABD

ADC

BPD

CPD

ABD BPD

ADC CPD

ABP

AC
= = =

−
−

=
[ ]

[ ]

[ ]

[ ]

[ ] [ ]

[ ] [ ]

[ ]

[ PP]

Let [BPC] = Δ1, [ACP] = Δ2 and [ABP] = Δ3

∴ =
BD

DC

∆
∆

3

2

Similarly 
CE

EA

BPC

APB
= =

[ ]

[ ]

∆
∆

1

3

AF

FB

APC

BPC
= =

[ ]

[ ]

∆
∆

2

1

∴ ⋅ ⋅ = ⋅ ⋅ =
BD

DC

CE

EA

AF

FB

∆
∆

∆
∆

∆
∆

3

2

1

3

2

1

1.

Notes:
 1. In the figure BX and XC are of same sign. CY and YA are of same sign and AZ and 

ZB are of same sign. Thus 

BX

XC

CY

YA

AZ

ZB
⋅ ⋅  is positive.

 2. In Ceva′s theorem, if P lies outside as in the figure, then BX, XC are positive,  CY  

is positive, YA is negative, AZ is positive ZB is negative. Thus 
BX

XC
 is positive; 

CY

YA
 is negative, 

AZ

ZB
 is negative.

Hence 
BX

XC

CY

YA

AZ

ZB
⋅ ⋅  is positive.

Thus 
BX

XC

CY

YA

AZ

ZB
⋅ ⋅ = +1.

8.10.4.1 Trigonometric Form of Ceva’s Theorem

Let X, Y, Z be the points taken respectively  on the sides BC, CA, AB of ΔABC. Then 
the lines AX, BY, CZ are concurrent if only if

sin

sin

sin

sin

sin

sin
.

∠
∠

⋅
∠
∠

⋅
∠
∠

=
CAX

XAB

ABY

YBC

BCZ

ZCA
1

8.10.4.2 Converse of Ceva’s Theorem

If three cevian AX, BY, CZ satisfy 
BX

XC

CY

YA

AZ

ZB
⋅ ⋅ = +1,  then they are concurrent 

A

B CD

EP
F

A

B CX

Y
P

Z

A

P

Y Z

B C
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Proof: Let BY and CZ meet at P
Let AP meet BC at X′.

Then by Ceva’s theorem

           
BX

X C

CY

YA

AZ

ZB

′
′
⋅ ⋅ = +1 (1)

But it is given that

          
BX

XC

CY

YA

AZ

ZB
⋅ ⋅ = +1  (2)

∴From Eqs. (1) and (2) we have
BX

X C

BX

XC

′
′
=

Adding 1 to both sides

BX

X C

BX

XC

′
′
+ = +1 1

⇒
′+ ′
′

=
+

⇒
′
=

⇒ ′ =
′ − =

⇒ ′ =

BX X C

X C

BX XC

XC
BC

X C

BC

XC
X C XC

X C XC

X X

or 0

0

Therefore X′, X coincide. Thus the three cevians are concurrent.

Note: The converse of Ceva’s theorem is more useful than the theorem in the sense 
that most of the elementary theorems regarding concurrency can be proved using the 
theorem

Example 69 Proved that the medians of a triangle are concurrent.

Solution: If D, E, F are the mid-points of BC, CA, AB respectively then BD = DC; CE 
= EA; AF = AB

∴ = = =
BD

DC

CE

EA

AF

FB
1 1 1; ;

∴ ⋅ ⋅ =
BD

DC

CE

EA

AF

FB
1

Thus the Cevians AD, BE, CF are concurrent.
For aliter please refer example 31 on page 8.27.

Example 70 Prove that the altitudes of a triangle are concurrent.

Solution: For acute angle triangle ABC

BE ⊥ CA, CF ⊥ AB

∴ In ΔAEB  and ΔAFC
∠A = ∠A (Common)
∠AEB = ∠AFC = 90°
∴ By AA similarity, ΔAEB ∼ ΔAFC

A

B CX′ X

Y
P

Z

A

B CD

EF

A

B CD

E

H
F
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⇒ =
AF

AE

AC

AB

Similarly AD ⊥ BC then ΔBFC ∼ ΔBDA

⇒ =
BD

BF

BA

BC

Also ΔCEB ∼ΔCDA ⇒ =
CE

CD

CB

CA

∴ ⋅ ⋅ = 





 ⋅






 ⋅








= ⋅

BD

DC

CE

EA

AF

FB

BD

BF

CE

CD

AF

EA

BA

BC

BC

CA
⋅⋅ =
CA

AB
1

Aliter 1:

cot cotB
BD

AD
BD AD B= ⇒ =

cot cotC
DC

AD
DC AD C= ⇒ =

∴ =
BD

DC

B

C

cot

cot

Similarly, 
CE

EA

C

A

AF

FB

A

B
= =

cot

cot

cot

cot
and

∴ ⋅ ⋅ = ⋅ ⋅ = +
BD

DC

CE

EA

AF

FB

B

C

C

A

A

B

cot

cot

cot

cot

cot

cot
1

Hence AD, BE, CF are concurrent

Aliter 2: (Without Ceva’s theorem)
Let BE ⊥ AC, CF ⊥ AB

Let BE, CF intersect at H.
Join AH and produce it to cut BC at D.
Now  we have to prove AD ⊥ BC.

Since ∠BFC = ∠BEC = 90°
∴B, F, E, C are concyclic

∴ ∠BFE + ∠BCE = 180°
90° + ∠CFE + ∠BCE = 180°
∴ ∠CFE + ∠BCE = 90° or ∠CFE + ∠DCA = 90° (1)

Also ∠HFA + ∠HEA = 90° + 90° = 180°
∴ H, F, A, E are concyclic

∴ ∠HFE = ∠HAE
     ⇒ ∠CFE = ∠HAE = ∠DAC (2)

∴ From Eqs. (1) and (2)

∠DAC + ∠DCA = 90°

∴ By ASP of a triangle

A

B CD

F E
H
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In ΔADC

∠ADC = 180° – (∠DAC + ∠DCA) = 180° – 90° = 90°
⇒ AD ⊥ BC.

Example 71 Prove that internal bisectors of the angles of a triangle are concurrent.

Solution: If AX, BY, CZ are the angle bisector then by internal angle bisector theorem 
we have following:

BX

XC

AB

AC
= ;   

CY

YA

BC

BA
=  and 

AZ

ZB

AC

BC
=

∴ ⋅ ⋅ = ⋅ ⋅ = +
BX

XC

CY

YA

AZ

ZB

AB

AC

BC

AB

AC

BC
1

Aliter: Let BI, CI, are the internal angle bisectors of ∠B and ∠C of ΔBAC. Join AI.
Now we have to prove that AI bisects ∠A.

Construction Draw IL ⊥ BC, IM ⊥ AB and IN ⊥ AC

Proof: In ΔIMB and ΔILM

∠IBM = ∠ILM = 90°

 ∠1 = ∠2 (Given)

 IB = IB (Common)

∴ By AAS Congruences

ΔIMB ≅ ΔILB

          ∴ IM = IL  (CPCT) (1)

In ΔINC and ΔILC 

∠INC = ∠ILC = 90°
 ∠3 = ∠4 (Given)
 IC = IC (Common)

∴ By AAS congruences

ΔINC  ≅ ΔILC

        ∴ IN = IL (CPCT) (2)

∴ From Eqs. (1) and (2)

IL = IM = IN

Now in ΔIMA and ΔINA

∠IMA = ∠INA = 90°
 IM = IN (Proved above)

 IA = IA (Common)

∴ By RHS congruences

ΔIMA ≅ ΔINA

⇒ ∠IAM = ∠IAN, i.e., ∠5 = ∠6.

Thus AI bisects ∠A and thus in a triangle all the angle bisectors are concurrent.

A

B X

YZ
I

C

A

N
5 6

2
1

3
4

M

B L C

I
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Notes:

 1. Taking I as a centre and IL as a radius draw a circle which passes through M and 
N and is called in-circle of a triangle, its radius IL is called in-radius and its centre 
I is called in-centre.

 2. If the in-circle of ΔABC touches BC, CA, AB at L, N, M respectively then AL, BN, 
CM, are also concurrent ( the point of concurrence is a called the Gergonne Point 
of ΔABC).

With regard the Gergonne Point, it is interesting to note the following more general 
result which is know as Problem Of Joseph Diez Gergonne.

Example 72 If through the vertices of a ΔABC, two lines AP, BQ of arbitrary length 
are drawn in the direction of C such that AP parallel to BC and BQ parallel to AC, and 
if lines PD and QD are drawn respectively parallel to  BQ and AP, meeting in D, then 
the lines  AQ, BP and CD are concurrent.

D

P

E A z B F

w
y

C Q

x

Proof: Let AQ cut BC in X, BP cut AC in Y and let AQ and BP intersect at W, let DC 
meet AB in Z. We will prove that DC passes through W.

In ΔQXB and ΔAXC

 ∠QXB = ∠AXC (VOA)

 ∠QBX = ∠ACX (Alternate interior angles)

∴ By AA similarity ΔQXB ∼ ΔAXC

                ∴ =
BX

XC

QB

AC
 (1)

In ΔBYC and ΔPYA

∠BYC = ∠PYA (VOA)

 ∠BCY = ∠PAY (Alternate interior angles)

∴ By AA similarly

ΔBYC ∼ΔPYA

            ⇒ =
CY

YA

BC

AP
 (2)

Joseph Diaz Gergonne

19 Jun 1771–4 May 1859 
Nationality: France
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Let DP and BA meet in E and let DQ, AB meet in F.
In ΔEAP and ΔBFQ

 ∠EAP = ∠ABC = ∠BFQ (Corresponding angles)

 ∠AEP = ∠BAC = ∠FBQ (Corresponding angles)

∴ΔEAP ∼ΔABC ∼ΔBFQ

So from ΔEAP ∼ΔABC, we get,

  ∴ = = =
EA

AB

AP

BC

PE

CA
λ  (3)

And from ΔBFQ ∼ΔABC, we get,

        
BF

AB

FQ

BC

QB

CA
= = = µ  (4)

Hence
EA

AB
BF

AB

=
λ
µ

          ⇒ =
EA

BF

λ
µ

 (5)

Since in ΔAZC and ΔEZD

 ∠ZAC = ∠ZED (Corresponding)
 ∠AZC = ∠EZD (Common)

∴ By AA similarity

ΔAZC ∼ ΔEZD

           ⇒ =
AZ

EZ

ZC

ZD
 (6)

Also, In ΔZBC and ΔZFD

 ∠ZBC = ∠ZFD (Corresponding angles)
 ∠BZC = ∠FZD (Common)

∴ By AA similarly

ΔZBC ∼ΔZFD

 ∴ =
ZB

ZF

ZC

ZD
 (7)

From Eqs. (6) and (7)

AZ

EZ

ZB

ZF
=

 ⇒ = =
−
−

= =
AZ

ZB

EZ

ZF

EZ AZ

ZF ZB

EA

BF

λ
µ

 (8)

From Eqs. (1) and (4) 
BX

XC

QB

AC
= = µ  (9)
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From Eqs. (2) and (3) 
CY

YA

BC

AP
= =

1

λ
   (10)

∴ From Eqs. (8), (9) and (10), we get

AZ

ZB

BX

XC

CY

YA
⋅ ⋅ = ⋅ ⋅ =

λ
µ

µ
λ
1

1

Hence by converse of Ceva’s theorem the lines AQ, BP and CD are concurrent at W.

Notes:
 1. If we take AP = BQ = AB, then

  
AZ

ZB

AP BC

QB CA

CA

CB
= = =
λ
µ

/

/
 (from Eqs. (9) and (10))

  Also 
BX

XC

QB

AC

AB

AC
= =  (from Eq. (1))

  Thus by converse of internal angle bisector theorem CZ and AX are angle bisector 
of ∠C and ∠A respectively and hence W is the in-centre of ΔABC.

 2. If we take AP = BC and BQ = AC then from Eqs. (2) and (1), 
CY

YA
=1,  i.e., CY = 

YA and 
BX

XC
=1,  i.e., BX = XC then W is the centroid of ΔABC.

 3. Finally if X and Y are the points of contact of the in-circle and P is taken as the 
point at which BY cuts the parallel through A and Q the point at which AX cuts the 
parallel through B, then W is the Gergonne Point of ΔABC.

Example 73 Prove that the internal angle bisector of an angle of a triangle and the 
other two external bisectors are concurrent. 

Solution: Given In ∆ABC 
AX, is the internal angle bisector of ∠BAC. BY, CZ are the exterior angle bisector of 
∠B and ∠C which cuts AC produced at Y and AB produced at Z respectively.

To prove: AX, BY, CZ are concurrent 

Proof: In ∆ABC by internal angle bisector theorem 
AB

AC

BX

XC
=

By exterior angle bisector theorem 
BC

BA

CY

YA
=  and 

CA

CB

AZ

ZB
=

∴ ⋅ ⋅ = × × = +
BX

XC

CY

YA

AZ

ZB

AB

AC

BC

AB

AC

BC
1

Note: Here CY is positive and YA is negative

∴
CY

YA
 is negative and AZ is positive and ZB is negative

∴
AZ

ZB
 is negative but their product is positive.

Aliter: Let BI1, CI1 are the exterior angle bisectors. Join AI1 
Now our aim is to prove AI1 is the angle bisector of ∠BAC 

Construction: Draw I1U ⊥ BC

I1V ⊥ AB produced

I1W ⊥ AC produced 

A

B C

I1

X

YZ

A

B

1
2 2

4

C

W
V

U

I1
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Proof: In ∆BI1U and ∆BI1V 

∠BUI1 = ∠BVI1 = 90°
 ∠1 = ∠2 (Given)
 BI1 = BI1 (Common) 

∴ By AAS congruencies

∆ ≅ ∆BUI BVI1 1

 ⇒ =I U I V1 1  (1)

In ∆CUI1 and ∆CWI1 

∠ = ∠ = °
∠ = ∠

CUI CWI1 1 90

3 4
 CI CI1 1=  (Common) 

∴ By AAS congruence

∆ ≅ ∆CUI CWI1 1

  I U I W1 1=  (2)

∴ From Eqs. (1) and (2) I U I V I W1 1 1= =  (3)
In ∆AVI1 and ∆AWZ1

∠ = ∠AVI AWI1 1

 I V I W1 1=  (From Eq. (3))

 AI AI1 1=  (Common)

∴ By RHS congruence 

∆ ≅ ∆
⇒ ∠ = ∠

AVI AWI

I AV I AW
1 1

1 1

Hence AI1 bisects ∠BAC.

Example 74 Let ABC be a triangle and let D, E, F be the points on its sides such that 
starting at A, D divides the perimeters of the triangle into two equal parts, starting 
at B, E divides the perimeter of the triangle into two equal parts and starting at C, F 
divides the perimeter of the triangle into two equal parts. Prove that D, E, F, lie on the 
sides BC, CA, AB respectively and the lines AD, BE, CF are concurrent. 

Solution: Let 2s a b c= + +  be the perimeter of ∆ABC.
Now c < a + b and b < c + a  ⇒ c + c < a + b + c and b + c + a < c + a + c + a

⇒ < + + < +
⇒ < < +
⇒ < < +

= < = + < + =

2 2

2 2 2

c a b c c a

c s c a

c s c a

AB c s AB BD c a A

( )

( )

,So BB BC

i e AB BD AB BC

D BC

+
+ < +

∴
. .

.

, 

 lies on 

Similarly E lies on CA and F on AB 
Also

c BD s DC b

BD s c DC s b

+ = = +
∴ = − = − and 

A

C
D
a

B

bc EF
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and a + CE = s = EA + C

⇒ = − = −CE s a EA s c;

and b + AF = s = FB + a

⇒ = − = −AF s b FB s a and  

Hence

BD

DC

CE

EA

AF

FB

s c

s b

s a

s c

s b

s a
⋅ ⋅ =

−
−









−
−









−
−







 =1

Hence by converse of ceva’s theorem  AD, BE and CF are concurrent.

Note: D, E, F are the points where ex-circles are touching the sides of the triangle. 

Example. 75 If the ex-circle of ∆ABC, opposite the vertices A, B, C touch  BC, CA, 
AB at X1, Y2, Z3 respectively then prove that AX1, BY2, CZ3 are concurrent (the point of 
concurrence is called the Nagel Point of ∆ABC).

Solution: Let the ex-circle opposite A touch AC produced at Y1 and AB produced at Z1 
then BX1 = BZ1, and CX1 = CY1 
And 

AZ1 = AY1

Hence AB + BZ1 = AC + CY1 

AB BX AC CX AB BX X C AC+ = + = + + +1 1 1 1
1

2
( )

∴ + = + = + + =AB BX AC CX AB BC CA1 1
1

2
( ) s

Hence X1 bisects the perimeter of ∆ABC and lies on BC.
Similarly Y2, Z3 lies on AC and AB and bisects the perimeter of ∆ABC. 
Also BX1 = s – c , CX1 = s – b,  CY2 = s – a , AY2 = s – c , AZ3 = s – b  and  BZ3 = s – a 

∴ ⋅ ⋅ =
−
−









−
−









−
−









BX

X C

CY

Y A

AZ

Z B

s c

s b

s a

s c

s b

s a
1

1

2

2

3

3

⇒⇒ ⋅ ⋅ =
BX

X C

CY

Y A

AZ

Z B
1

1

2

2

3

3

1

Hence by converse of Ceva’s Theorem, AX1, BY2, CZ3 are concurrent.

Example 76 M is an interior point of a triangle ABC. Bisectors of interior angles  
BMC, CMA, AMB intersect BC, CA, AB respectively at X, Y, Z. Prove that AX, BY, CZ 
are concurrent. 

If P is the point of concurrence and 
PA

PX

PB

PY

PC

PZ
⋅ ⋅ = 8,  then show that M is the cir-

cumcentre and P is the centroid of ∆ABC.

Solution: In ∆MBC 
MX is the angle bisector of ∠BMC

So 
BX

XC

MB

MC
=

Christian Heinrich
van Nagel

28 Feb 1803–27 Oct 1882 
Nationality: German

A

B C
X1

Y1Z1

I1

A

M

C
X

YZ

B

Geometry Theory Part-2.indd   76 8/11/2017   2:44:18 PM



Geometry  8.77

Similarly in ∆MCA, MY bisects ∠AMC and by internal angle bisector theorem 

MC

MA

CY

YA
=  and in ∆AMB, 

MA

MB

AZ

ZB
=

∴ ⋅ = ⋅ ⋅ =
BX

XC

CY

YA

AZ

ZB

MB

MC

MC

MA

MA

MB
. 1

Hence by converse of Ceva’s theorem AX, BY, CZ are concurrent. 
If P is the point of concurrence of AX, BY, CZ. Let  [BPC] = Δ1, [APC] = Δ2, [APB] = Δ3

∴ =
[ ]
[ ]

=
[ ]
[ ] =

[ ]+ [ ]
[ ]+ [ ] =

[ ]+PA

PX

APB

BPX

APC

PCX

APB APC

BPX PCX

APB APPC

BPC

PA

PX

[ ]
[ ]

∴ =
∆ + ∆
∆

3 2

1

Similarly 
PB

PY
=
∆ + ∆
∆

1 3

2
 and 

PC

PZ
=
∆ + ∆
∆

2 1

3

∴ ⋅ ⋅ =
∆ + ∆
∆











∆ + ∆
∆











∆ + ∆
∆









 =

PA

PX

PB

PY

PC

PZ
3 2

1

1 3

2

2 1

3

8  (Given)

Since AM ≥ GM.

i.e., 
a b

ab a b ab
+

≥ + ≥
2

2 or 

∴ ∆ + ∆ ≥ ∆ ∆1 2 1 22

Similarly ∆ + ∆ ≥ ∆ ∆2 3 2 32  and ∆ + ∆ ≥ ∆ ∆3 1 3 12

∴ ∆ + ∆ ∆ ∆ ∆ ∆ ≥ ∆ ∆ ∆

∴
∆ + ∆
∆










∆

Multiplying ( )( + )( + ) 81 2 2 3 3 1 1 2 3

1 2

3

2 ++ ∆
∆










∆ + ∆
∆









 ≥

3

1

3 1

2

8

Thus equality holds if ∆ = ∆ = ∆1 2 3

i.e., 
BX

XC

ABX

ACX

PBX

PCX

ABX PBX

ACX PCX

ABP

APC
=
[ ]
[ ] =

[ ]
[ ] =

[ ]−[ ]
[ ]−[ ] =

[ ]
[[ ] =

∆
∆

3

2

As ∆ = ∆3 2

∴ = ⇒ =
BX

XC
BX XC1

But MX is the bisector of ∠BMC, and BX = XC 
∴ ∆MBC of an isosceles triangle MB = MC. Similarly MC = MA.
Thus M is the circumcentre of ∆ABC.
Since BX = XC   ∴ AX is a median similarly BY, CZ are also medians. 
∴ Their point of intersection P is the centroid of the triangle.

Example 77 AD, BE, CF are three concurrent lines drawn from the vertices of the 
triangle ABC to points D, E, F on the opposite sides. If AD is an altitude of the triangle 
ABC, show that AD bisects the angle ∠FDE.

CA X

B

Z Y
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8.78  Chapter 8

Solution: Through A, draw a line parallel to BC. 
DE meets this line at X and DF meets this line at Y. 
Consider ∆AXE and ∆CDE 

 ∠AEX = ∠CED (VOA)

 ∠EAX = ∠ECD (Alternate interior angles)

∴ By AA similarly 

⋅∆ ∆AXE CDE∼

            ∴ =
CE

EA

CD

AX
 (1)

Similarly ⋅∆ ∆AFY BFD∼

                ∴ =
AF

FB

AY

BD
 (2)

Since the lines AD, BE, CF are concurrent 
∴ By Ceva’s theorem 

              
BD

DC

CE

EA

AF

FB
⋅ ⋅ =1 (3)

∴ From Eqs. (1), (2) and (3) we get 

BD

DC

CD

AX

AY

BD
⋅ ⋅ =1

⇒ = ⇒ =
AY

AX
AY AX1

Since AD ⊥ BC and ∠DAX = ∠ADB = 90° (Alternate interior angles) 

∴ ∠ = ∠ = °DAX DAY 90  and AX = AY

∴ DA is the perpendiculars bisector of XY. DXDY is an isosceles triangle 

∴ ∠XDA = ∠YDA
⇒ ∠ = ∠EDA FDA

∴ AD bisects ∠EDF.

Note: If AD, BE, CF are the altitudes and their point of intersection is H, (orthocentre) 
then  DH  bisects ∠EDF and EH bisects ∠DEF and hence H is the in-centre of orthic 
triangle DEF.

Example 78 In any triangle ABC, the median AM, the altitude BH and the angle bisec-
tor CD are concurrent. Prove, in the usual notation for the triangle,

b c a

b a c

b

a

2 2 2

2 2 2

+ −
+ −

= .

Solution:
Assume AH = x; 

∴ HC = b – x.

By bisector theorem, 
BD

DA

BC

AC

a

b
= =

AY X

F
E

CDB

A H

B

b
x b − x

ac D

C

M

a
2

a
2
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Also BM = CM. 

By Ceva’s theorem, 
AH

HC

CM

MB

BD

DA
⋅ ⋅ =1 ⇒ =

AH

HC

b

a
 (1)

Consider right angled triangle ABH where BH2 = c2 – x2 
And from right triangle BHC, BH2 = a2 – (b – x)2.
Thus,

c x a b x bx

x
b c a

b

b x b
b c a

b

b a c

2 2 2 2 2

2 2 2

2 2 2 2 2 2

2

2

2 2

− = − − +

⇒ =
+ −

∴ − = −
+ −

=
+ −

bb

AH

HC

x

b x

b c a

b

b

b a c

i e
b

a

b c a

b a

Thus,

,

=
−

=
+ −

×
+ −

=
+ −
+

2 2 2

2 2 2

2 2 2

2

2

2

. .
22 2− c

. (From Eq.(1))

Example 79 Let ABC be an equilateral triangle and let P be a point in its interior. Let 
the lines AP, BP, CP meet the sides BC, CA, AB at A1, B1, C1 respectively.
 (i) Prove the inequality: A1B1 ⋅ B1C1 ⋅ C1A1 ≥ A1B ⋅ B1C ⋅ C1A.
 (ii) When does the equality hold?

Solution:

Now, cos cosC = ° =60
1

2
.

Apply cosine formula for A1B1 in ∆ A1B1C.

A B CA CB CA CB C

i e A B CA CB CA CB

1 1
2

1
2

1
2

1 1

1 1
2

1
2

1
2

1 1

2= + − ⋅ ⋅

= + − ⋅

cos

. ., Ass

This is like

cosC

x y xy

=







+ −

1

2
2 2

Apply Sophie inequality: x y xy x y2 2+ ≥ ∈( )where , �

      ∴ ≥ ⋅A B CA CB1 1
2

1 1  (1)

Similarly B C AB AC C A BA BC1 1
2

1 1 1 1
2

1 1≥ ⋅ ≥ ⋅and

Thus A B B C C A CA CB AB AC BA BC1 1
2

1 1
2

1 1
2

1 1 1 1 1 1⋅ ⋅ ≥ ⋅ ⋅ ⋅ ⋅ ⋅( )  (2)

But by Ceva’s theorem, as the lines AA1, BB1, CC1 are concurrent, we have,

BA CB AC CA BC AB1 1 1 1 1 1⋅ ⋅ = ⋅ ⋅ .

Thus Eq. (2) becomes 

                                       ( ) ( )A B B C C A BA CB AB1 1 1 1 1 1
2

1 1 1
2⋅ ⋅ ≥ ⋅ ⋅  (3)

∴ ⋅ ⋅ ≥ ⋅ ⋅A B B C C A A B B C C A1 1 1 1 1 1 1 1 1

Equality holds if CA1 = CB1; AB1 = AC1; BA1 = BC1.
This happens when P is the centre of the incircle of ∆ABC.

A

A1

B1C1

B

P

60°

60°
60° C
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Build-up Your Understanding 8

 1. Prove that the necessary and sufficient condition that lines from the vertices A, B, 
C of ∆ABC to points X, Y, Z on the opposite sides are concurrent is that 

  
sin

sin

sin

sin

sin

sin

∠
∠

⋅
∠
∠

⋅
∠
∠

= +
BAX

CAX

CBY

ABY

ACZ

BCZ
1

 2. Three squares are drawn on the sides of ∆ABC (i.e., the square on AB has AB as 
one of its sides and lies outside ∆ABC. Show that the lines drawn from the verti-
ces A, B, C to the centres of the opposite squares are concurrent.

 3. Let ABC be a triangle, and let D, E, F be the feet of the altitudes from A, B, C. 
Construct the incircles of triangles AEF, BDF, and CDE; let the points of tan-
gency with DE, EF, and FD be C″, A″, and B″, respectively. Prove that AA″, BB″, 
CC″ concurrent.

 4. Three circles (whose centres form the vertices of a triangle) touch two by two. 
Prove that the three common tangents at the points of contact are concurrent.

 5. In an acute triangle ABC with AB ≠ AC, let V be the intersection of the angle 
bisector of A with BC, and let D be the foot of the perpendicular from A to BC. If 
E and F are the intersections of the circumcircle of AVD with CA and AB, respec-
tively, show that the lines AD, BE, CF concurrent. [Korea MO, 1997]

 6. Let ABCDEF be a convex cyclic hexagon. Prove that AD, BE, CF are concurrent 
if and only if AB ⋅ CD ⋅ EF = BC ⋅ DE ⋅ FA.

 7. If a given straight line AB is divided internally at P and externally at Q in the same 
ratio, then AB is said to be divided harmonically at P and Q. P and Q are called 
the harmonic conjugates of A and B. D, E, F are points on the sides BC, CA, AB 
of a triangle such that AD, BE, CF are concurrent, If EF cuts BC produced at D′, 
prove D and D′ are the harmonic conjugates of B and C.

 8. The circles kl and k2 with respective centres O1 and O2 are externally tangent at 
the point C, while the circle k with centre O is externally tangent to k1 and k2. Let 
l be the common tangent of k1 and k2 at the point C and let AB be the diameter of 
k perpendicular to l. Assume that O and A lie on the same side of l. Show that the 
lines AO1, BO2, l have a common point. [Bulgaria MO, 1996]

 9. Let ABC be a triangle. Construct rectangles ACDE, AFGB, and BHIC, one on 
each side of ABC. Prove that the perpendicular bisectors to the segments EF, GH, 
and ID are concurrent.

 10. A line from vertex C of ΔABC bisects the median from A. Prove that it divides the 
side AB in the ratio 1 : 2. 

 11. Triangle ABC is inscribed in ΔXYZ and circumscribed about ΔPQR. If AP, BQ, 
CR are concurrent and AX, BY, CZ are concurrent, prove that PX, QY, RZ are 
 concurrent.

 12. The in-circle of ΔABC touches the sides BC, CA, AB at D, E, F, respectively. 
The centres of ex-circles opposite A, B, C are P, Q, R. Show that PD, QE and RF 
concurrent.

 13. Triangle ABC has in-centre I. The in-circle touches BC, CA at P and Q, respec-
tively. A′, C′ are mid-points of sides BC, AB. Prove that the lines AF, PQ, A′C′ are 
concurrent.

 14. In ΔABC, the in-circle S touches the sides BC, CA, AB at D, E, F. Let, P be any 
point within the circle and, let the segments AP, BP, CP meet S at X, Y, Z. Prove 
that DX, EY, FZ are concurrent.

Geometry Theory Part-2.indd   80 8/11/2017   2:44:23 PM



Geometry  8.81

8.10.5 Menelaus Theorem

If a transversal cuts the sides BC, CA, AB of a triangle ABC at X, Y, Z respectively then 
BX

XC

CY

YA

AZ

ZB
⋅ = −1

Proof: Let h1, h2, h3 be the lengths of perpendiculars AP, BQ, CR respectively from A, 
B, C on the transversal.

A

P

B C

Z
Q

K

Y
R

X

h1
h2

h3

Figure (i)

A

B

Z

C
x

yRP
Q

h1

h2 h3

Figure (ii)

In ∆BQX and ∆CRX 

∠ = ∠ = °BQX CRX 90

 ∠BXQ = ∠CXR (Common)

∴ By AA similarly 

⋅∆ ∆BQX CRX∼

∴ = =
BX

XC

BQ

CR

h

h
2

3

Similarly ⋅∆ ∆CRY APY∼

∴ = =
CY

YA

CR

AP

h

h
3

1

and ⋅∆ ∆APZ BQZ∼

∴ = =

∴ ⋅ ⋅ = ⋅ ⋅ =

AZ

ZB

AP

BQ

h

h

BX

XC

CY

YA

AZ

ZB

h

h

h

h

h

h

1

2

2

3

3

1

1

2

1

Menelaus of Alexandria

c. 70 CE–c. 140 cE

Nationality: Greek
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In Figure (i) as per the directed line segments we have BX is positive and XC is nega-

tive. Therefore 
BX

XC
 is negative and the other two ratios are positive.

∴ ⋅ ⋅ = −
BX

XC

CY

YA

AZ

ZB
1.

Remark: You may take 
BZ

ZA

AY

YC

CX

XB
⋅ ⋅ = −1

In second figure (when transversal cutting all the sides externally)
As per directed line segments we have BX is positive but XC  is negative.

∴
BX

XC
 is negative and also CY is positive but YA is negative.

∴
CY

YA
 is also negative and AZ is positive but ZB is negative.

∴
AZ

ZB
is negative.

Thus 
BX

XC

CY

YA

AZ

ZB
, ,  all are negative 

∴ ⋅ ⋅ = −
BX

XC

CY

YA

AZ

ZB
1

8.10.5.1 Converse of Menelaus Theorem

If X, Y, Z are three points on each of the sides BC, CA, AB, of ∆ABC or on their exten-

sions such that 
BX

XC

CY

YA

AZ

ZB
⋅ ⋅ = −1,  then X, Y, Z are collinear.

Proof: Since it is given that X, Y, Z are on BC, CA, AB, or on their extensions such that 

BX

XC

CY

YA

AZ

ZB
⋅ ⋅ = −1  (1)

Let if possible ZY produced meets BC produced at ′X .

∴ By Menelaus theorem

 
BX

X C

CY

YA

AZ

ZB

′
′
⋅ ⋅ = −1 (2)

∴ From Eqs. (1) and (2) 
BX

XC

BX

X C
=

′
′

Subtract 1 from both sides 
BX

XC

BX

X C
− =

′
′
−1 1

⇒
−

=
′− ′
′

=
′

⇒ =
′

BX XC

XC

BX X C

X C
BC

XC

BC

X C

XC X C

1 1

A

Z
Y

B C X X′

Y

A
Z

B
C X X′
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XC X C

X C XC

XX

= ′
′ − =
′ =

0

0

That is, X and ′X  coincides and thus X, Y, Z are collinear.

Note: The reader may have a doubt that whether X lies on the right or left of X’. In the 
proof given above X has been taken on the left of X’. If X lies on the right of X’ then 
also you can prove.

Example 80 In a triangle ABC, AB = AC. A transversal intersects AB and AC internally 
at K and L respectively. It intersects BC produced at M. If KL = 2LM, find  KB/LC.

Solution: In ∆AKL, consider BCM as the transversal which intersects AK, AL, KL at 
B, C and M respectively.
∴ By Menelaus theorem 

KB

BA

AC

CL

LM

MK
⋅ ⋅ = −1  (As AB AC= )

KB

CL
× = −

1

3
1  (As KL LM KM LM= ⇒ =2 3 )

KB

CL

KB

LC
= − ⇒ =3

3

1
.

Example 81 ABC is a triangle and D and E are interior points of the sides AB and BC 

respectively such that 
AD

DB
=

1

3
 and 

CE

EB
= 3. If AE and CD intersect at F, find 

CF

FD
.

Solution:
In ∆BCD, consider EFA as a transversal.

It cuts BC, CD, DB at E, F and A respectively.
Then by Menelaus theorem 

        
BE

EC

CF

FD

DA

AB
⋅ ⋅ = −1  (1)

Since 
AD

DB

AD

AB
= ⇒ =

1

3

1

4

Also 
CE

EB
= 3 ⇒ =

BE

EC

1

3

∴ Eq. (1) becomes 
1

3

1

4
1⋅ ⋅ = −

CF

FD

CF

FD
=
−12

1
 or 

CF

FD
=

12

1

Aliter:

Construction: Join BF and produce it to cut AC at G 
Since by Ceva’s theorem 

A

C

K
L

MB

2
1

A

D

C

F

EB
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AD

DB

BE

EC

CG

GA
CG

GA
CG

GA

⋅ ⋅ =

⋅ ⋅ =

∴ =

1

1

3

1

3
1

9

1

Also by van Aubel’s theorem, we get 
CF

FD

CG

GA

CE

EB
= + = + =

9

1

3

1

12

1

Example 82 On the sides BC, CA, AB of ΔABC, points D, E, F are taken in such a way 

that 
BD

DC

CE

EA

AF

FB
= = =

2

1
.  Show that the area of the triangle determined by the lines 

AD, BE, CF is 
1

7
 of area of ΔABC.

Solution:

A

E
P

QF

B
C

D

R

1

1

1

2

2

2

Using Menelaus theorem in ∆ABD ⋅with transversal CF, we get 
AR

RD

DC

CB

BF

FA
× × =1

 ⇒ × × =
AR

RD

1

3

1

2
1 ⇒ =

RD

AR

1

6
. Also ADC ABC[ ] = [ ] =1

3

1

3
∆

Now, [ ]ARC ADC= [ ] =6

7

2

7
∆ . Similarly, BQC[ ] = ×

2

7
∆  and APB[ ] = ×

2

7
∆

Now PQR ABC ARC BQC APB[ ] = [ ]−[ ]−[ ]−[ ] = − − −∆ ∆ ∆ ∆
2

7

2

7

2

7

⇒[ ] = ×PQR
1

7
∆.

Example 83 ABC is a triangle; P, Q are points on AB, so that, 6PQ = 3AP = 2QB; R, S 
are points on AC, such that, 6RS = 3SC = 2AR. Prove that, PR, QS and BC ( produced) 
are concurrent.

Solution:

Let, 6 3 2PQ AP QB c= = =

∴ = = =PQ
c

AP
c

QB
c

6 3 2
; ; .

A

D

G

C

F

EB

A

T

Q

P

B

S

R

C
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Also let, 6 3 2RS SC AR b= = =

∴ = = =RS
b

SC
b

AR
b

6 3 2
; ; .

Applying Menelaus’ theorem to first and second figures

 
BT

T C

CR

RA

AP

PB

BT

T C

CS

SA
1

1

2

2

1






















 = −















and











 = −

AQ

QB
1 (1)

(Where PRT1 and QST2 are transversals to first and second figure respectively)

⇒









































= − ⇒ = −

BT

T C

b

b

c

c
BT

T C
1

1

1

1

2

2

3
2

3

1 22

3
2

3

2

2

12

2

2And 
BT

T C

b

b

c

c
BT








































= − ⇒

TT C2

2= −

This means 
BT

T C

BT

T C
1

1

2

2

=  implying BC is divided externally in the same ratio at two 

distinct points T1 and T2.
This is not possible implying T1 = T2 = T (T1, T2 must coincide). Thus PR, QS, BC 

(produced) are concurrent at T. 

Example 84 Prove that the tangents at the vertices of a triangle to its circumcircle 
meets the opposite sides in three collinear points.
Given In ∆ABC, tangent at A to the circumcircles meets CB produced at D. Tangent 
at B to the circumcircle meets CA produced at E and tangent at  C to the circumcircle 
meets BA produced at F.

To prove D, E, F are collinear points

Proof: In ∆DAB and ∆DCA 

 ∠ADB = ∠ CDA (Common)

 ∠DAB = ∠ DCA (Alternate segment theorem)

∴ By AA similarly ⋅∆ ∆BAD ACD~

∴ = = =
BD

AD

AD

CD

BA

AC

c

b

Now 
BD

AD

AD

CD

AB

AC
⋅ = 








2

⇒ = =
BD

CD

AB

AC

c

b

2

2

2

2

⇒ =
−BD

DC

c

b
BD DC

2

2
( )∵  and  are in opposite directions

A

T1

P

a

bc

Q

R

C

b
2

2c
3

c
3

b
2

A

T2

Q

a

bc

B

S

C

2b
3

c
2

c
2

b
3

F

E

BD

A

a

b
c

C
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Similarly, 
CE

EA

a

c
=
− 2

2   and  
AF

FB

b

a
=
− 2

2   

∴ ⋅ ⋅ =
−







−







−





 = −

BD

DC

CE

EA

AF

FB

c

b

a

c

b

a

2

2

2

2

2

2
1

∴ By converse of Menelaus theorem D, E, F are collinear.

Example 85 Three points X, Y, Z are taken on the sides BC, CA, AB respectively of a 
∆ABC such that AX, BY, CZ are concurrent. YZ meets BC in X ′. ZX meets AC in Y ′, XY 
meets BA in Z ′. Prove that 

 (i) X ′, Y ′, Z ′ are collinear 
 (ii) AX, BY ′, CZ ′ are concurrent 
 (iii) AX ′, BY, CZ ′ are concurrent
 (iv) AX ′, BY ′, CZ are concurrent

Solution: Since AX, BY, CZ are concurrent 
∴ By Ceva’s theorem 

 
BX

XC

CY

YA

AZ

ZB
⋅ ⋅ =1 (1)

The transversal X ′YZ cuts the sides of ∆ABC, by Menelaus theorem 

 
BX

X C

CY

YA

AZ

ZB

′
′
⋅ ⋅ = −1 (2)

Y′

Z′

X′

Z

A

Y

X

B C

Similarly the transversal ZXY ′ and XYZ ′ with respect to ∆ABC

 
BX

XC

CY

Y A

AZ

ZB
⋅

′
′
⋅ = −1 (3)

 
BX

XC

CY

YA

AZ

Z B
⋅ ⋅

′
′
= −1 (4)

 (i) To prove X ′, Y ′, Z ′ are collinear take those equations which include X ′, Y ′, Z ′. 
So multiplying Eqs. (2), (3) and (4) we get 
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BX

X C

CY

YA

AZ

ZB

BX

XC

CY

Y A

AZ

ZB

BX

XC

CY

YA

AZ′
′
⋅ ⋅






 ⋅

′
′
⋅






 ⋅ ⋅

′
′ZZ B







 = − × − × −( ) ( ) ( )1 1 1

⇒
′
′

⋅ ⋅







′
′

⋅ ⋅







′
′

BX

X C

BX

XC

CY

YA

AZ

AB

CY

Y A

BX

XC

CY

YA

AZ

ZB

AZ

Z BB
= −1

  ∴ By using Eq. (1), we get,  
BX

X C

CY

Y A

AZ

Z B

′
′
⋅

′
′
⋅

′
′
= −1

  ∴ By converse of Menelaus theorem X ′, Y ′, Z ′ are collinear 
 (ii) Now to prove AX, BY ′, CZ ′ are concurrent take those equations which includes 

X, Y ′, Z ′ 
  Thus multiplying Eqs. (3) and (4), we get

BX

XC

CY

Y A

AZ

ZB

BX

XC

CY

YA

AZ

Z B
⋅

′
′
⋅






 ⋅ ⋅

′
′







 = − −( )( )1 1

⇒ ⋅
′
′
⋅

′
′







 ⋅ ⋅





 = +

BX

XC

CY

Y A

AZ

Z B

BX

XC

CY

YA

AZ

ZB
1

⇒ ⋅
′
′
⋅

′
′
=

BX

XC

CY

Y A

AZ

Z B
1

  Thus by converse of Ceva’s theorem AX, BY ′, CZ ′ are concurrent 
 (iii) Multiplying Eqs. (2) and (4), we get

BX

X C

CY

YA

AZ

ZB

BX

XC

CY

YA

AZ

Z B

′
′
⋅ ⋅






 ⋅ ⋅

′
′







 = − −( )( )1 1

⇒
′
′
⋅ ⋅

′
′







 ⋅ ⋅





 = +

⇒
′
′
⋅

BX

X C

CY

YA

AZ

Z B

BX

XC

CY

YA

AZ

ZB

BX

X C

CY

1

YYA

AZ

Z B
⋅

′
′
=1

  ∴ By converse of Ceva’s theorem  AX ′, BY, CZ ′ are concurrent 
 (iv) Multiplying Eqs. (2) and (3) we get

BX

X C

CY

YA

AZ

ZB

BX

XC

CY

Y A

AZ

ZB

′
′
⋅ ⋅






 ⋅

′
′
⋅






 = − −( )( )1 1

⇒
′
′
⋅

′
′
⋅






 ⋅ ⋅





 =

BX

X C

CY

Y A

AZ

ZB

BX

XC

CY

YA

AZ

ZB
1

⇒
′
′
⋅

′
′
⋅ =

BX

X C

CY

Y A

AZ

ZB
1

∴ By converse of Ceva’s theorem  AX ′,  BY ′,  CZ  are concurrent 

Example 86 A transversal cuts the sides AB, BC, CD, DA of a quadrilateral at P, Q, R, 

S respectively prove that 
AP
PB

BQ
QC

CR
RD

DS
SA

⋅ ⋅ ⋅ = +1

Construction: Join AC which cuts the line at T 

Solution: In ∆ABC and ∆ADC apply Menelaus theorem on the given transversal, we 
get

 
AP

PB

BQ

QC

CT

TA
⋅ ⋅ = −1  (1)

A

D
S

T R

C
Q

P

B
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and 
CT

TA

AS

SD

DR

RC
⋅ ⋅ = −1  (2)

∴ From Eq. (1) ÷ Eq. (2) we get 
AP

PB

BQ

QC

CR

RD

DS

SA
⋅ ⋅ ⋅ = +1

8.10.6 Pappus Theorem

If A, C, E are three points on one straight line. B, D, F on another and if the three lines 
AB, CD, EF meet respectively DE, FA and BC at L, M, N, then these three points L, M, 
N are collinear.

Given: ACE and BDF are any two lines. AB, CD, EF intersects DE, FA, and BC at L, 
M, N respectively

To prove: L, M, N are collinear 

Construction: Produce FE and DC to intersect at U 
Let FU cuts BA at V and DU cuts BA at W.

Proof: Now to prove L, M, N are collinear in ΔUVW, we have to prove

UN

NV

VL

LW

WM

MU
⋅ ⋅ = -1

In ΔUVW, consider LDE as transversal and then by Menelaus theorem 

 
UE

EV

VL

LW

WD

DU
⋅ ⋅ = −1  (1)

In ΔUVW consider AMF as transversal and then by Menelaus theorem 

 
UF

FV

VA

AW

WM

MU
⋅ ⋅ = −1  (2)

In ΔUVW, by considering BCN as transversal and then by Menelaus theorem 

 
UN

NV

VB

BW

WC

CU
⋅ ⋅ = −1  (3)

In ΔUVW, consider ACE as transversal and then by Menelaus theorem

 
UE

EV

VA

AW

WC

CU
⋅ ⋅ = −1 (4)

In ΔUVW consider BFD as transversal and by Menelaus theorem

 
UF

FV

VB

BW

WD

DU
⋅ ⋅ = −1 (5)

Multiply Eqs. (1), (2) and (3) 

UE

EV

VL

LW

WD

DU

UF

FV

VA

AW

WM

MU

UN

NU

VB

BW

WC

CU
⋅ ⋅









 ⋅ ⋅








 ⋅ ⋅








 = − − −( )( )( )1 1 1

UN

NV

VL

LW

WM

MU

UE

EV

VA

AW

WC

CU

UF

FV

VB

BW

WD

DU
⋅ ⋅






 ⋅ ⋅





 ⋅ ⋅





 = −1

Pappus of Alexandria

c. 290–c. 350 AD 
Nationality: Greek

M

A

C

E

D

F

N

B

L

C
W

M

D

F
B

V

LN

E

U A
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By Eq. (4) and (5) 

UN

NV

VL

LW

WM

MV

UN

NV

VL

LW

WM

MU

⋅ ⋅





 − − = −

⇒ ⋅ ⋅ = −

( )( )1 1 1

1

∴ By converse of Menelaus theorem,  L, M, N are collinear.

Build-up Your Understanding 9

 1. Prove that the external bisectors of the three angle of a scalene triangle meet their 
respective opposite sides at three collinear points.

 2. In ∆ABC points D and E respectively divide the sides BC and CA in the ratios
BD

DC
m

AE

EC
n= =, .  The segment AD and BE intersect in a point X. Find the ratio 

AX

XD
.

 3. The external bisector of angle A of triangle ABC meets BC produced at L, and the 
internal bisector of angle B meets CA at M. If LM meets AB at R, prove that CR 
bisects the angle C.

 4. In a parallelogram ABCD with ∠A < 90°, the circle with diameter AC meets the 
lines CB and CD again at E and F, respectively, and the tangent to this circle at A 
meets BD at P. Show that P, F, E are collinear. [Turkey MO, 1996]

 5. Let M be an interior point of triangle ABC. AM meets BC at D, BM meets CA at 
E, CM meets AB at F. Prove that [DEF] ≤ 1/4 [ABC].

 [The 26th and 31st IMO Shortlisted Problem]
 6. Suppose PA, PB, PC be three rays for which ∠APC = ∠APB + ∠BPC < 180°.

  Prove that A, B, C are collinear if and only if 
sin sin sin

.
∠

=
∠

+
∠APC

PB

APB

PC

BPC

PA
 7. The diagonals AC and CE of the regular hexagon ABCDEF are divided by the in-

ner points M and N, respectively, so that AM/AC = CN/CE = r. Determine r if B, 
M, N are collinear [IMO, 1982]

 8. Let ABCD be a convex quadrilateral such that ∠DAB = ∠ABC = ∠BCD. Let G 
and O denote the centroid and circumcentre of the ∆ABC. Prove that G, O, D are 
collinear. [Bulgaria MO, 1997]

 9. The semicircle with side BC of ∆ABC as diameter intersects sides AB, AC at 
points D, E, respectively. Let F, G be the feet of the perpendiculars from D, E to 
side BC respectively. Let M the intersection of DG and EF. Prove that AM ⊥ BC.

 10. Consider a triangle ABC and a point P within the triangle. Lines AP, BP, CP 
intersects the opposite sides in points D, E, F respectively. Prove that out of the 

numbers 
AP

PD

BP

PE

CP

PF
, ,  at least one is ⋅≤ 2  and at least one is ≥ 2.

 11. Consider a triangle ABC with its inscribed circle whose centre I, touching BC at 
D. Let the mid-points of AD, BC be M, N. Prove that M, I, N are collinear.

 12. Construction of Harmonic Mean by Pappus: O, A and B are collinear points. 
On the perpendicular to OB at B, mark-off BD = BE. Let the perpendicular to OB 
at A meet OD at F. Draw FE to cut OB at C. Prove that OC is the Harmonic Mean 
between OA and OB.
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8.11 Circles

The following elementary theorems about circles are worth remembering:

 1. One and only one circle can be drawn so as to pass through three non-collinear 
points. 

 2. The perpendicular drawn from the centre of a circle to a chord of the circle bisects 
the chord. Conversely, the straight line joining the mid-point of a chord of a circle 
to the centre is perpendicular to the chord.

 3. Equal chords of a circle are equidistant from the centre. Conversely if two chords 
of a circle are equidistant from the centre then they are equal.

 4. In the same circle or in equal circles, equal chords cut off equal arcs and conversely. 
 5. Angle subtended by an arc of a circle at the centre of the circle is twice the angle 

subtended by the same are at any point on the remaining part of the circle.
 6. Angles in the same segment of a circle are equal and conversely.

α α

 7. Angle in a semi-circle is a right angle.  Angle in a segment smaller than (resp big-
ger than) a semi-circle is an obtuse (resp. acute) angle.

 8. Radius drawn at point of contact of a tangent to the circle is perpendicular to the 
tangent.

 9. From an external point we can draw two tangents to the circle. Both tangents are 
equal in length.

Proofs of above theorems are left as an exercise. It is highly recommended before 
going further please do the proofs of above.

8.11.1 Alternate Segment Theorem

If through a point on a circle, a tangent and a chord be drawn the angle which the tan-
gent makes with the chord is equal to the angle in the alternate segment.

Given: In the figure XAY is a tangent at A to the circle. AB is a chord and P is any point 
in its alternate segment.

To prove: (i) ∠BAY = ∠APB (ii) ∠BAX = ∠ATB

Proof: Let O be the centre of the circle. Join AO and produce it to cut the circle at M. 
Join BM 

α

2α

O

M

P

B

T
E

X A Y

O

3

9

5
2

1
6
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∴ ∠ +∠ = °

∠ +∠ = °

∴ ∠ +∠ = ∠ +∠

⇒ ∠ = ∠

1 2 90

2 3 90

1 2 2 3

1 3

Also 

Also ∠3 = ∠4 (Angles in a same segment)

∴ ∠ = ∠1 4

Now ∠1+∠5 = 180° (Linear pair)

Also PATB is a cyclic quadrilateral

∴ ∠ +∠ = °4 6 180

⇒ ∠ +∠ = ∠ +∠
⇒ ∠ = ∠ ∠ = ∠

1 5 4 6

5 6 1 4( )∵

Example 87 Let D be a point in the interior of an acute angled triangle ABC, such 

that∠ = ∠ +ADB ACB
π
2

.  Prove that the circumcircles of the triangles ACD and BCD 

cut each other orthogonally.

Solution: Draw tangents DT and DS to the circles ADC and BDC at D.

Then ∠ADT = ∠ACD [i.e., ∠(1) = ∠(2)] (Alternate segment theorem)

∠BDS = ∠BCD [i.e., ∠(3) = ∠(4)] (Alternate segment theorem)

This implies that ∠SDT = ∠BDA – (∠BDS + ∠ADT)

⇒ ∠SDT = 90° + ∠C – ∠C = 90°
Thus the tangents to the two circles ADC and BDC are perpendicular, i.e., the cir-

cles cut each other orthogonally.

Note: Angle between the tangents (or normals) to the two circles at their point of 
intersection is called angle between the circles and if this angle is 90° then circles are 
said to be orthogonal.

Example 88 Given a right angle ABC, construct a point N in the interior of the trian-
gle, such that the angles ∠NBC, ∠NCA, ∠NAB are all equal. Justify your  construction.

Solution:
Draw a semicircle on AB as diameter.

Draw CX ⊥ AC.
Draw the perpendicular bisector of BC and extend it to meet CX at O. With ‘O’ 

as centre and OC as radius draw arc of a circle to intersect the semicircle on AB as 
diameter at N.

N is the required point.

Proof: Join AN, BN, CN. Then ∠NAB = ∠NBC = ∠NCA. 

CA is a tangent and CN is a chord of the circle with centre ‘O’.

∴ ∠ACN = ∠CBN (angle in the alternate segment) (1)

BC is a tangent and BN is a chord to circle on AB as diameter.

∴ ∠CBN = ∠NAB (angle in the alternate segment) (2)

Thus from Eqs. (1) and (2), we get,  ∠NAB = ∠NBC = ∠NCA.

Note: This point N is called Brocard Point.

AT

S

B

D

C

1

2

4
3

B

N

A

C

O

X

12

3

Pierre Rene Jean Baptiste 
Henri Brocard

12 May 1845–16 Jan 1922 
Nationality: French
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Build-up Your Understanding 10

 1. Prove that if two chords of a circle bisect each other, they are diameters.
 2. If three chords of a circle are such that each pair of chords bisects the third; all the 

three chords are at the same distance from the centre of the circle.
 3. D is a point in the base BC of a ∆ABC and through B, D, C lines are drawn per-

pendicular to AB, AD, AC respectively meeting one another in E, F, G. Prove that 
A, E, G, F are concyclic.

 4. Let A, B be two given points and k ≠ 1 a positive real number. Prove that the locus 
of points P satisfying PA/PB = k is a circle whose centre lies on AB.

  Note: The circle obtained in the above problem is called ‘Circle of Apollonius’
 5. A triangle inscribed in a circle of radius 5 has 2 sides measuring 5 and 6 respec-

tively. Find the measure of the third side of the triangle.
 6. We begin with ΔABC and construct equilateral triangle ABD and ACE with their 

vertices D and E in the exterior of ΔABC. Segments DC and EB intersect at point 
P as shown in the fi gure. Find ∠APD.

 7. H is the orthocentre of an acute –angled triangle ABC with circumcentre ‘O’. Let 
P be a point on the arc, not containing A of the circumcircle, diff erent from B and 
C. Let D be a point, such that AD = PC and AD || PC. Let K be the orthocentre of 
∆ACD. Prove that K lies on the circumcircle of ∆ABC.

 8. Point D is the mid-point of arc AC of a circle; point B is on minor arc CD; and E 
is the point on AB such that DE is perpendicular to AB. Prove that AE = BE + BC.

  Note: This problem is known as ‘Archimedes broken-chord theorem’
 9. Two circles C1 and C2 intersect at two distinct points P and Q in a plane. Let a line 

passing through ‘P’ meet the circles C1 and C2 in A and B respectively. Let Y be 
the mid-point of AB. Let QY meet the circles C1 and C2 in X and Z respectively. 
Prove that Y is the mid-point of XZ also.

 10. Two circles intersect at points A and B. An arbitrary line through B intersects the 
fi rst circle again at C and the second circle again at D. The tangents to the fi rst 
circle at C and to the second circle at D intersect at M. The line parallel to CM 
which passes through the point of intersection of AM and CD intersects AC at K. 
Prove that BK is tangent to the second circle.

 11. Chords AB and CD of a circle intersect at a point E inside the circle. Let M be an 
interior point of the segment EB. The tangent line at E to the circle through D, E 

and M intersects the lines BC and AC at F and G, respectively. If 
AM

AB
t= , fi nd

EG

EF
in terms of t. [IMO, 1990]

 12. Let Γ1 and Γ2 be two circles intersecting at P and Q. The common tangent, closer 
to P, of Γ1 and Γ2 touches Γ1 at A and Γ2 at B. The tangent of Γ1 at P meets Γ2 at 
C, which is diff erent from P and the extension of AP meets BC at R. Prove that the 
circumcircle of triangle PQR is tangent to BP and BR. [APMO, 1999]

 13. ABC is an isosceles triangle with AB = AC. Suppose that
    (i)  M is the mid-point of BC and O is the point on the line AM such that OB is 

perpendicular to AB;
   (ii) Q is an arbitrary point on the segment BC diff erent from B and C;
  (iii)  E lies on the line AB and F lies on the line AC such that E, Q and F are all 

distinct and collinear.
  Prove that OQ is perpendicular to EF if and only if QE = QF. [IMO, 1994]

 14. ABCDE is a convex pentagon. The sides of the pentagon intersect at P1, P2, P3, 
P4, and P5 as shown in the Figure. Construct the circumcircles of the triangles 
P1AE, P2BA, P3CB, P4DC and P5ED. These circumcircles meet at fi ve points A′, 

A E
D

P
B C

Archimedes

c. 287 BCE–212 BCE
or 211 BCE

Nationality: Greek
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B′, C′, D′, E′ which are different from A, B, C, D, E. Prove that the points A′, B′, 
C′, D′, E′ are concyclic.

P1

P2

P3 P4

P5

A E

B
C

D

C′

E′

8.11.2 The Power of a Point

Let ω be a circle with centre O and radius r, and let P be a point. The power of P with 
respect to ω is defined to be the difference of squared length PO2 – r2.

This is positive, zero, or negative according as P is outside, on, or inside the circle ω.

Explanation:
Let line PO meet the circle ω at points A and B, so that AB is a diameter. Here we will 
be using directed lengths which is as follows:

For three collinear points P, A, B,
If PA and PB point in the same direction, then we will take PA and PB of same sign 
⇒ PA · PB is positive.
If PA and PB point in the opposite direction, then we will take PA and PB of oppo-

site sign 
⇒ PA · PB is negative.
Now,

PA · PB = (PO + OA)(PO + OB) = (PO – r)(PO + r) = PO2 – r2,

 ⇒ PA · PB = PO2 – r2 (1)

Which is the power of the point P. Observe the right hand side of the Eq. (1), 
If P lies inside the circle, then PO < r, which forces PO2 – r2 to be negative  and If 

P lies outside the circle, then PO > r, which forces PO2 – r2  to be positive.

8.11.3 Intersecting Chords Theorem 

If a line L through P intersects a circle ω at two points A and B, the product PA · PB (of 
signed lengths) is equal to the power of P with respect to the circle.

More over if there are two lines through P one meets circle ω at points A and B, and 
let another line meets circle ω at points C and D. Then

PA · PB = PC · PD.

Proof: Let us consider two cases separately 

BA
P O

A
B

OP

C

BD
P

A

B

CD

A

P
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Case 1: P lies inside the circle ω,
In ∆PAD and ∆PCB, we have

∠PAD = ∠PCB 

and ∠APD = ∠CPB, 

So by AA similarity, ∆PAD and ∆PCB are similar.

⇒
PA

PD

PC

PB
=  ⇒ PA · PB = PC · PD.

Case 2: P lies outside the circle ω,

In ∆PAD and ∆PCB, we have

∠PAD = ∠PCB 

and               ∠APD = ∠CPB, 

So by AA similarity, ∆PAD and ∆PCB are similar.

⇒
PA

PD

PC

PB
=  ⇒ PA · PB = PC · PD.

8.11.4 Tangent Secant Theorem

If through a point outside a circle a tangent and a chord be drawn. The square of the 
length of the tangent is equal to the rectangle contained by the segments of the chord.

Proof: In ΔPTA and ΔPBT 
 ∠TPA = ∠BPT (Common)

 ∠PTA = ∠PBT (Alternate segment theorem)

∴ By AA similarly 

⋅∆ ∆PTA PBT∼

∴ =

⇒ = ×

PT

PB

PA

PT

PT PA PB2 .

Note: Using the power of a point theorem and intersecting chord theorem, we infer 
that ‘for any line passing through point P and meeting the circle ω at X and Y, PX · PY 
is always constant (independent of line passing through point P !) And it is equal to the 
power of point P with respect to the circle ω’. 

By convention, this is positive, zero, or negative according as P is outside, on, or 
inside the circle ω. Also when P is outside the circle, the power equals to the square of 
the length of the tangent from P to the circle.

8.11.5 Theorem (Converse of Intersecting Chords Theorem)

Let A, B, C, D be four distinct points. Let lines AB and CD intersect at P. Then A, B, 
C, D are concyclic if and only if PA · PB = PC · PD.

Proof: In ∆APD and ∆CPB.

  
PA

PD

PC

PB
=  (Using PA · PB = PC · PD)

P A B

T

P
A D

B C
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And ∠APD = ∠CPB (Whether P inside the circle or outside the circle)

  ⇒ ∆APD and ∆CPB (By SAS similarity) 

Thus,

∠PAD = ∠PCB.
⇒ A, B, C, D are concyclic.

Note: The above theorem is very useful for proving that four points are concyclic. It is 
one of the most commonly used criteria for proving concyclic points. 

8.11.6 Radical Axis

Let ω1 and ω2 be two nonconcentric circles, then the locus of point with equal power 
with respect to both ω1 and ω2, is a line, called their radical axis. It is perpendicular to 
line joining centres of the circles. 

Proof: Let ω1 and ω2 be two circles with different centres O1 and O2, and radii r1 and 
r2 respectively. Let r r1 2≥ . Let P be a point on the locus, then 

 PO PO1
2

1
2

2
2

2
2− = −r r   (Given) (1) 

Now join PO1, PO2 and O1O2 and draw perpendicular from P to O1O2. Let L be the 
foot of the perpendicular. Also assume M be the mid-point of O1O2.

Now, 

 PO r O L PL r1
2

1
2

1
2 2

1
2− = + −   (Using Baudhayna theorem) (2)

Also

 PO r O L PL r2
2

2
2

2
2 2

2
2− = + −   (Using Baudhayna theorem) (3)

From Eqs. (1), (2) and (3), we get,

O L PL r O L PL r1
2 2

1
2

2
2 2

2
2+ − = + −

⇒ − = −O L O L r r1
2

2
2

1
2

2
2

⇒ −( ) +( ) = −O L O L O L O L r r1 2 1 2 1
2

2
2

⇒ +( ) − −( )( )( ) = −O M ML O M ML O O r r1 2 1 2 1
2

2
2  (As M is the mid-point of O1O2)

⇒ ⋅ = −2 1 2 1
2

2
2ML O O r r

⇒ L is a fixed point

⇒ For any point P on the locus foot of perpendicular on O1O2 is always fix point L.

⇒ Locus is a straight line perpendicular to O1O2.

Note: It is always closer to the circumference of the larger circle.

Corollary: Let ω1 and ω2 be two circles intersecting at the points A and B. Then their 
radical axis is precisely the common secant AB.

Proof: Clearly, points A and B have equal power (both zero) with respect to the circles. 
So A and B must lie on the radical axis. From radical axis theorem, we know that locus 
is a line, and two points determine that line

Note: If ω1 and ω2 be two circles intersecting at one point (i.e., tangent to each other), 
then their radical axis is the common tangent at the point of contact.

P

A

D

B

C

O1 O2

P

M L
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8.96  Chapter 8

8.11.7 Radical Centre

Let ω1, ω2 and ω3 be three circles such that their centres are not collinear and no two 
concentric. Then their three pairwise radical axes are concurrent and point of concur-
rency is called radical centre.

Proof: Denote the three circles by ω1, ω2, and ω3, and denote the radical axes of ωi and 
ωj by lij. As centres are non collinear, no two radical axis is parallel. 
Let l12 and l13 meet at P.

Since P lies on l12, it has equal powers with respect to ω1 and ω2. 
Similarly since P lies on l13, it has equal powers with respect to ω1 and ω3. 
Therefore, P has equal powers with respect to all three circles, and hence it must 

lie on l23 as well.

Note: If centres are collinear then their three pairwise radical axes are parallel.

Example 89 ∆ABC has incentre I. Let points X, Y be located on the line segments AB, 
AC respectively, so that, BX ⋅ AB = IB2 and CY ⋅ CA = IC2. Given that the points X, I, Y 
are collinear, find the possible values of ∠A.

Solution: Let ABC be the triangle with incentre I. Let X, Y be points on AB, AC respec-
tively such that, BX ⋅ BA = BI2 and CY ⋅ CA = CI2.
Hence by secant tangent theorem we can conclude that there are circles passing through 
AIX and AIY respectively, so that, BI is a tangent and BXA is secant in the first circle 
and CI is a tangent and CYA is a secant to the second circle. 

Thus ∠BIX = ∠BAI and ∠CIY = ∠CAI (Alternate segment theorem)
i.e.,

∠ = ∠ =

⇒∠ = °−

BIX
A

and CIY
A

BIC A
2 2

180

    (Alternate segment theorem)

(( , ,

(

as are collinear given)

Thus fro

X I Y

B
A

C

2
180

2
180+ °−( ) + = ° mm ∆BIC

A
A

A
A

)

.

⇒ °− − = °

⇒ = ° ⇒ =
× °

= °

90
2

0

3

2
90

2 90

3
60

Example 90 From a point ‘A’, outside a circle, two straight lines ABC and ADE are 
drawn, intersecting the circle in B, C, D, and E respectively. A circle is described pass-
ing through A, C, D and cutting BE at F. Prove that AD·AE = AF2.

Solution: Join CF.
Now ∠BFA = ∠AEF + ∠EAF (Exterior angle property)
= ∠BCD + ∠DCF 
(As BD subtends ∠DEF and ∠BCD on the same side of the circle and similarly DF 

subtends ∠DAF and ∠DCF on the same side of the second circle)
∠BFA = ∠BCF
But these are angles on the alternate segment BF.
∴ AF is tangent and ABC is secant to circle BCF.
i.e., AF2 = AB ⋅ AC (Tangent secant theorem)
 AF2 = AD ⋅ AE (as AB ⋅ AC = AD ⋅ AE, Power of the point A).

A

X Y
I

θ /2

B/2
180 − A

C/2

θ /2

C

B

A D E

F
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Example 91 If the internal bisector of ∠A of a triangle meets the base BC at D, show that 

AD2 + BD ⋅ DC = AB ⋅ AC.

Solution:
We have, as given,

 
AB AC AD AE

AD AD DE

⋅ = ⋅
= +( )

= + ⋅AD AD DE2  (1)

Since AE and BC are two chords of a circle which intersect at D, therefore by applying 
power of the point D, we get, AD ⋅ DE = BD ⋅ DC. (2)

Thus, from Eqs. (1) and (2) we get,

AB AC AD BD DC⋅ = + ⋅2 .

Example 92 A circle cuts the sides of ΔABC internally as follows; BC, at D, D′; CA 
at E, E′ and AB at F′, F. If AD, BE, CF are concurrent, prove that AD′, BE′, CF′ are 
concurrent

Solution: Let AD, BE, CF are concurrent, then by Ceva’s theorem, we have

BD

DC

CE

EA

AF

FB
⋅ ⋅ =1

Also
BD ⋅ BD′ = BF ⋅ BF′ (Power of the point B with respect to the circle)

 ∴ =
′
′

BD

BF

BF

BD
.  (1)

Also CD CD CE CE′ ⋅ = ⋅ ′  (Power of the point C with respect to the circle)

 ∴ =
′
′

CE

CD

CD

CE
 (2)

Also AE AE AF AF′ ⋅ = ′ ⋅  (Power of the point A with respect to the circle)

 
AF

AE

AE

AF
=

′
′

 (3)

From Eqs. (1), (2) and (3) we get 
BF

BD

CD

CE

AE

AF

BD

FB

CE

CD

AF

EA

′
′
⋅

′
′
⋅

′
′
= 





 ⋅






 ⋅






 =1

⇒
′
′







 ⋅

′
′







 ⋅

′
′







 =

BF

F A

AE

E C

CD

D B
1

∴ By converse of Ceva’s theorem AD BE CF′ ′ ′, ,  are concurrent. 

Example 93 Given circles ω1 and ω2 intersecting at points X and Y, let l1 be a line 
through the centre of ω1 intersecting ω2 at points P and Q and let l2 be a line through 
the centre of ω2 intersecting ω1 at points R and S. Prove that if P, Q, R and S lie on a 
circle then the centre of this circle lies on line XY. [USA MO, 2009]

Solution: Let the circumcircle of PQRS be ω3. 
Let the centre and the radius of the circle ωk be Ok and rk respectively, k = 1, 2, 3. 

As O1 lies on the line PQ, which is common chord (or radical axis) of ω2, ω3, 
⇒ The power of O1 with respect to ω2, ω3 are the same,

   O O r O O r1 2
2

2
2

1 3
2

3
2− = −  (1)

A

B C

E

D

A

F E

B CD

F ′ E′

D′
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8.98  Chapter 8

And similarly O2 lies on the radical axis of ω1, ω3. 
⇒ The power of O2 with respect to ω1, ω3 are the same,

   O O r O O r2 1
2

1
2

2 3
2

3
2− = − .  (2)

From Eq. (1) – Eq. (2), we get, O O r O O r1 3
2

1
2

2 3
2

2
2− = −

⇒ O3 lies on the radical axis of  ω1, ω2. But radical axis of ω1, ω2 is line XY. 
Hence X, Y, O3 are collinear.

Example 94 Let H be the orthocentre of acute angle triangle ABC. The tangents from 
A to the circle with diameter BC touch the circle at P and Q. Prove that P, Q, H are 
collinear. [China MO, 1996]

Solution: Let A1 and C1 be the foot of the altitude from A and C respectively. 
Let ω be the circle with diameter BC. Let D be the mid-point of BC.

Draw the circle ω1 with diameter AD. 
These two circles meets each other at P, Q (As ∠APD = 90° = ∠AQD)
⇒ PQ is the radical axis of the two circles. 
As we need to prove H is collinear with P and Q, we need to prove that H is on the 

radical axis PQ of the two circles which is equivalent to prove that the H has equal 
power with respect to the two circles . 

Power of H w.r.t. ω is CH ⋅ HC1 (1) 
Since ∠AA1D = 90° ⇒ A1∈ω1

⇒ Power of H w.r.t. ω1 is AH ⋅ HA1. (2)
Now we can see that ACA1C1 is cyclic, writing power of H for this circle we get 
AH ⋅ HA1 = CH ⋅ HC1 (3)
From Eqs. (1), (2) and (3), we get
H has equal power with respect to the two circles ω, ω1. Hence H must lie on their 

radical axis.
⇒ H, P, Q are collinear.

Example 95 Let A, B, C and D be four distinct points on a line, in that order. The circles 
with diameters AC and BD intersect at the points X and Y. The line XY meets BC at the point 
Z. Let P be a point on the line XY different from Z. The line CP intersects the circle with 
diameter AC at the points C and M, and the line BP intersects the circle with diameter BD 
at the points B and N. Prove that the lines AM, DN and XY are  concurrent. [IMO, 1995]

Solution:
Draw DE parallel to CM meets XY at E, and draw AE1 parallel to BN meets XY at E1.

Claim: E = E1. 

Proof of claim: As Z is on the radical axis of the two circles, Equating power of the 
points with respect to two circles we get,  ZA × ZC = ZB × ZD (1)

  ∆AZE1 ∼ ∆BZP (By construction)

 ⇒ 
ZE

ZP

ZA

ZB
1 =  (2)

Similarly ∆DZE ∼ ∆CZP (By construction)

 ⇒ ZP

ZE

ZC

ZD
=  (3)

M
X N

P

BA Z C

Y

D

E ( = E ′)
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From Eq. (2) × Eq. (3) we get,

ZE

ZP

ZP

ZE

ZA

ZB

ZC

ZD
1 × = ×

⇒ =
ZE

ZE
1 1 (From Eq. (1))

⇒ ZE = ZE1.

Now, for ∆ADE,
AM, DN and XY are the altitudes.
Hence they are concurrent.

Aliter:

  ∠AMC = 90° (Angle in semicircle)

⇒ ∠MCA = 90° – A

Also ∠BND = 90°. (Angle in semicircle)
As P is on XY (The radical axis of the two circles with diameters AC and BD), we 

get, PN · PB = PM ·PC 
⇒ Quadrilateral MNBC is cyclic (by the converse of intersecting chord theorem)
Now in Cyclic Quadrilateral MNBC, 
∠MCB = ∠MNB (Angle in same segment)
⇒ ∠MND = ∠MNB + ∠BND
Also ∠MND = ∠MCB + 90° = 90° – A + 90° = 180° – ∠MAD
⇒ Quadrilateral AMND is cyclic. 
Let the circumcircle of AMND be circle ω. 
Then,
AM is the radical axis of ω and the circle with diameter AC.
DN is the radical axis of ω and the circle with diameter BD.
Also we know XY is the radical axis circles with diameters AC and BD. 
So from radical centre theorem, all three radical axis are concurrent. 
Thus, AM, DN, XY are concurrent.

Example 96 A circle with centre O passes through the vertices A and C of triangle 
ABC and intersects the segments AB and BC again at distinct points K and N, respec-
tively. The circumscribed circles of the triangles ABC and KBN intersect at exactly two 
distinct points B and M. Prove that angle OMB is a right angle. [IMO, 1985]

Solution: From the figure we can infer that the lines AC, KN, BM concur at the radical 
centre say P of the three circles involved. 
Now from lemma 8.8.6, we have OM ⊥ BP ⇔ OB2 - OP2 = MB2 - MP2.

The quadrilateral PCNM is cyclic since ∠PCN = ∠AKN = ∠BMN.
⇒ PM × PB = PC × PA = OP2 - r2  (By intersecting chords theorem) (1)
Where r is the circumradius of triangle AKC. Similarly,
Similarly BM × BP = BN × BC = OB2 - r2. (2)
From Eq. (2) – Eq. (1), we get 
OB2 – OP2 = BM × BP – PM × PB
= BP × (BM - PM)
= (BM + PM) × (BM - PM)
= BM2 - PM2

Hence, OM ⊥ BP.

M

A B Z C

P
X

E
N

D

Y

A

O

C

M

NB

A

O

C

P
M

NB
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Example 97 Let PQ be a chord of a circle and M be the mid-point of PQ. Through 
M two chords AB and CD of the circle are drawn. Chords AD and BC intersect PQ at 
points X and Y respectively. Prove that M is the mid-point of the segment XY. 

Solution:

Construction: From X we draw perpendicular lines to AB and CD, with feet X1 and 
X2 respectively. From Y draw perpendicular lines to AB and CD, with feet Y1 and Y2 
respectively. let MX = x, MY = y and PM = QM = a.

Using similar triangles we get

x

y

XX

YY

XX

YY

XX

YY

AX

CY
= = =1

1

2

2

1

2

,  and 
XX

YY

DX

BY
2

1

=

⇒ 
x

y

XX

YY

XX

YY

2

2
1

1

2

2

= ×

= 
XX

YY

XX

YY
1

2

2

1

×

= 
AX

CY

DX

BY
×

= 
PX QX

PY QY

×
×

 (By intersecting chords theorem)

= 
( )( )

( )( )

a x a x

a y a y

a x

a y

+ −
+ −

=
−
−

2 2

2 2

⇒ 
x

y

2

2
1= ,  

⇒ x = y.

Note: This problem is known as Butterfly theorem.

Example 98 Given a triangle ABC, let P and Q be points on segments AB and AC 
respectively, such that AP = AQ. Let S and R be distinct points on segment BC such that 
S lies between B and R, ∠BPS = ∠PRS, and ∠CQR = ∠QSR. Prove that P, Q, R, S are 
concyclic (in other words, these four points lie on a circle). [USA JMO, 2012]

Solution: Since ∠BPS = ∠PRS, the circumcircle of triangle PRS is tangent to AB at P. 
Similarly, since ∠CQR = ∠QSR, the circumcircle of triangle QRS is tangent to AC 
at Q.

Now in order to prove P, Q, R, S concyclic, we will prove that circumcircles of 
triangles PRS and QRS are same. 

If possible, let the circumcircles of triangles PRS and QRS are not the same circle. 
Now AP = AQ ⇒ A lies on the radical axis of both circles. 
But radical axis of the circles is SR (As both circles pass through R and S)

⇒ A lies on RS

⇒ A lies on BC, which is a contradiction.

⇒ The two circumcircles are the same circle 

⇒ P, Q, R, and S are concyclic.

A

B

QY
X

M

C

Y1

X1
Y2

X2

A

Q

RSB

P

C
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Example 99 Let BD be the internal angle bisector of angle B in triangle ABC with D 
on side AC. The circumcircle of triangle BDC meets AB at E, while the circumcircle of 
triangle ABD meets BC at F. Prove that AE = CF.

Solution:
Let the circumcircle of triangle BDC be ω1 and the circumcircle of triangle ABD ω2.

By angle bisector theorem, we get 
AD

CD

AB

CB
=  (1)

By applying intersecting chords theorem for point A with respect to circle ω1, we 
get, 

 AE × AB = AD × AC ⇒ AE
AD AC

AB
=

×
 (2)

Also by Applying intersecting chords theorem for point C with respect to circle ω2, 
we get, 

 CF × CB = CD × CA ⇒ CF
CD CA

CB
=

×
 (3)

Dividing Eq. (1) by Eq. (2) we get,

 
AE

CF

AD CB

AB CD
=

×
×

 (4)

From Eqs. (1) and (4), we get,

AE

CF
AE CF= ⇒ =1 .

Example 100 AB is a chord of a circle, which is not a diameter. Chords A1 B1 and A2 
B2 intersect at the mid-point P of AB. Let the tangents to the circle at A1 and B1 inter-
sect at C1. Similarly, let the tangents to the circle at A2 and B2 intersect at C2. Prove 
that C1C2 is parallel to AB.

Solution: Let O be the centre of the circle, let OC1 intersects A1B1 at M, let OC2 inter-
sects A2 B2 at N, and let also OC1 intersects AB at K. 

Clearly, OM and ON are respectively the perpendicular bisectors of A1 B1 and A2 B2. 
So, ∠OMP =∠ONP = 90°, saying that O, M, P, N are concyclic.
⇒ ∠ONM =∠OPM = 90° -∠MOP =∠OKA. (1)

Claim: M, C1, C2, N are concyclic.

Proof of claim: As ∆OA1C1 and ∆OB2C2 are right-angled triangles, 

OM × OC1 = OA1
2 = OB2

2 = ON × OC2.

Or         OM × OC1 = ON × OC2.

⇒ M, C1, C2, N are concyclic (by the converse of intersecting chords theorem)
Now,

  ∠OC1C2 =∠ONM (As M, C1, C2, N are concyclic)

⇒ ∠OC1C2 = ∠OKA (from Eq. (1))

⇒ C1C2 || AB

Example 101 Let ABC be a triangle, and draw isosceles triangles BCD, CAE, ABF 
externally to ABC, with BC, CA, and AB as their respective bases. Prove the lines 
through A, B, C, perpendicular to the lines EF, FD, DE, respectively, are concurrent. 
 [USA MO, 1997]

A

E

B F C

D

B2

A1
A2

C2 C1

O

N

P
A K B
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Solution: Let ω1 be the circle with centre D and radius DB, ω2 be the circle with centre 
E and radius EC, ω3 be the circle with centre F and radius FA. 

Claim: The lines which need to prove concurrent are basically radical axes of the three 
pairs of circles (ω1, ω2), (ω2, ω3) and (ω3, ω1). 

Proof of claim: As A is a point of the intersections of circles ω 2 and ω 3, A lies on the 
radical axis.
Also the radical axis of ω2 and ω3 is the line perpendicular to the line joining the cen-
tres E and F. 

Hence, line through A and perpendicular to EF is radical axis of circles ω2 and ω3.
Similarly, the radical axis of ω1 and ω2 is the line through C perpendicular to DE, 

and the radical axis of ω3 and ω1 is the line through B perpendicular to FD. 
From radical centre theorem, we conclude that these three radical axes 

 concurrent. 

Example 102 Let quadrilateral ABCD be inscribed in a circle. Suppose lines AB and 
DC intersect at P and lines AD and BC intersect at Q. From Q, construct the two tan-
gents QE and QF to the circle where E and F are the points of tangency. Prove that the 
three points P, E, F are collinear. [CMO, 1997]

Solution:
Let ω1 be the circumcircle and r1 be circumradius of triangle ABC and O1 be its centre. 

Suppose the circumcircle ω2 of QCD intersects the line PQ at Q and R. 
Now ∠PRC = ∠QDC = ∠ABC
⇒ The points P, R, C, B are concyclic.

Let us first prove O1R ⊥ PQ.
O1P

2 – r1
2 = PC × PD = PR × PQ  (By intersecting chords theorem) (1)

Similarly,

 O1Q
2 – r1

2 = QC × QB = QR × QP, (2)

From Eq. (1) – Eq. (2), we get,

 O1P
2 – O1Q

2 = PR × PQ – QR × QP

 = PQ × (PR – QR)

 = (PR + QR) × (PR – QR)

 = PR2 – QR2

⇒ O1R ⊥ PQ (By lemma 8.8.6)
i.e., the points Q, F, O1, E, R are also concyclic. 
Let ω3 be the circle passes through these five points. Now, we have three circles 

ω1, ω2, ω3. 
The radical axis of ω1 and ω2 is the line CD.
And the radical axis of ω2 and ω3 is the line QR. 
These two radical axes intersect at P. 
Hence, P lies on the radical axis of ω3 and ω1, namely EF.

Example 103 Two circles Γ1 and Γ2 are contained inside the circle Γ, and are tangent 
to Γ at the distinct points M and N, respectively. Γ1 passes through the centre of Γ2. The 

A

B
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D
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D
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C3
C 2

C

A B
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line passing through the two points of intersection of Γ1 and Γ2 meets Γ at A and B. 
The lines MA and MB meet Γ1 at C and D, respectively. Prove that CD is tangent to Γ2.
 [IMO, 1999]

Solution: Let O1 and O2 be the centres of Γ1 and Γ2, respectively. The line O1O2 inter-
sects Γ2 at point P (see the adjacent figure). In order to prove CD tangent to Γ2, we will 
prove ∠CPO2 = 90°, by similar arguments ∠DPO2 = 90°.

Let us join AN, which meets Γ2 at point Q, let R be the intersection of the line CQ 
with the common tangent at M to Γ and Γ1. 

Claim: CQ is a common tangent of Γ1 and Γ2. 

Proof of claim: As A is on the radical axis of Γ1 and Γ2, AC × AM = AQ × AN.
⇒ CMNQ is cyclic (By the converse of intersecting chords theorem)
⇒ ∠RCM = ∠MNQ (As CMNQ is cyclic)
⇒ ∠RCM = ∠RMC (Angle in alternate segment)
⇒ RC to tangent of Γ1 from R. (Converse of angle in alternate segment)
⇒ CQ is a tangent of Γ1 
Similarly CQ is also a tangent of Γ2.
Now in ∆CPO2  and ∆CQO2, we have,
O2P = O2Q,
 ∠PO2C = 90°- 1/2∠CO1O2 = 90°-∠QCO2 (As CQ is a tangent of Γ1 ⇒ 1/2∠CO1O2 
= ∠QCO2)
⇒ ∠PO2C =∠QO2C (As CQ is a tangent of Γ2)
⇒ ∆CPO2 ≅ ∆CQO2

⇒ ∠CPO2 = 90°
By similar arguments we will get ∠DPO2 = 90°
⇒ CPD are collinear and CD tangents to Γ2 at P.

Build-up Your Understanding 11

 1. Let ω1 and ω2 be two intersecting circles. Let a common tangent to ω1 and ω2 
touch ω1 at A and ω2 at B. Show that the common chord of ω1 and ω2, when ex-
tended, bisects segment AB.

 2. Given triangle ABC, let D, E be any points on BC. A circle through A cuts the 
lines AB, AC, AD, AE at the points P, Q, R, S, respectively. Prove that

  
AP AB AR AD

AS AE AQ AC

BD

CE

× ×
× ×

=
–

–
.

 3. Let ω1 and ω2 be concentric circles, with ω1 in the interior of ω1. From a point A 
on ω1 one draws the tangent AB to ω2 (B∈ω2). Let C be the second point of inter-
section of AB and ω1, and let D be the mid-point of AB. A line passing through A 
intersects ω2 at E and F in such a way that the perpendicular bisectors of DE and 
CF intersect at a point M on AB. Find, with proof, the ratio AM/MC.

 [USA MO, 1998]
 4. Let A, B, C be three points on a circle Γ with AB = BC. Let the tangents at A and B 

meet at D. Let DC meet Γ again at E. Prove that the line AE bisects segment BD.
 5. AB is a chord of a circle, which is not a diameter. Chords A1Bl and A2B2 intersect 

at the mid-point P of AB. Let the tangents to the circle at Al and B1 intersect at C1. 
Similarly, let the tangents to the circle at A2 and B2 intersect at C2. Prove that C1C2 
is parallel to AB.
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 6. Let BB′, CC′ be altitudes of triangles ABC, and assume AB ≠ AC. Let me be the 
mid-point of BC, H the orthocentre of ABC, and D the intersection of BC and 
B′C′. Show that DH is perpendicular to AM.

 7. Let G be centroid of an ∆ABC and circumcircle of ∆AGC touches the side AB at 
A. Given BC = 6, AC = 8 find AB. 

 8. Let C be a point on a semicircle of diameter AB and let D be the mid-point of arc 
AC. Let M be the projection of D onto the line BC and F the intersection of line 
AE with the semicircle. Prove that BF bisects the line segment DE. 

 9. A circle ω is tangent to two parallel lines l1 and l2. A second circle ω1 is tangent 
to l1 at A and to ω externally at C. A third circle ω2 is tangent to l2 at B, to ω ex-
ternally at D and to ω1 externally at E. Let Q be the intersection of AD and BC. 
Prove that QC = QD = QE. [IMO Proposal, 1994]

 10. The circles S1 and S2 intersect at M and N. Show that if vertices A and C of a 
rectangle ABCD lie on S1 while vertices B and D lie on S2, then the intersection 
of the diagonals of the rectangle lies on the line MN. [Russia MO, 1997]

 11. Let ABC be an acute triangle. Let the line through B perpendicular to AC meet the circle 
with diameter AC at points P and Q, and let the line through C perpendicular to AB meet 
the circle with diameter AB at points R and S. Prove that P, Q, R, S are concyclic.

 12. Let ABC be a triangle, and draw isosceles triangles BCD, CAE, ABF externally to ABC, 
with BC, CA, and AB as their respective bases. Prove that the lines through A, B, C 
perpendicular to the lines EF, FD, DE respectively, are concurrent. [USA MO, 1997]

 13. Let D and E be the mid-point of sides AB and AC respectively and G be the cen-
troid of the triangle. If A, D, G, E are concyclic, then prove that b2 + c2 = 2a2.

 14. Two circles P and Q with radii 1 and 2, respectively, intersect at X and Y. Circle P is to 
the left of circle Q. Prove that point A is to the left of XY if and only if AQ2 - AP2 > 3.

 15. Let ABC be a triangle and let D and E be points on the sides AB and AC, respec-
tively, such that DE is parallel to BC. Let P be any point interior to triangle ADE, 
and let F and G be the intersections of DE with the lines BP and CP, respectively. 
Let Q be the second intersection point of the circumcircles of triangles PDG and 
PFE. Prove that the points A, P, and Q are collinear.

 16. Two circles Γ1 and Γ2 intersect at M and N. Let l be the common tangent to Γ1 and 
Γ2 so that M is closer to l than N is. Let l touch Γ1 at A and Γ2 at B. Let the line 
through M parallel to l meet the circle Γ1 again at C and the circle Γ2 again at D. 
Lines CA and DB meet at E; lines AN and CD meet at P; lines BN and CD meet 
at Q. Show that EP = EQ. [IMO, 2000]

 17. Let ABC be a triangle. A line parallel to BC meets sides AB and AC at D and E, 
respectively. Let P be a point inside triangle ADE, and let F and G be the intersec-
tion of DE with BP and CP, respectively. Show that A lies on the radical axis of 
the circumcircles of PDG and PFE. [INMO, 1995]

 18. In an acute–angled triangle ABC, points D, E, F are  located on the sides BC, CA, 

AB respectively, such that 
CD

CE

CA

CB

AE

AF

AB

AC

BF

BD

BC

BA
= = = =; ;

   (i) Prove that AD, BE, CF are the altitudes of ∆ABC.

  (ii) Hence or otherwise, prove that, AD, BE, CF are concurrent.

 19. O is the centre of a circle; OA is its radius. From a point C, in the exterior of the 
circle, CB is drawn perpendicular to OA. If CA cuts the circle at D, Prove that 

  (a) CA ⋅ AD = 2OA ⋅ AB

  (b) Examine if the proposition is true when C is in the interior of the circle.
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 20. A circle with centre O is internally tangent to two circles inside it at points S and 
T. Suppose the two circles inside intersect at M and N with N closer to ST. Show 
that OM ⊥ MN if and only if S, N, T are collinear.

 21. PQRS is a square. T is the mid-point of PQ. ST is produced to M, such that, ST = 
5TM. Prove that, M lies on the circle circumscribing the square.

 22. PT and PS are tangents from P to the circle with  centre O. The line through P and 
O meets the circle at A and B. The chord of contact ST meets AB at C. Prove that 
PC is the Harmonic Mean between PB and PA.

8.11.8 Common Tangents to Two Circles

Given two circles C1 and C2 with centres O1 and O2 with radii R and r respectively 
with R > r  and distance between their centres is ‘d’, then the number of common 
tangents that can be drawn to them varies from zero to four in the same plane of the 
circle depending upon the relative positions of the circles. Five different cases arises: 

Case 1: The circle C2 lies wholly within C1 and the two circles do not touch each other 
(fig. 1). Here d R r< −  

In this case the circle do not have any common tangent. 

Case 2: The circle C2 lies wholly within the circle C1 and touches it internally at a 
point P  (second figure). Here d R r= − .

In this case the circles have one common tangent at P. The line joining their centres 
also passes through the point of contact, i.e., P of the circles. 

Case 3: The circles C1 and C2 intersect each other (in two distinct points) as in fig. 3. 
Here R r d R r− < < + .

In this case the circles have two common tangents. Namely AB and XY.  These tan-
gents are called Direct Common Tangents. 

Case 4: The circle C1 and C2 touch each other externally as in the following figure. 
Here d R r= + .

In this case there are three common tangents. The two direct common tangents AB 
and XY and one common tangent KL at the point P where the circles touch each other.

In this case also the line segment joining the centres of the two circles passes 
through the point of contact. 

Case 5: The circles C1 and C2 do not intersect and are placed as shown in fig. 5. Here 
d R r> + .
In this case there are four common tangents the two direct common tangents AB and 
XY and two transverse common tangents KL and MN.

A

C1

O1 O2 S1

C2

S2
L Y

N
B

K

x

M

O1
O2

C2

C1

O1 O2

C2

C1

A

X
Y

B

O1
C1

C2

O2

A K

LX
Y

R P r

B

O1

C1 C2

O2
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8.11.8.1 Centres of Similitude of Two Circles

It can be easily seen that the direct common tangents to two circles intersect each other 
at a point on the line joining the centres. This point is called a centre of similitude of 
the circles. It divides the line joining the centres externally in the ratio of radii. That is 
in the figure of Case 5, we find S1 is a centre of similitude of the circles C1 and C2. It 
divides O1O2 externally in the ratio R : r so that O1S1 : S1O2 = R : r.

The transverse common tangents to two circles also intersect each other at a point 
on the line joining the centres. This point is also called a centre of similitude. 

It divides the line joining the centres internally in the ratio of the radii. In the figure 
of Case 5, we find that S2 is a centre of similitude of the circles. It divides O1O2 inter-
nally in the ratio R : r so that 

O S S O R r1 2 2 2: :=

Thus there are two centres of similitude of two circles (lying outside each other and not 
intersecting at all). They divide the line joining the centres of the circles in the ratio of 
the radii, one internally and the other externally.

8.11.8.2 Length of the Direct Common Tangents

Let O1A = R and O2B = r, AB = TD length of direct common tangent 

Draw O2M ⊥ O1A
So quadrilateral MABO2 will be a rectangle 

∴ = =MO AB TD2

MA O B r

O M O A MA R r

= =
∴ = − = −

2

1 1

O1O2 = d (Distance between the centres) 
In ∆O1MO2, by using Baudhayana (or Pythagoras) theorem 

O O O M MO

d R r TD

1 2
2

1
2

2
2

2 2 2

= +

= − +( )

⇒ = − − ⇒ = − −T d R r T d R rD D
2 2 2 2 2( ) ( )

Note: If two circles touch each other externally then d = R + r and

T R r R r R r R rD = + − − = ⋅ = ⋅( ) ( ) .2 2 4 2

8.11.8.3 Length of Transverse Common 

Draw O M O K2 1⊥  produced then O MKL2  is a rectangle 

∴ = =KM O L r2

MO KL TI2 = =  (Length of indirect tangent or transverse common tangent) 

In right ΔO1MO2, O O O M MO1 2
2

1
2

2
2= +

⇒ = + + ⇒ = − +

⇒ = − +

d R r T T d R r

T d R r

I I

I

2 2 2 2 2 2

2 2

( ) ( )

( )

A

M

R − r

d

r

TD

TD

O2O1

B

M
K

R

Y

L

dO1

O2

TI
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Note: If two circles touch externally then d R r= +

∴ = + − + =T R r R rI ( ) ( ) ,2 2 0  i.e., Length of transverse common tangent is zero.

Example 104: Two circles with radii a and b respectively touch each other externally. 
Let c be the radius of a circle that touches these two circles as well as a common tan-
gent to the two circles prove that 

1 1 1

c a b
= +

Solution: As when two circles touch externally then the length of their direct common 
tangent = ⋅2 R r

∴ = = =PR ac RQ bc PQ ab2 2 2; ;

Now PQ PR RQ= +

⇒ = +2 2 2ab ac bc

Divide both sides by 2 abc , we get, 
1 1 1

c b a
= + .

Example 105 Three circles C1, C2, C3 with radii r1, r2, r3 (r1 < r2 < r3) respectively are 
given. They are placed such that C2 lies to the right of  C1 and touches it externally. C3 
lies to the right of C2 and touches it externally. Further there exists two straight lines 
each of which is a direct common tangent simultaneously to all the three circle. Find 
r2 in terms of r1 and r3.

Solution: C L r C M r C N r1 1 2 2 3 3= = =; ;

Draw C K C M1 2⊥

∴ = − = − ⇒ = −C K C M KM C M C L C K r r2 2 2 1 2 2 1

Draw C P C N2 3⊥

∴ = − = − ⇒ = −C P C N PN C N C M C P r r3 3 3 2 3 3 2

Since C1K || C2P and C1L || C2M || C3N

∴ ∠ = ∠ = ∠ =C AL C C K C C P
A

1 2 1 3 2
2

(Corresponding angles)

⇒ ⇒ =∆ ∆C C K C C P
C K

C P

C C

C C
1 2 2 3

2

3

1 2

2 3

~

⇒
−
−

=
+
+

−
+

=
−
+

r r

r r

r r

r r

r r

r r

r r

r r
2 1

3 2

1 2

2 3

2 1

2 1

3 2

3 2

or

Using Componendo and Dividendo, we get,

r r r r

r r r r

r r r r

r r r r
2 1 2 1

2 1 2 1

3 2 3 2

3 2 3 2

− + +
− − −

=
− + +
− − −

P

a b

k

R Q

L
r1

r1

r1
r2

r3

r3C3

r2− r1

r1− r2

c1

c2
M

K

A
/2

A
/2

A
/2

N
P
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⇒
−

=
−

⇒ = ⇒ =

⇒ =

2

2

2

2
2

1

3

2

2

1

3

2
2
2

1 3

2 1 3

r

r

r

r

r

r

r

r
r r r

r r r

Example 106 A circle passes through the vertex C of a rectangle ABCD and touches 
its sides AB and AD at M and N respectively. If the distance from C to the line segment 
MN is equal to 5 units. Find the area of the rectangle ABCD. 

Solution: Let CP ⊥ MN, CP = 5 units

By alternate segment theorem, ∠ = ∠ =CMB CNM θ  also ∠ = ∠ =CND CMN α

Consider quadrilaterals DNPC and PMBC

∠ = + = ∠
∠ = ° = ∠

∠ = ° = ∠

DNP PMB

NPC MBC

NDC MPC

α θ
90

90And 

By AAA similarity quadrilaterals are similar, hence

            
DC

PC

PC

BC
=

 ⇒ ⋅ = = =BC DC PC 2 25 25

⇒[ ] =ABCD 25 square units 

Aliter:

In ∆BMC, sinθ =
BC

CM

In ∆ =NPC
CP

CN
, sinθ

 ∴ = ⇒ =
BC

CM

CP

CN

BC

CP

CM

CN
 (1)

In ∆ =CND
CD

CN
, sinα

In ∆ =CPM
CP

CM
, sinα

 ⇒ = ⇒ =
CD

CN

CP

CM

CD

CP

CN

CM
 (2)

Multiplying Eqs. (1) and (2), we get 
BC

CP

CD

CP

CM

CN

CN

CM
⋅ = ⋅ =1

∴ ⋅ = = ⇒ ⋅ =BC CD CP BC CD2 25 25( )  sq. units

∴ Area of rectangle = 25 sq. units.

B

M

A D
N

P

C

θ

θ α

α
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Example 107 Let ABC be a triangle and a circle C1 be drawn lying inside the triangle, 
touching its in-circle C externally and also touching the two sides AB and AC. Show 

that the ratio of the radii of the circles C1 and C is equal to tan .2

4

π −







A

Solution: Draw I1K ⊥ IN, ∴ I1KNM is a rectangle. I1K || MN

∠ = ∠ =II K I AM
A

1 1
2

In ∆II1K, sin
A IK

II

r r

r r2 1

1

1

= =
−
+

Applying componendo and dividendo, we get 
1

2

1
2

1 1

1 1

−

+
=

+ − +
+ + −

sin

sin

A

A
r r r r

r r r r

⇒
− −








+ −







= ⇒

−





1

2 2

1
2 2

2

2

2
4

2

1

2cos

cos

sin

co

π

π

πA

A

r

r

A

ss

tan .

2

1

2 1

4

4

π

π

−







=

⇒
−






 =

A

r

r

A r

r

Build-up Your Understanding 12

 1. Prove that of all straight lines drawn through a point of intersection of two circles 
and terminated by them, the one which is parallel to the line joining the centres is 
the greatest.

 2. Two circles of equal radii cut each other at P and Q, so that the centre of one lies 
on the other. A straight line through P cuts the circle again at A and B. Prove that 
∆QAB is equilateral. 

 3. A circle AOB, passing through the centre ‘O’ of another circle cuts the latter circle 
at A and B. A straight line APQ is drawn meeting the circle AOB in P and the other 
circle in Q. Prove that PB = PQ.

 4. The altitude AD of ∆ABC is produced to cut the circumcircle in K. Prove that HD 
= DK where H is the orthocentre.

 5. The chords AC, BD of a circle cut at right angles at O. Prove that the median of 
∆DCO through O is perpendicular to AB. Also prove that the perpendicular from 
O on AB produced bisects CD.

 6. BE, CF are the altitudes from B and on the opposite sides of a ∆ABC. If P be the 
mid-point of BC. Show that PE = PF.

 7. A triangle ABC is inscribed in a circle and ∠A is bisected by AE meeting the cir-
cumference in F. Also ∠C is bisected by CI meeting AE in I. Prove that EB, EC, 
FI are all equal.

 8. Two circles touch internally at A and a chord APQ is drawn cutting them in P and 
Q. If the tangent at P meets the other circle in H and K. Prove that HQ = KQ. 

 9. ABC is a triangle. Circles with radii as shown are drawn inside the triangle each 
touching two sides and the incircle. Find the radius of the incircle of the ∆ABC.

N

M

K

B C

I

I1
r1

r

A/2

A

A

B C

r1 = 1

r2 = 4 r3 = 9
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 10. Let D be an arbitrary point on the side AB of a given triangle ABC and let E be 
the intersection point where CD intersects the external common tangent to the 
incircles of the triangles ACD and BCD. As D assumes all positions between A 
and B, prove that, the point E traces the arc of a circle.

 11. The tangents at A and B on a given circle O1(r) intersect at C. Show that the in-
centre of the triangle lies on the given circle. 

 12. Three circles O1(r1), O2(r2) and O3(r3) touch each other externally. The line l is 
tangent to O1(r2) and parallel to the exterior common tangent m to O2(r2) and 
O3(r3) which does not intersect O1(r1). Find the distance between the lines l and m.

O1

O2
O3

l

m

 13. Two circles O1(r1) and O2(r2) r1 > r2, touch each other externally, and the line l is 
a common tangent. The line m is parallel and touches O1(r1) and the circle O3(r3) 

touches m and the two given circles externally. Show that r r r1
2

2 34= .

8.12 QUADrilATerAls (CYclic AND TANGeNTiAl)

8.12.1 Cyclic Quadrilateral

A quadrilateral which has a circle passing through all its four vertices is called a cyclic 
quadrilateral (or Inscribed quadrilateral). This circle is called circumcircle of the quad-
rilateral, its centre is the circumcentre and its radius is called the circumradius.

8.12.1.1 Theorem

If a quadrilateral is cyclic, then the sum of each pair of opposite angles is 180°

Proof: ∠BCA = ∠BDA = x (Say)
And ∠BAC = ∠BDC = y (Say)

In ∆BAC,

 ∠BAC + ∠BCA + ∠B = 180°
 x + y + ∠B = 180
but x + y = ∠D

∴ ∠D + ∠B = 180° (1) 

Also in quadrilateral ABCD,

 ∠A + ∠B + ∠C + ∠D = 360°
∴ (∠A + ∠C) + (∠B + ∠D) = 360°
 ∠A + ∠C = 180° (From Eq. (1))

8.12.1.2 Corollary

The exterior angle of a cyclic quadrilateral is equal to the interior opposite angle.
Since

∠1 + ∠2 = 180°

O1

A

B

C

O1
O2

O3

l

m

D  

x  

x  
C  

A  
y  

y  

B  
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Also

 ∠1 + ∠3 = 180° (Linear pair)
 ∴ ∠1 + ∠2 = ∠1 + ∠3
 ⇒ ∠2 = ∠3

8.12.1.3 Theorem

If in a quadrilateral, the sum of a pair of opposite angles is 180°, then it is cyclic.

Proof: Let in quadrilateral ABCD, ∠B + ∠D = 180°
Consider a circle passing through A, B and C if possible let D be not on this circle.

Then two cases may arise either D lies outside the circle or inside the circle. 

Case 1: If possible let D be outside the circle 
Join AD which cuts the circle at E. Join CE. Since ABCE is a cyclic quadrilateral

∠1 + ∠3 = 180°
Also it is given that
∠1 + ∠2 = 180°
∴ ∠1 + ∠3 = ∠1 + ∠2
⇒ ∠3 = ∠2 (1)
but ∠3 = ∠2 + ∠4 (Exterior angle property)
∴ ∠3 > ∠2 (2)
∴Eqs. (1) and (2) contradict each other.
Thus D cannot lie outside the circle.

Case 2: If possible let D be inside the circle.
Produce AD to cut the circumcircle at E

Join CE
Since ABCE is a cyclic quadrilateral,
∠1 + ∠3 = 180°
Also ∠1 + ∠2 = 180° (given)
⇒ ∠1 + ∠2 = ∠1 + ∠3
⇒ ∠2 = ∠3 (3)
But ∠2 = ∠3 + ∠4 (Exterior angle property)
⇒ ∠2 >∠3 (4)
∴ Eqs. (3) and (4) contradict with other 
Thus D cannot lie inside the circle.
Thus D must lie on the circle

Example 108 Let ABC be a triangle, with arbitrary points D, E and F on sides BC, AC, 
and AB respectively (or their extensions). Draw three circumcircles to triangles AEF, 
DBF, and DEC. Then prove that these circles intersect in a single point M. 

Solution: Let circumcircles of triangles AEF, DBF intersect each other at F and M.
From cyclic quadrilateral AEMF,
∠CEM = ∠MFA  (Exterior angle property of Cyclic quadrilateral) (1)
From cyclic quadrilateral FBDM,
∠MFA = ∠MDB (Exterior angle property of Cyclic quadrilateral) (2)
From Eqs. (1) and (2), we get,
∠CEM = ∠MDB
⇒ CEMD is a cyclic quadrilateral
⇒ Circumcircle of ∆CED passes through M.

C  
2 

1 3 
A  B  

D  

D  

3 

1 

4 

B  

A  

E  
2 

C  

D  

1 

4 

B

A  
2 

C  

3 
E  

C

A B
F

E

D

M
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Note: The problem statement is known as Miquel’s theorem and point M is called the 
Miquel point. Special case of this theorem in which DEF are not collinear called Pivot 
Theorem. In case of DEF are collinear Miquel point lies on circumcircle of ∆ABC.

Example 109 Let ABCD be a convex quadrilateral. Consider four circles C1, C2, C3, 
and C4 each of which touches 3 sides of this quadrilateral. C1 touches AB, BC, CD, C2 
touches BC, CD, DA, C3 touches CD, DA, AB and C4 touches DA, AB, BC. Prove that 
the centres O1, O2, O3, O4 of the four circles form a cyclic quadrilateral.

Solution: First we will prove some basic results. 
Let C1, touches, AB, BC, and CD at R, P and M respectively with centre O1.

Now O1P ⊥ BC and O1R ⊥ AB
In ∆O1PB and ∆O1RB
∠O1PB = ∠O1RB = 90°
O1P = O1R (Radius)
O1B = O1B (Common)
∴ By RHS, congruency

∆O1PB ≅ ∆O1RB
∠O1BP = ∠O1BR
i.e., O1B bisects ∠B
Similarly O1C bisects ∠C
So let ∠O1BP  = ∠O1BR = x
And ∠O1CP = ∠O1CM = y
Now in quadrilateral ABCD
∠A + ∠B + ∠C + ∠D = 360°
∠A + 2x + 2y + ∠D = 360°
2x + 2y = 360° (∠A + ∠D)

x + y = 180° - 
1

2
(∠A + ∠D)

In ∆BO1C,
x + y + ∠BO1C = 180°

⇒ 180° - 
1

2
(∠A + ∠D) + ∠BO1C = 180°

⇒ ∠BO1C = 
1

2
(∠A + ∠D)

Similarly In ∆AO3D,

∠AO3D = 
1

2
(∠C + ∠B)

Now in quadrilateral O1O2O3O4, 

∠O4O1O2 + ∠O2O3O4 = 
1

2
(∠A + ∠D) + 

1

2
(∠B + ∠C)

= ∠ +∠ +∠ +∠
1

2
( )A B C D

= 
1

2
360×  = 180°

Hence quadrilateral O1O2O3O4 is a cyclic quadrilateral.

Auguste Miquel

1816–1851
Nationality: French

P  C  B  

R  

A  D  

M  
O 

y  y
y  x  

x  

A  
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Example 110 The  diagonals AC and BD of a cyclic quadrilateral ABCD meet at right 
angle in E. Prove that EA2 + EB2 + EC 2 + ED2 = 4R2, where R is the radius of the 
circumscribing circles.

Solution: Let O be the centre of the circle and P, Q be the feet’s of the perpendicular 
from O to AC and BD.
Clearly OPEQ is a rectangle

Now EA2 + EC2 = (EP + PA)2 + (PC - PE)2

= EP2 + PA2 + 2PA ⋅ PE + PC2 + PE2 - 2PC PE (As PA = PC)
= 2(PA2 + PE2)

Similarly

EB2 + ED2 = 2(QD2 + QE2)

∴ EA2 + EB2 + EC2 +ED2

= 2[PA2 + PE2 + QD2 + QE2]

= 2[PA2 + OQ2+ QD2 + OP2] (As PE = OQ, QE = OP)

= 2[PA2 + OP2 + QD2 + OQ2]

= 2[OA2 + OD2] = 2[R2 + R2]

EA2 + EB2 + EC2 + ED2 = 4R2

Aliter: Let ∠BDC = x
then ∠BOC = 2x

Also let ∠ACD = y
Then ∠AOD = 2y
Also in ΔEDC x + y = 90°
∴ 2x + 2y = 180°
∴ 2y = 180° - 2x
Since, EA2 + ED2 = AD2 and EB2 + EC2 = BC2

∴ EA2 + EB2 + EC2 + ED2 = AD2 + BC2 
= OA2 + OD2- 2OA ⋅ OD cos2y + OB2 + OC2 - 2OB ⋅ OC cos2x
= R2 + R2 - 2R2cos 2y + R2 + R2- 2R2cos 2x
= 4R2- 2R2 [cos 2y + cos2x]
= 4R2- 2R2 [cos(180° - 2x) + cos2x]
= 4R2- 2R2 [-cos 2x + cos 2x]
= 4R2

8.12.2 Simson–Wallace Line

The feet’s L, M, N of the perpendiculars on the sides BC, CA, AB of any ∆ABC from 
any point X on the circumcircle of the triangles are collinear. The line LMN is called 
the Simson–Wallace line.

Proof: Join AX, XC. Join NM and ML.
Now to prove L, M, N collinear, we will prove ∠LMX + ∠NMX = 180°.

Since ∠XMC = ∠XLC = 90°
∴ XMLC is a cyclic quadrilateral.
∴ ∠XML + ∠XCL = 180°
90° + ∠1 + ∠C = 180°
∴ ∠1 + ∠C = 90° (1)

D  

Q O 

E  
P  

C  

B  

A

D  

O 

E  P  

C  

x  2y

 

A  

B  

y  

2x

Robert Simson

14 Oct 1687–1 Oct 1768 
Nationality: French

This concept was first
published by William Wallace.

14 Oct 1687–1 Oct 1768 
Nationality: Scottish
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Since ∠ANX + ∠AMX = 90° + 90° = 180°
A, M, X, N are concyclic 

∠XAN = ∠XMN

i.e., ∠3 = ∠2

Also AXCB is a cyclic quadrilateral 

∴ ∠3 = ∠C

⇒ ∠2 = ∠3 = ∠C (2)

From Eqs. (1) and (2)

∠1 + ∠2 = 90° (3)

Now, ∠LMX + ∠XMN = ∠1 + 90° + ∠2 = 180° (From Eq. (3))

⇒ L, M, N are collinear.

Note: Converse is also true. That is, L, M, N are collinear then X lies on the circum-
circle of the triangle.

Example 111 If the perpendicular XL on side BC of ∆ABC meets the circumcircle 
again at L′ then prove that AL′ is parallel to the Simson line of X.

Proof: Since XL produced meets the circumcircle at L′

 ∴ ∠XCA = ∠XL′A (1)

Also ∠XMC = ∠XLC = 90°
So XMLC is a Cyclic quadrilateral
∠XCA = ∠XLM (2)
From Eqs. (1) and (2)
∠XL′A = ∠XLM
∴ By converse of corresponding angle postulate AL′|| LN.

8.12.3 Ptolemy’s Theorem

In a cyclic quadrilateral the product of the diagonals is equal to the sum of the products 
of the pairs of opposite sides.

Proof: Given ABCD is a cyclic quadrilateral
To prove

AB ⋅ CD + AD ⋅ BC = AC ⋅ BD
Construction:
Draw ∠DAT = ∠CAB
which cuts CD produced at T

Proof: In ∆CAT and ∆BAD
∠ACT = ∠ABD (Angles in a same segment)
∠CAT = ∠2 + ∠3 = ∠1 + ∠3 =∠BAD (As ∠1 = ∠2)
∴ By AA similarity 
∆CAT ~ ∆BAD

∴ AC

AB

TC

DB
=

 ⇒ TC = 
AC

AB
BD⋅  (1)

C

X
A

N

L

L′

M

B

C

X
A

N

L

1

2

3

M

B

Claudius Ptolemy

c. AD 100–c. 170
Nationality: Greek
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In ∆DAT and ∆BAC
∠DAT = ∠BAC (Construction)
∠TDA = ∠CBA (Exterior angle of a cyclic quadrilateral)
∴ By AA similarity
∆DAT ~ ∆BAC

∴ AD

AB

TD

BC
=

⇒ TD = 
AD

AB
BC⋅  (2)

∴ TC = TD + DC

⇒ 
AC

AB
BD⋅  = 

AD

AB
BC⋅ +DC (From Eqs. (1) and (2))

⇒ AC ⋅ BD = AD ⋅ BC + AB ⋅ CD. Hence proved.

Aliter: Choose a point E in BD, so that ∠BAE = ∠DAC.
In ∆s ABE and ACD, we have
∠BAE = ∠CAD (Construction)
∠ABE = ∠ACD (Angles in the same segment of a circle).
∴ ∆s are equiangular and hence similar.

 ∴ = ⋅ = ⋅
BE

DC

AB

AC
AB CD AC BEor  (1)

Let us now consider triangles BAC and EAD,
∠BAC = ∠EDA (Add ∠EAC to both ∠1 and ∠2)

∠BCA = ∠EDA (Angles in the same segment of a circle)

∴ The triangles are equiangular and hence similar.

 ∴ = ⋅ = ⋅
BC

ED

AC

AD
BC AD AC EDor  (2)

Adding corresponding sides of Eqs. (1) and (2),

AB ⋅ CD + AD ⋅ BC = AC ⋅ BE + AC ⋅ ED (3)

i.e., AB ⋅ CD + AD ⋅ BC = AC.(BE + ED), i.e., AC ⋅ BD.

8.12.4  Generalization of Ptolemy’s Theorem 
(for All Convex Quadrilateral)

In any quadrilateral, product of the diagonals is less than or equal to the sum of the 
products of the pairs of opposite sides. Equality holds for cyclic quadrilateral only.

Proof:

Claim: ABCD is a quadrilateral with AB = a, BC = b, CD = c, DA = d, AC = m and 
BD = n

Then m2n2 = a2c2 + b2d2 - 2abcd cos(A + C)
Proof of claim: Construct a ∆ABE ~ ∆CAD on the side AB so that ∠ABE = ∠CAD
= ∠3 and ∠BAE = ∠ACD = ∠1

Since ∆ABE ~ ∆CAD

∴ 
AB

CA

AE

CD

BE

AD
= =  

A

EB

D

C

1 2

3
4

6

5

E 
B 

b 
2 1 

C 

3 

a 
m 1 

4 
3 

A 
2 d 

4 
D 

c 
n

F 
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Or 
a

m

AE

c

BE

d
= =  

∴ AE = 
ac

m
 and BE

ad

m
=  (1)

Construct a ∆ADF ~ ∆CAB so that
∠ADF = ∠CAB = ∠4 and
∠DAF = ∠ACB = ∠2. 
As ∆ADF ~ ∆CAB,

∴ 
AD

CA

AF

CB

DF

AB
= =

⇒ 
d

m

AF

b

DF

a
= =

⇒ AF = 
bd

m
 and DF

ad

m
=  (2)

∴ From Eqs. (1) and (2), we get,

BE = DF = 
ad

m
Also,
∠EBD + ∠BDF = ∠3 + ∠ABD + ∠BDA + ∠4
= ∠ABD + ∠BDA + ∠BAD (As ∠3 + ∠4 = ∠BAD)
∴ ∠EBD + ∠BDF = 180° (by ASP of ∆ABD)
∴ BE || DF and BE = DF
Since in a quadrilateral if one pair of opposite side is equal and parallel then it is a ||gm. 
∴ EBDF is a parallelogram.
So, EF = BD = n
Further ∠EAF = ∠1 + ∠2 + ∠3 + ∠4
⇒ ∠EAF = ∠A + ∠C
So applying cosine rule in ∆EAF
EF2 = AE2 + AF2 - 2AE ⋅ AF cos∠EAF

n2 = 
a c

m

b d

m

2 2

2

2 2

2
+  - 2

ac

m

bd

m














  cos(∠A + ∠C) (From Eqs. (1), (2), and (3))

m2n2 = a2c2 + b2d2 - 2abcd cos(∠A + ∠C)

Now cos ∠ +∠( ) ≥ −A C 1

⇒ ( ) ≤ ( ) + ( ) − −

⇒ ( ) ≤ +( )
⇒ ≤ +

mn ac bd abcd

mn ac bd

mn ac bd

2 2 2

2 2

2 1( )

Also equality holds when cos .∠ +∠( ) = − ⇒ ∠ +∠ = °A C A C1 180

And we get result of Ptolemy’s theorem.
Hence, the product of the diagonals is less than or equal to the sum of the products 

of the pairs of opposite sides in any quadrilateral.

Aliter: ABCD is a quadrilateral with AB = a, BC = b, CD = c, DA = d, AC = m and 
BD = n.
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On side BC of the quadrilateral outwardly construct a ∆PBC directly similar to ∆ADC. 
Join PA.

As ∆PBC ∼ ∆ADC,

PB

AD

BC

DC

CP

CA
= =

⇒ =
⋅

PB
d b

c
 (1)

We can easily prove that ∆CDB ∼ ∆CAP, as follows:
Since ΔPBC ∼ ΔADC

BC

DC

PC

AC

BC

PC

DC

AC
= ⇒ =

Also ∠BCD = ∠PCA
By SAS, ΔCDB ∼ ΔCAP

So 
CD

CA

DB

AP
=

Or 
c

m

n

AP
AP

m n

c
= ⇒ =

⋅
 (2)

Consider triangle inequality in ∆ABP,

AB BP PA+ ≥

Or a
b d

c

mn

c
+

⋅
≥  (from Eqs. (1) and (2))

⇒ ⋅ + ⋅ ≥ ⋅a c b d m n
Equality occurs if and only if points A, B, P are collinear, 
i.e., ∠CBA = 180° – ∠PBC = 180° – ∠ADC
⇒ Quadrilateral ABCD is cyclic.

Example 112 A line drawn from the vertex A of an equilateral triangle ABC meets BC 
at D and the circumcircle at P. Prove that

 (i) PA = PB + PC

 (ii) 1 1 1

PD PB PC
= +

Solution:
 (i) Since ABPC is a cyclic quadrilateral, by Ptolemy’s Theorem, 

∴ AB ⋅ PC + AC ⋅ PB = BC ⋅ AP
Since AB = BC = AC = a,
∴ a ⋅ PC + a ⋅ PB = a ⋅ PA
⇒ PA = PB + PC (1)

 (ii) Now divide Eq. (1) by PB ⋅ PC we get

  
PA

PB PC PC PB⋅
= +

1 1
 (2)

  Now it is enough to prove 
PA

PB PC PD⋅
=

1
 or 

PA

PB

PC

PD
=  

  In ∆APB and ∆CPD

C
c

A
P

Ba

m

n b
d

D

A  

B  
60°  

C  

60°  60°  

P  

60°  D  
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  ∠APB = ∠ACB = 60° = ∠CBA = ∠CPD
  i.e., ∠APB = ∠CPD = 60°
  Also ∠PAB = ∠PCD (Angles in a same segment)
  ∴ By AA similarity
  ∆APB ~ ∆CPD

 ⇒ 
PA

PC

PB

PD
=

 ⇒ 
PA

PB PC PD⋅
=

1
 (3)

  ∴ From Eqs. (2) and (3), we get 

  1 1 1

PD PB PC
= + .

Example 113 Given that a, b, c, d are the measures of the sides of a quadrilateral in 
clockwise direction, prove the inequalities,

 (i) ABCD ab cd[ ] ≤ +
1

2
( ).

 (ii) [ ] ( )ABCD ad bc≤ +
1

2

 (iii) ABCD a b c d[ ] ≤ + +
1

4
( )( ).

Solution: Area of the quadrilateral ABCD, i.e., 

[ ] sin sin ( )ABCD ab cd= +
1

2

1

2
α β in The frist figure (1)

 [ ] ( ) sin , sinABCD ab cd≤ + ≤( )1

2
1As α β  (1)

From the second figure, [ ] sin sinABCD ad bc= +
1

2

1

2
δ γ

 ⇒ ≤ + ≤[ ] ( ) ( sin , sin )ABCD ad bc
1

2
1As γ δ  (2)

In the third figure, let AC = f1 + f2 = f and BD = e1 + e2 = e
Now, 

[ ] sin( ) sin sin( )ABCD e f e f f e e= °− + + ° − +
1

2
180

1

2

1

2
180

1

2
1 1 1 2 2 2 2θ θ θ ff1 sinθ

i e ABCD e f e f f e e f

i e ABCD

. ., [ ] ( ) ( sin )

. ., [ ]

< + + + ≤

≤

1

2
1

1

1 1 1 2 2 2 2 1 as θ

22

1

2
1 2 1 2( )( )e e f f ef+ + =

i.e., [ ]ABCD ef≤ ⋅

1

2
 (3)

But 
1

2

1

2
ef ac bd≤ +( ) ( )by Extended Ptolemy’s theorem

A

b

d

c

a

β α
B

C

D

180° − θθ

θ

f1

f2

A

b

d

c

a

B

C

D
e1e2

A

b

d

c

a

γ

δ
B

C

D
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∴ [ ] ( )ABCD ac bd≤ +
1

2
  (4)

Adding Eqs. (2) and (4), we get

2
1

2

2
1

2
1

4

[ ] ( )

[ ] ( )( )

[ ] (

ABCD ad bc ac bd

ABCD a b c d

ABCD a b

< + + +

⇒ < + +

⇒ < + ))( )c d+

Equality happens when the quadrilateral is a square. (i.e., sinθ = 1 ⇒ θ = 90°).

Example 114 If isosceles ∆ABC (AB = AC) is inscribe in a circle and a point P is on 

arc BC prove that 
PA

PB PC

AC

BC+
= .

Solution: By Ptolemy’s theorem
PA ⋅ BC = PB ⋅ AC + PC ⋅ AB

= PB ⋅ AC + PC ⋅ AC (As AB = AC)
⇒ PA ⋅ BC = (PB + PC) AC

⇒ 
PA

PB PC

AC

BC+
=

Example 115 A square ABCD is inscribed in a circle and a point P is on arc BC then 

prove that 
PA PC

PB PD

PD

PA

+
+

= .

Solution: Since in a square ABCD, AB = BC = CD = DA = a (Say) and AC = BD = a 2
In cyclic quadrilateral APCD, by Ptolemy’s theorem

PA ⋅ CD + AD ⋅ PC = PD ⋅ AC

⇒ (PA + PC)a = PD ⋅ a 2

⇒ PA + PC = PD 2  (1)
In cyclic quadrilateral ABPD, by using Ptolemy’s theorem
PD ⋅ AB + PB ⋅ AD = PA ⋅ BD

⇒  (PD + PB)a = PA ⋅ a 2

⇒ PB + PD = PA ⋅ 2  (2)

From Eq. (1)/ Eq. (2) we get, 
PA PC

PB PD

PD

PA

+
+

= .

Example 116 A regular pentagon ABCDE is inscribed in a circle and point P is cho-
sen on arc BC. Prove that PA + PD = PB + PC + PE.

Solution: In cyclic quadrilateral ABPC, ABPD and ABPE by using Ptolemy’s theorem 
we get

AB ⋅ PC + AC ⋅ PB = AP ⋅ BC (1)

AB ⋅ PD + AD ⋅ PB = AP ⋅ BD (2)

AB ⋅ PE + AE ⋅ PB = AP ⋅ BE (3)

From Eq. (1) + Eq. (3) - Eq. (2)

A  

C  B  
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D  

B  

C  
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AB(PC + PE - PD) + (AC + AE - AD)PB = (BC + BE - BD)AP

AB[PC + PE - PD] + AE ⋅ PB = BC ⋅ AP (As AC = AD; BE = BD)

⇒ PC + PE - PD + PB = PA (As AB = AE = BC )

⇒ PC + PE + PB = PA + PD.

Example 117 A point P is chosen inside a parallelogram ABCD such that ∠APB is 
supplementary to ∠CPD. Prove that AB ⋅ AD = BP ⋅ DP + AP ⋅ CP.

Solution:
Given: ∠APB + ∠CPD = 180°
Construction: Draw DQ || AP, CQ || BP
Proof: Since AB || DC, AP || DQ

∴ ∠1 = ∠2

AB = DC

Also ∠3 = ∠4 [ ∴ AB || DC, PB || CQ]

∴ By ASA congruency, ∆APB ≅ ∆DQC

∴ ∠APB = ∠DQC

And AP = DQ and BP = CQ

Since ∠APB + ∠DPC = 180° (Given)

∴ ∠DQC + ∠DPC = 180°
∴ P, D, Q, C are concyclic

By Ptolemy’s theorem in quadrilateral PDQC

PD ⋅ CQ + PC ⋅ DQ = PQ ⋅ CD

Since AP = DQ and AP || DQ

∴ APQD is a parallelogram

∴ PD ⋅ PB + PC ⋅ PA = AD ⋅ CD

⇒ PD ⋅ PB + PC ⋅ PA = AD ⋅ AB.

Example 118 Prove that sin(α + β ) = sin α cos β + cos α sin β using Ptolemy’s theo-
rem or otherwise.

Solution: Let PR be a diameter of the circle and ∠SPR = α and ∠RPQ = β.
In ∆PQR ∠Q = 90°

cos β =
PQ

PR
⇒ PQ = PR cos β

sin β = 
QR

PR
⇒ QR = PR sin β

Similarly In ∆PSR, we get, SR = PR sin α and SP = PR cos α
In ∆SPQ, by Sine rule, we get, 

SQ

sin( )α β+
 = PR ⇒ SQ = PR sin(α + β)

By Ptolemy’s theorem in quadrilateral PQRS,

PR ⋅ SQ = PS ⋅ RQ + PQ ⋅ SR

⇒ PR ⋅ PR sin(α + β) = PR ⋅ cos α ⋅ PR sin β + PR cos β ⋅ PR sin α
⇒ sin(α + β) = sin α cos β + cos α sin β.

A
 

C 

D

B

P 

3  Q

1 2
4 

β

α
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R  P  αα  
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Example 119 Prove that cos(α + β) = cos α cos β - sin α sin β using Ptolemy’s theo-
rem or otherwise.

Solution: Let PQ is a diameter
∠QPR = α and ∠PQS = β
Let PR and QS intersect at E
∴ ∠PES = α + β
In ∆PQR,

sin α = 
QR

PQ
 ⇒ QR = PQ sin α

cos α = 
PR

PQ
 ⇒ PR = PQ cos α

In ∆PSQ,

sin β = 
PS

PQ
⇒ PS = PQ sin β

cos β = 
QS

PQ
⇒ QS = PQ cos β

also In ∆RES and ∆QEP

∠RES = ∠QEP (VOA)

∠ERS = ∠EQP = β (Angle in a same segment)
∴ By AA similarity

∆RES ~ ∆QEP

⇒ 
RS

PQ
 = 

SE

PE
 (1)

In ∆SEP,

cos(α + β) = 
SE

PE
 (2)

⇒ 
RS

PQ
 = cos(α + β) (from Eqs. (1) and (2))

⇒ RS = PQ cos (α + β)
Now by using Ptolemy’s theorem
PQ ⋅ RS + PS ⋅ QR = PR ⋅ QS
⇒ PQ ⋅ PQ cos(α + β) + PQ sin β ⋅ PQ sin α = PQ cosα ⋅ PQ cosβ 
⇒ cos(α + β) + sinα sinβ = cosα cosβ
⇒ cos(α + β) = cosα cosβ - sinα sinβ

Aliter: (Without using Ptolemy’s theorem)
Let ABCD is a rectangle and ∆AFE is a right angle triangle with AE = 1
In ∆AEF,

sinα = 
EF

AE
 ⇒ EF = sin α( As AE = 1)

cosα = 
AF

AE
 ⇒ AF = cos α (As AE = 1)

β
β

β

α
α E  

 
+

P  

S  R  
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  +  

F
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β β
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In ∆ABF,

cos β = AB

AF
 ⇒ AB = AF cos β = cos α cos β (1)

sin β = 
BF

AF
 ⇒ BF = AF sin β = cos α sin β (2)

In ∆CEF

cos β = 
CF

FE
 ⇒ CF = FE cos β = sin α cos β (3)

sin β = 
CE

EF
 ⇒ CE = EF sin β = sin α sin β (4)

Since AB || CD
∠EAB = ∠AED = α + β
∴ In ∆ADE

cos(α + β) = 
ED

AE
 ⇒ ED = cos(α + β) (5)

sin(α + β) = 
AD

AE
 ⇒ AD = sin(α + β) (6)

Since ABCD is a rectangle
∴ AD = CB 
AD = CF + FB
sin(α + β) = sin α cos β + cos α sin β (From Eqs. (2), (3) and (6))  
Also AB = DC = DE + EC 
⇒ DE = AB – EC
⇒ cos(α + β) = cosα cosβ - sinα sinβ (From Eqs. (1), (4) and (5)).

8.12.5 Tangential Quadrilateral

A convex quadrilateral whose sides are all tangent to a single circle within the quad-
rilateral is called tangential quadrilateral (or circumscribed quadrilateral or inscrip-
tible quadrilateral). This circle is called the incircle of the quadrilateral or its inscribed 
circle, its centre is the incentre and its radius is called the inradius.

8.12.5.1 Pitot Theorem

Let ABCD be a tangential quadrilateral. Then the sum of the opposite sides are equal. 
That is, AB + CD = AD + BC.

Proof: Let the incircle C touches the sides AB, BC, CD, DA at P, Q, R and S respectively. 
Since the lengths of the tangents drawn from an external point to a circle are equal

∴ AP = AS = x (Say)
BP = BQ = y (Say)
CQ = CR = z (Say)
DR = DS = a (Say)
Also AB + CD = AP + PB + CR + RD = x + y + z + a (1)
AD + BC = AS + SD + CQ + QB = x + a + z + y (2)
Then from Eqs. (1) and (2), we get, AB + CD = AD + BC

Henri Pitot

3 May 1695–27 Dec 1771 
Nationality: French
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8.12.5.2 Converse of Pitot Theorem

Any convex quadrilateral that satisfies AB + CD = AD + BC is tangential.

Proof: Let us consider two cases as given quadrilateral is a kite or not a kite.

Case 1: Consider ABCD is a kite with AB = AD and BC = CD.
Observe AC is angle bisector of ∠A and ∠C.

By symmetry angle bisectors of ∠B and ∠D will meet each other at I on AC.
So I is equidistant from all four sides of the quadrilateral. 
Hence quadrilateral must be tangential. 

Case 2: Consider ABCD is not a kite. Thus either AD > DC or AD < DC. WLOG let 
AD > DC.

Now AD > DC ⇒ AB > BC. 
So we can locate a point P on AD and Q on AB such that DP = CD and BQ = BC.
From AB + CD = AD + BC we get, AQ + QB + CD = AP + PD + BC.

⇒ AQ = AP (As CD = PD and BC = BQ)

⇒ ∆CBQ, ∆CDP, and ∆APQ are isosceles. 
Now draw angle bisectors of ∠A, ∠B and ∠D, and these angle bisector will be 

perpendicular bisector of PQ, QC and CP respectively as ∆CBQ, ∆CDP, and ∆APQ 
are isosceles.

In ∆PQC, perpendicular bisectors of sides are concurrent. Let their point of concur-
rency be I.

I is equidistant from all sides of the quadrilateral. Hence quadrilateral is 
tangential.

Note: A quadrilateral which has both a circumcircle and an incircle is called a bicen-
tric quadrilateral.

Example 120 Let ABCD be a circumscribed (or tangential) quadrilateral. Prove that 
the circles in the two triangles ABC and ADC are tangent to each other.

Solution: Let the incircle of ∆ABC be C1 and that of ∆ADC be C2.
Since C1 and C2 lie on either side of AC, the diagonal, if they touch each other, then, 

they must touch at a point only on AC.
If possible let C1 touch AC at P and C2 touch AC at a point Q. (We assume to the 

contrary).
Then, PQ = AQ – AP (1)

Now AQ = AC – CQ = AC – CR = AC – CD + DR (Equal tangent property)

= AC – CD + DS = AC – CD + DA – SA (Equal tangent property)

= AC – CD + DA – AQ (Equal tangent property)

∴ 2AQ = AC – CD + AD (2)

Similarly, 2AP = AC – BC + AB (3)

∴ 2PQ = (AC – CD + AD) – (AC – BC + AB) (From Eqs. (1), (2) and (3))

i.e., 2PQ = (AD + BC) – (AB + CD) = 0 (by Pitot’s theorem)

Therefore the points P and Q must coincide with each other, i.e., the two circles 
touch AC at the same point.

A

B

C
I

D

D

C

P

A
Q

B

I

A S

U P
R

Q

B

C
T

D

C1

C2
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Example 121 Triangle ABC is equilateral. D is on AB and E is on AC, such that, DE 
is tangent to the incircle. Prove the result:

AD

DB

AE

CE
+ =1.

Solution: Let AB = AC = BC = a.

Let BD = x and CE = y, so that, AD = a – x and AE = a – y

By Pitot’s theorem for circumscribed quadrilateral BDEC.

BC + DE = BD + CE  ⇒  DE = x + y – a (1)

∴ DE2 = (x + y – a)2

= x2 + y2 + a2 + 2xy – 2ax – 2ay (2)

Also, by cosine rule applied to ∆ADE, we have

DE a x a y a x a y

DE a x ax a y a

2 2 2

2 2 2 2 2

2 60

2 2

= − + − − − − °

∴ = + − + + −

( ) ( ) ( )( ) cos

yy a ay ax xy− − − + ° =( ) ( cos )2 60
1

2
As

 i e DE x y a ax ay xy. ., 2 2 2 2= + + − − −  (3)

∴ Equating Eqs. (2) and (3), we have

 x y a ax ay xy x y a ax ay xy2 2 2 2 2 22 2 2+ + − − + = + + − − −  (4)

⇒ = +3xy ax ay

⇒ =
+

a
xy

x y

3

Substituting this value of ‘a’ for AD and AE, we have

AD a x
xy

x y
x

xy x xy

x y

x y x

x y
= − =

+
− =

− −
+

=
−
+

3 3 22 ( )

 ⇒ =
−
+

AD

DB

y x

x y

2
  (As x = DB) (5)

AE a y
xy

x y
y

xy xy y

x y

y x y

x y
= − =

+
− =

− −
+

=
−
+

3 3 22 ( )

 ⇒ =
−
+

AE

EC

x y

x y

2
  (As y = EC) (6)

From Eq. (5) + Eq. (6), we get,

AD

DB

AE

EC

y x

x y

x y

x y

x y

x y
+ =

−
+

+
−
+

=
+
+

=
2 2

1.

Example 122 Let the incircles of ∆ABC touch AB at D and let E be a point on the side 
AC. Prove that the incircles of triangles ADE, BCE and BDE have common tangents.

Solution: Let the incircle C′ of ∆ABC touch AB at D, BC at F and AC at G respectively.
Let the incircle C1, of ∆ADE touch the sides EA, AD and DE at P, Q and R respectively.

Let the incircle C2, of ∆BCE touch the sides BC, CE, EB at M, N and L respectively.

A

x y

E

a

aa

a − ya − x
60°D

CB
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A

Q

D

S

F M

V

L

E

N

C

T

t

C′

B

P

G

U R C1

C2

Let ‘t’ be the common tangent of circles C1 and C2 respectively meeting the lines 
DE, BE at S and T respectively and touching C1 at U and C2 at V respectively.

We are required to prove that t is a tangent to the incircle of ∆BDE, i.e., to prove 
that quadrilateral B, D, S, T is a tangential quadrilateral, i.e., prove BD + ST = DS + BT

 (As incircle of BDST is the incircle of ∆BDE)
∴ BD + ST
= BF + UV - SU - TV (as BD = BF and ST = UV - SU - TV)
= BF + PN - SU - TV (As UV and PN are direct common tangent to C1 and C2)
= BF + PG + GN - SR - TL (As PN = PG + GN, SU = SR, TV = TL)
= BF + DQ + FM - SR - TL (As PG and DQ are direct common tangent to C and 

C1, PG = DQ and similarly GN = FM)
= BF + DR + FM - SR - TL
= (BF + FM) + (DR - SR) - TL
= BM - TL + DS = BL – TL + DS (As BM = BL)
⇒ BD + ST = BT + DS.

Build-up Your Understanding 13

 1. In the ∆ABC, AB = AC. The altitude AD of the triangle meets the circumcircle at 
P. Prove that AP ⋅ BC = 2AB ⋅ BP.

 2. In a parallelogram ABCD, If a circle passing through point A cuts two sides AB 
and AD at P and R respectively and diagonal AC at Q, then prove that

  AP × AB + AR × AD = AQ × AC.
 3. Let P and Q be points on the circumcircle of ∆ABC such that PQ is parallel to BC. 

Prove that QA is perpendicular to the Simson–Wallace line of P. 
 4. Suppose four lines intersect with each other and therefore any three lines among 

them determine a triangle. There are four such triangles. Prove that the circum-
circles of these triangles have a common point.

 5. Let A, B, C, D be adjacent vertices of a regular 7-sided polygon, in that order. 

Prove that 
1 1 1

AB AC AD
= +

 6. Let ABCD be a square. If P is a point on the circumcircle of ABCD which lies on the 
arc AD, prove that the value (PA + PC)/PB does not depend on the position of P.

 7. Let ABCDEF be a convex hexagon with AB = BC = CD, DE = EF = FA and ∠BCD 
= ∠EFA = 60°. Let G and H be two points in the interior of the hexagon such that 
∠AGB = ∠DHE = 120°. Show that AG + GB + GH + DH + HE ≥ CF. [IMO, 1995]
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 8. Diagonals AC and BD of a cyclic quadrilateral ABCD meets at P. Let the circum-
centres of ABCD, ABP, BCP, CDP and DAP be O, O1, O2, O3 and O4, respec-
tively. Prove that OP, O1O3, O2O4 are concurrent.

 9. ABC is a triangle with BC > CA > AB. D is a point on side BC, and E is a point on 
BA produced beyond A so that BD = BE = CA. Let P be a point on side AC such 
that E, B, D, P are concyclic, and let Q be the second intersection point of BP with 
the circumcircle of ∆ABC. Prove that AQ + CQ = BP. [Iranian MO, 1998-99]

 10. Let D, E, F be respectively the feet of perpendicular from A to BC, B to CA, and 
C to AB. Draw perpendicular lines from D to AB, AC, BE, CF and let P, Q, M, 
N be the feet of perpendiculars respectively. Prove that P, Q, M, N are collinear.

 11. Let ABC be a triangle, H its orthocentre, O its circumcentre, and R its circum-
radius. Let D be the reflection of A across BC, E be that of B across CA, and F 
that of C across AB. Prove that D, E and F are collinear if and only if OH = 2R.
 [IMO Shortlisted Problem, 1998]

 12. The incircle of triangle ABC touches BC, CA and AB at D, E and F respectively. 
X is a point inside triangle ABC such that the incircle of triangle XBC touches BC 
at D also, and touches CX and XB at Y and Z respectively. Prove that EFZY is a 
cyclic quadrilateral. [IMO Shortlisted Problem, 1995]

 13. ABCDE is a cyclic pentagon. It is symmetric about the diameter through A. The 
chord CD is twice as far from A as the chord BE. Prove BC + BD = BE.

 14. A circle has centre on the side AB of the cyclic quadrilateral ABCD. The other 
three sides are tangent to the circle. Prove that AD + BC = AB. [IMO, 1985]

 15. ABCD is a cyclic quadrilateral. AB produced meets DC produced at F. AD pro-
duced meets BC produced at E. Prove that 

   (i) the angle bisectors of ∠AEB and ∠AFD are at right angles
  (ii)  Also show that the circumcircles of ∆BCF and ∆CDE meet on the straight 

line joining E and F.
 16. Let P be a point inside an acute triangle ABC. Then prove that
  PA PB AB PB PC BC PC PA CA AB BC CA⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ≥ ⋅ ⋅
  With equality iff P is the orthocentre of ∆ABC.
 17. Let, ABCD be a cyclic quadrilateral which has, its incentre as I. A line through I, 

parallel to AB, meets the sides AD and BC at P and R. Prove that length of PR is 

1
4

 the perimeter of quadirlateral ABCD.

 18. ABCD is a fixed cyclic quadrilateral. Two circles PAB, PCD are drawn to touch at 
P. Prove that the locus of P is a circle.

 19. ABCD is a quadrilateral whose sides touch a circle. If the of ΔABD, touches AB, 
AD in P, Q, and the incircle of ΔBCD touches CB, CD in R, S, then prove that P, 
Q, R, S are concyclic.

 20. The tangents at B and C to the circumcircle of an acute angled ΔABC meet in K. 
If the line through K parallel to AC meets the circumcircle in P and Q and AB in 
M, then prove that PM = MQ.

 21.  If the Simson–Wallace line of P, a point on the circumcircle of ΔABC, is parallel 
to AO, where O is the circumcentre of ΔABC, then prove that PA || BC.

 22. Prove that the Simson–Wallace line of the point at which the altitude through A of 
ΔABC meets the circumcircle is parallel to the tangent at A.

 23. From vertex A of ΔABC, perpendiculars are dropped to the internal and external 
bisectors of ∠B and ∠C, prove that the feet of those four perpendiculars lie on a 
straight line.
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8.13 APPlication of TrigonoMetrY in GeoMetrY

8.13.1 Some Standard Notations

In a DABC, the angles are denoted by capital letters A, B and C; and the lengths of the 
sides opposite to these angle are denoted by small letters a, b and c respectively. Semi-

perimeter of DABC is given by s
a b c= + +

2
.  Its area and circumradius is denoted by 

D and R respectively. ha, hb, and hc represent the lengths of the altitudes from A, B, and 
C, respectively. ma, mb, and mc represent the lengths of the medians through A, B, and 
C respectively. ta, tb , and tc represent the lengths of the internal angle bisectors of ∠A, 
∠ B, and ∠C respectively.

8.13.2 Sine Rule

In a DABC, 
a

A

b

B

c

C
R

sin sin sin
= = = 2

O

A

D

CB a

Proof: In acute angle triangle ABC, circumcentre lies inside the triangle.
Let O be the circumcentre of DABC. Join CO and produce it to cut the circumcircle 
at D.

So CD is a diameter of a circle, CD = 2R
By angle in a same segment property ∠BDC = ∠BAC = ∠A
and ∠DBC = 90° (Angle in a semi-circle) 
In DDBC,

sin∠ =BDC
BC

CD

⇒ = ∠ = ∠

⇒ =

sin ( )

sin

A
a

R
BDC A

a

A
R

2

2

As 

Similarly, 
b

B
R

c

C
R

sin
,

sin
= =2 2

Hence 
a

A

b

B

c

C
R

sin sin sin
= = = 2

When ∠A > 90°, then circumcentre O lies outside the DABC. Again join CO and 
produce it to cut the circumcircle at D. Join DB

Now ABDC is a cyclic quadrilateral
∴ ∠BDC = 180° − ∠A

Geometry
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In ∠BDC,

sin sin( )∠ = ⇒ °− =BDC
BC

CD
A

a

R
180

2

⇒ = ⇒ =sin
sin

A
a

R

a

A
R

2
2

Similarly 
b

b
R

c

c
R

sin
;

sin
= =2 2

Again 
a

A

b

B

c

C
R

sin sin sin
= = = 2

When ∠A = 90°, then 2R = BC = a

sin B
AC

BC

b

R
= =

2
; sinC

AB

BC

c

R
= =

2

sin sinA
BC

BC

a

R
= ° = = =90 1

2

Again 
a

A

b

B

c

C
R

sin sin sin
.= = = 2

Example 123 In a non-degenerate triangle ABC, ∠C = 3∠A; BC = 27; AB = 48; prove 
that the side AC has an integer measure.

Solution:
Let ∠A = θ ⇒ ∠C = 3θ and ∠B = (180° − 4θ ).

Applying sine rule in DABC,

48

3

27

48
27 3

27 3 4 2

sin sin
sin

sin
( sin )

θ θ
θ

θ
θ

=

⇒ = = −

 ⇒ =sin (2 11

36
θ on simplification)  (1)

Also, 
27

4sin sinθ θ
=

x

⇒ = =

=

= ⋅

AC x
27 4

27
2 2 2

27
2 2

(sin )

sin

sin
( sin cos )

sin
[ sin cos

θ
θ

θ
θ θ

θ
θ θ ⋅⋅ −

= −








 − ×







( sin )]

( )( )

1 2

27 4 1
11

36
1 2

11

36

2θ

(from Eq.  (1))

(on simplification)= 35

Thus the measure of AC is 35 units, an integer.

O

A

180 − A

B
a

CD

C

b

A Bc

a

R
O

R

A

x48

27

180° − 4θ
3θ

θ

CB
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Example 124 The sides of a triangle are in AP and the greatest angle of the triangle 
is double the least. Prove that, this triangle is acute angled triangle.

Solution:
Let the sides be a − d, a, a + d (a > 0, d > 0).

Let α be the smallest angle of the triangle opposite to (a − d); then the greatest angle 
2α is opposite to (a + d).

Applying sine rule for DABC,

 
a d a a d−

=
−

=
+

sin sin( ) sinα π α α3 2
 (1)

Now, 
a d

a d

−
+

= = =
sin

sin

sin

sin cos cos

α
α

α
α α α2 2

1

2

∴ =
+
−

2cosα
a d

a d

And so,  4 2
2

cos α =
+
−









a d

a d
 (2)

Also, 
a d

a

−
= =

−
=

−
sin

sin

sin

sin sin sin

α
α

α
α α α3 3 4

1

3 43 2

∴ − =
−

⇒ − + =
−

3 4

3 4 4

2

2

sin

cos

α

α

a

a d
a

a d

 ⇒ =
−

+ =
−
−

4 1
22cos α

a

a d

a d

a d
 (3)

Thus, 
a d

a d

a d

a d

+
−







 =

−
−









2
2

⇒ + = − −
⇒ =

( ) ( )( )a d a d a d

a d

2 2

5 (on simplification)

∴ Ratio of the sides is (a − d) : a : (a + d) = 4d : 5d : 6d, i.e., 4 : 5 : 6.
Here 62 < 42 + 52 ⇒ the triangle is acute. (By acute angle theorem)

Example 125 DABC is an arbitrary triangle. The bisector of ∠B and ∠C meet AC and 
AB at D and E respectively. BD and CE intersect at ‘O’. If OD = OE, prove that, either 
∠BAC = 60° or the triangle is isosceles.

Solution:
Join AO.

In DAOD, ∠ =OAD
A

2
.

∴∠ = ∠ = +ODA BDA C
B

2

⇒∠ = °− + +





 = ° −AOD C

B A C
180

2 2
90

2

A

aa 
+ 

d

a − d
π  − 3 α

α

α

2
CB

A

O

C

DE

B

B + C
2 C + B

2

B
2

A
2

A
2

C
2

C
2B

2

Geometry Theory Part-3.indd   129 8/11/2017   2:48:30 PM



8.130  Chapter 8

Similarly in DAOE, ∠ = °−AOE
B

90
2

.

Use the sine rule for triangles AOD and AOE,

 
OD

A
OA

ADO
OD

OA
A

C
Bsin sin

sin

sin
2

2

2

=
∠

⇒ =
+








 (1)

Similarly,

 
OE

A
OA

OEA
OE

OA
A

B
Csin sin

sin

sin
2

2

2

=
∠

⇒ =
+








 (2)

As, OD = OE (given), sin sinB
C

C
B

+





 = +






2 2

 (3)

∴ B
C

C
B

B
C

C
B

+ = + + + + = °
2 2 2 2

180or

⇒∠ = ∠ + =
×

= °

⇒ ∠ =

B C B C

ABC A

or

is an isosceles triangle or  

2 180

3
120

∆ 660°.

Example 126 In any triangle ABC, prove the inequality:

sin

sin sin sin, ,

A

B C AA B C + −
≥∑ 3

When does the equality hold?

Solution: By application of sine rule to DABC in the usual notation, the problem 
reduces to

a

b c aa b c + −
≥∑ 3;

, ,

Let, x b c a y c a b z a b c= + − = + − = + −; ; .

Thus, ( ) ;b c b c+ > + >2 0  x is a positive number and similarly y and z.

Now,

LHS =
+

+
+

+
+y z

x

z x

y

x y

z2 2 2

= + + + + +








 ≥ + + =

1

2

1

2
2 2 2 3

y

x

z

x

z

y

x

y

x

z

y

z
( ) .  As t

t
t+ ≥ ∀ ∈








+1
2 �

Equality holds when a = b = c, i.e., when the triangle is equilateral.
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Example 127 ABC is an isosceles triangle in which AB = AC. The bisector of ∠B 
meets AC at D. Also BC = BD + AD. Find the size of ∠A.

Solution:
Let ∠DBC = θ, so that ∠ACB = 2θ and ∠BDC = π − 3θ, also ∠BAC = π − 4θ.

Now by sine rule, in ∠BDC and ⋅∆ABD respectively, we get,

BC BD AD BD

sin sin sin sin3 2 4θ θ θ θ
= =and

It is given that BC = BD + AD.

∴ = + ⇒ = +
BC

BD

AD

BD
1

3

2
1

4

sin

sin

sin

sin

θ
θ

θ
θ

i e. .
sin

sin

sin sin

sin cos
, 

3

2

4

2 2 2

θ
θ

θ θ
θ θ

=
+

 (As sin sin cos4 2 2 2θ θ θ= )

⇒ = +2 3 2 4sin cos sin sinθ θ θ θ

i e. sin sin sin sin., 5 4θ θ θ θ+ = +

⇒ =
⇒ = + = ° ≠
∴ = °⇒ = °

sin sin

;

,

5 4

5 4 5 4 180 5 4

9 180 20

θ θ
θ θ θ θ θ θ
θ θ

or But

 whicch gives ∠ = − = °BAC π θ4 100 .

Build-up Your Understanding 14

 1. In any triangle ABC, prove that
a B C

B C

b C A

C A

b C A

C

2 2 2sin( )

sin sin

sin( )

sin sin

sin( )

sin sin

−
+

+
−

+
+

−
+ AA

c A B

A B

2 sin( )

sin sin

−
+

= 0 

 2. If in a DABC,
sin

sin

sin( )

sin( )
,

A

C

A B

B C
=

−
−

 prove that a2, b2, c2 are in AP.

 3. ABCD is a trapezium such that AB and CD are parallel and CB is perpendicular 
to them. If ∠ADB = 60°, BC = 4 and CD = 3, then find the length of side AB.

 4. If the sides of a triangle are in arithmetic progression, and if its greatest angle 
exceeds the least angle by α, show that the sides are in the ration 1 − x : 1 : 1 + x, 

where x =
−
−

1

7

cos

cos
.

α
α

 5. If a, b, c be the sides of a triangle, la, lb, lc the sides of a similar triangle in-
scribed in the former and θ the angle between the sides a and la, prove that 2l 
cos θ = 1.

 6. Let ABC be an arbitrary acute-angled triangle. Let D, E, F denote the feet of the 
perpendiculars from P onto the sides AB, BC, CA respectively. Determine the set 
of all possible positions of P, for which, the triangle DEF is isosceles. For what 
position of P, will triangle DEF be equilateral? Why?

 7. The sides a, b, c of DABC satisfy the equality c2b = (a + b) (a − b)2. Prove that ∠A 
= 3∠B.

 8. A triangle has circumradius R and sides a, b, c with the relation: R(b + c) = a. 
Prove that, such a triangle is right angled.

π  − 3θ

π  − 4θ

θ

θ

A

2θ
C

D

B
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 9. Given a circle of radius unity and AB is a chord of the circle, with length unity. If 
C is any point in the major segment, prove that, AC2 + BC2 ≤ 2 ( ).2 3+  When 
does the equality hold?

 10. Let ABC be a triangle inscribed in a circle and let la = ma/Ma, lb = mb/Mb, lc = 
mc/Mc, where ma, mb, mc are the lengths of the angle bisectors (internal to the 
triangle) and Ma, Mb, Mc are the lengths of the angle bisectors extended until they 

meet the circle. Prove that 
l

A

l

B

l

C
a b c

sin sin sin2 2 2
3+ + ≥  and that equality holds 

iff ABC is equilateral.  [APMO, 1997]

8.13.3 Cosine Formula

In DABC, we have following cosine rules:

cos ; cos ; cosA
b c a

bc
B

a c b

ac
C

a b c

ab
=

+ −
=

+ −
=

+ −2 2 2 2 2 2 2 2 2

2 2 2

Proof:

Case 1: If ∠B < 90°, then by acute angle triangle theorem

AC AB BC BD BC

b c a x a

2 2 2

2 2 2

2

2

= + − ⋅

⇒ = + − ⋅

In DABD, cos cosB
BD

AB

x

c
x c B= = ⇒ =

∴ = + − ⇒ = + −b c a ac B ac B a c b2 2 2 2 2 22 2cos cos

⇒ =
+ −

cos B
a c b

ac

2 2 2

2

Case 2: If ∠B > 90°, then by obtuse angle triangle theorem 

AC AB BC BD BC b c a x a2 2 2 2 2 22 2= + + ⋅ ⇒ = + + ⋅

In DABD, 

cos cos( )∠ = ⇒ °− =ABD
BD

AC
B

x

c
180

⇒ − = ⇒ = −cos cosB
x

c
x c B

∴ = + −

⇒ = + −

⇒ =
+ −

b c a ac B

ac B a c b

B
a c b

ac

2 2 2

2 2 2

2 2 2

2

2

2

cos

cos

cos

Similarly cos A
b c a

bc
=

+ −2 2 2

2
 and cos .C

a b c

ab
=

+ −2 2 2

2

A

B
D
a

x
C

c b

A

B CD

180° − B

b
c

ax
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8.13.4 Projection Formula

In DABC, we have following projection formulas:

a b C c B= +cos cos , b c A a C= +cos cos  and c a B b A= +cos cos

Proof: For both base angles being acute, i.e., ∠B < 90°, ∠C < 90°
In DABD,

cos B
BD

AB

BD

c
= =

⇒ =BD c Bcos

In DADC 

cosC
CD

AC

CD

b
= =

⇒ =CD b Ccos

Now a BC BD DC

a c B b C

= = +
⇒ = +cos cos

or    a b C c B= +cos cos

For one base angle obtuse, WLOG let ∠B > 90° and ∠C < 90°.

DC b C

DB c B c B

BC DC DB b C c B

a b

=
= °− = −
= − = − −

⇒ =

cos

cos( ) cos

cos ( cos )

c

180

oos cosC c B+

Similarly b c A a C= +cos cos and c a B b A= +cos cos

Example 128 Two sides of a triangle are 8 cm and 18 cm and the bisector of the angle 

formed by them is of length 
60

13
 cm. Find the perimeter of the triangle.

Solution:
Let ABC be the triangle with AC = 8 cm. Let AD be the bisector of ∠A; AD =

60

13
 cm.

AD
bc

b c

A
=

+








2

2
cos  (From the note 4 on page number 8.47)

Using the measures of AB, AC and AD in above formula, we get,

cos , . . cos

cos cos

A
i e

A

A
A

2

60

13

26

2 18 8 2

5

12

2
2

1 2
5

12
2

= ×
⋅ ⋅

=

∴ = − = 


 , 




 − = −

= + − ⋅ ⋅ ⋅

2

2 2 2

1
47

72

2Thus,  (Using cosineBC AB AC AB AC Acos   rule)

., 

Perimeter

i e BC

BC

.

;

2 2 218 8 2 8 18
47

72
576

24

1

= + + ⋅ ⋅ ⋅ =

⇒ =
⇒ = 88 8 24 40+ + =  cm.

A

B D
a

C

c b

A

B CD

180° − B

b
c

a

818

A

C
D

B

A
2

A
2

60
13
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Example 129 ABCD is a convex quadrilateral in which 

AD = 2 3 ; ∠A = 60°; ∠D = 120° and AB + CD = 2AD. 
M is the mid-point of BC. Find DM.

Solution:
Since ∠A + ∠D = 180°, AB || CD. Draw ME || BA to meet AD at E. As M is the mid-

point of BC, E is the mid-point of AD. Also EM AB CD AD= + =
1

2
( ) (given).

∴ EM = AD.
From DEDM, using cosine rule,

DM DE EM DE EM

i e DM DA AD
AD

2 2 2

2
2

2

2 60

1

2
2

2

= + − ⋅ ⋅ ⋅ °

= 





 + − 

cos

. ., ( )















= + − =

∴ =

( )

. .,

(

AD

i e DM DA AD AD AD

DM

1

2

1

4

1

2

3

4
3

4
2 3

2 2 2 2 2

2 )) .2 9 3= ⇒ =DM

Example 130 A quadrilateral inscribed in the circle has side lengths 20 99 22, , ,  

and 97  in that order. Taking π =
22

7
 show that the area of the circle is rational.

Solution:
Let ∠D = θ; then ∠B = 180 − θ (cyclic quadrilateral).

AC ADC

AC

2

2

20 99 2 20 99

22 9

= + − ∆

= +

( )( ) cos )θ (cosine rule in 

Also, 77 2 22 97 180− °− ∆( )( ) cos( ) )θ (cosine rule in ACB

Equating for AC2, we get

2 22 97 20 99 0

0 90

cos ( )

cos .

θ
θ θ

⋅ + ⋅ =
⇒ = ⇒ = ° 

Thus, 

AC

R R

A R

2

2 2

2

20 99 119

2 119
119

4
22

7

119

4

11 17

2

187

2

= + =

∴ = ⇒ =

∴ = = × =
×

=

( )

π ..

Example 131 Squares are drawn on the sides of an arbitrary triangle and the vertices 
of the squares are connected to form a six sided figure. If the sides of the triangle are 
a, b, c and outside lengths are x, y, z, prove that, x2 + y2 + z2 = 3(a2 + b2 + c2).

Solution:
Applying cosine rule in DAGH, we get,

x b c bc2 2 2 2 180= + − °−cos( )α

60°

60°

A

CD

B

E M
120°

θ

π  − θ

A

C

D

B

√22

√20

√99

√97

γ

α
β

c
c

c
C

I

y

E D

Z

FA

x

H

B

c

b b

b b

a

a

G

a

a
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⇒ = + +x b c bc2 2 2 2 cosα  (1)

Also from DABC,

2 2 2 2bc b c acosα = + −  (2)
From Eqs. (1) and (2) we get,

x b c a2 2 2 22 2= + −  (3)
Similarly,

y c a b2 2 2 22 2= + −  (4)

And z a b c2 2 2 22 2= + −  (5)

Thus, by adding Eqs. (3), (4) and (5), we get,

x y z a b c2 2 2 2 2 23+ + = + +( ).

Example 132 In DABC, AB = 52; BC = 64; CA = 70 and assume P, Q as points chosen 
in AB, AC respectively such that the triangle APQ and quadrilateral PBCQ have the 
same area and same perimeter. Prove that PQ2 = 3255.

Solution:
Let AP = x; AQ = y and PQ = z

∴ (52 − x) + z + (70 − y) + 64 = x + y + z
i.e., 2(x + y) = 186 ⇒ x + y = 93 (1)
Also,

[ ] [ ] [ ] [ ] [ ] [ ] [ ]APQ PBCQ APQ ABC APQ APQ ABC= ⇒ = − ⇒ =2  (2)

∴ 2
1

2

1

2
52 70× × × × = × × ×x y A Asin sin

∴ 2 52 70xy = ×  (3)

Using cosine rule for DAPQ, PQ z x y xy A2 2 2 2 2= = + − cos  (4)

where cos A =
+ −
× ×











52 70 64

2 52 70

2 2 2

writing ( ) ( ) ( )x y x y x y xy+ = + = + − = − ×2 2 2 2 2 293 2 93 52 70 and and cos A

52 70 64

2 52 70

2 2 2+ −
× ×

in Eq. (4), we get, z PQ2 2 3255= =  (on simplification).

Build-up Your Understanding 15

 1. In any DABC, prove that 
cos cos cos

.
A

a

B

b

C

c

a b c

abc
+ + =

+ +2 2 2

2

 2. Let ABC be a triangle such that 2b = (m + 1)a and cos A = 
1

2

1 3( )( )
,

m m

m

− +
 

where m ∈ (1, 3). Prove that there are two values of the third side one of which is 
m times the other.

 3. In a triangle ABC, ∠C = 60º, then prove that 
1 1 3

a c b c a b c+
+

+
=

+ +
.

C

A

Q

Bx

zy

(52 − x)P
52

6470

(7
0 

− 
y)
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 4. If in a triangle ABC, 
cos cos

cos cos

sin

sin
,

A C

A B

B

C

+
+

=
2

2
 prove that the triangle is either 

isosceles or right angled.
 5. A ring, 10 cm, in diameter, is suspended from a point 12 cm, above its centre by 

6 equal strings attached to its circumference at equal intervals. Find the cosine of 
the angle between consecutive strings.

 6. Let AC be a line segment in a plane and B, a point between A and C. Construct 
isosceles triangles PAB and QBC on one side of the segment AC, such that APB = 
BAQ = 120°; Construct an isosceles triangles RAC on the other side of AC, such 
that ARC =120°. Prove that DPQR is equilateral.

 7. If α, β, γ  are the altitudes of DABC from the vertices A, B, C respectively, prove 

the following equality: 
1 1 1 1

2 2 2α β γ
+ + = 






∆

 (cotA + cotB cotC).

 8. Determine all triples (a, b, c) of positive integers which are the lengths of the 
sides of a triangle inscribed in a circle of diameter 6.25 units.

 9. The sides of a triangle are of lengths a, b, and c where a, b, c, are integers and
a > b. Also ∠ C is 60°. Show that the measure of side BC is not prime.

 10. Let the angle bisectors of ∠A, ∠B, ∠C of triangle ABC intersect its circumcircle 
at P, Q, R, respectively. Prove that AP + BQ + CR > BC + CA + AB.

8.13.5 Napier’s Analogy (Tangent’s Rule)

In a DABC,

 1. tan cot
A B a b

a b
C− = −

+














2 2

 2. tan cot
B C b c

b c
A− = −

+














2 2

 3. tan cot
C A c a

c a
B− = −

+
















2 2

Proof: For (1)

a b
a b

R A B
R A B

A B A B
−
+

= −
+

=

+ −









2

2

2
2 2(sin sin )

(sin sin )

cos sin 



















+ −
2

2 2
sin cos

A B A B

∴ −
+

=

−

+

−

−
















=












a b
a b

A B

A B

A B

C

tan

tan

tan

tan

2

2

2

2 2
π





=

−





tan

cot

A B

C
2

2

⇒
−






 =

−
+

tan cot
A B a b

a b

C

2 2

Similarly for others.

John Napier

1 Feb 1550–4 Apr 1617 
Nationality: Scottish
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8.13.6 Mollweide’s Formula

In a DABC, we have following:

 1. a b
c

A B

C
b c

B C

A
c a

b

C

a

+ =

−
+ =

−
+ =

−













cos

sin

cos

sin

cos
; ;2

2

2

2

AA

B
2

2









sin
 

 2. 
a b

c

A B

C
b c

a

B C

A
c a

b

C
− =

−
− =

−
− =

−













sin

cos

sin

cos

sin
; ;2

2

2

2

AA

B
2

2









cos

Proof: For (1) 

a b
c

R A B
R C

A B A B

C
+ = + =

+ −













2

2

2
2 2(sin sin )

sin

sin cos

sin

=

− −

=

−






















2
2 2

2
2 2

2
2 2

sin cos

sin cos

cos cos
π C A B

C C

C A B


⋅2
2 2

sin cos
C C

∴ + =

−





a b

c

A B

C

cos

sin

2

2

Similarly for others.
For (2)

a b
c

R A B
R C

A B A B

C
− = − =

+ −













2

2

2
2 2(sin sin )

sin

cos sin

sin

=

− −

=

−
























2
2 2

2
2 2

2
2 2

cos sin

sin cos

sin sin

π C A B

C C

C A B


⋅2
2 2

sin cos
C C

∴ − =

−





a b

c

A B

C

sin

cos

2

2

Similarly for others.

Karl Brandan Mollweide

3 Feb 1774 –10 March 1825
Nationality: German
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8.13.7 Half Angle Formulae’s

 1. cos
( )

cos
( )

cos
( )

; ;
A s s a

bc
B s s b

ca
C s s c

ab2 2 2
= − = − = −

 2. sin
( )( )

sin
( )( )

sin
( )( )

; ;
A s b s c

bc
B s c s a

ca
C s a s b

ab2 2 2
= − − = − − = − −

 3. tan ; tan ; tan
( )( )

( )
( )( )

( )
( )(A s b s c

s s a
B s c s a

s s b
c s a

2 2 2
= − −

−
= − −

−
= − ss b

s s c
−

−
)

( )
 

For (1)

Since 2
2

12cos cos
A

A= +

∴ = + + − + + −

= + − + +

=

=

2 2
2

1
2 2 2

2
2 2 2 2

2
2 2

2

cos

( ) (

A b c a
bc

bc b c a
bc

b c a
bc

b c a))( )

cos
( )

cos
( )

cos
(

b c a
bc

A s s a
bc

A s s a
bc

A s

+ −

⇒ = −

⇒ = −

⇒ =

2

2 2
2

2 2

2
2

2

2

2

ss a
bc

A−
>








)
cosAs   

2
0

Similarly for others.

For (2)

2
2

1 1
2

2

2

2

2
2 2 2 2 2 2

2 2 2

sin cos

(

A
A

b c a

bc

bc b c a

bc

a b c bc

= − = −
+ −

=
− − +

=
− + − )) ( )

( )( )

sin
( )(

2 2

2

2
2

2

2 2

2

bc

a b c

bc

a b c a b c

bc

A a b c c a b

=
− −

=
+ − − +

=
+ + − + ++ −c b

bc

2

2

)

⇒ =
− −

⇒ =
− −

2
2

2 2 2 2

2

2

2

2

sin
( )( )

sin
( )( )

A s c s b

bc
A s b s c

bc

⇒ =
− −

>





sin

( )( )
sin

A s b s c

bc

A

2 2
0As 

Similarly for others.
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For (3)

tan
sin

cos

( )( )

( )

A
A

A
s b s c

s s a2
2

2

= =
− −

−

Similarly for others.

8.13.8 Area of Triangle

Since in DABC, area of DABC = × ×
1

2
BC AD

⇒ ∆ =
1

2
ac Bsin

Similarly, ∆ =
1

2
ab Csin ;  ∆ =

1

2
bc Asin

Hence, ∆ = = =
1

2

1

2

1

2
ab C bc A ac Bsin sin sin

Thus area of any triangle

=
1

2
 × Product of the two sides of a triangle × Sine of the included angle.

8.12.8.1 Heron’s Formula 

Since area of DABC =
1

2
bc Asin =

1
×

2
2

2 2
bc

A A
sin cos

⇒ ∆ =
− −

⋅
−

⇒ ∆ = − − −

bc
s b s c

bc

s s a

bc

s s a s b s c

( )( ) ( )

( )( )( )

Aliter (without trigonometry): In DADB and DADC 

h c x b a x ax a c b

x
a c b

a

2 2 2 2 2 2 2 2

2 2 2

2

2

= − = − − ⇒ = + −

⇒ =
+ −

( )

Also h c x c
a c b

a
c

a c b

a
2 2 2 2

2 2 2 2

2
2 2 2 2

22 4
= − = −

+ −





 = −

+ −( )

⇒ =
− + −

=
− + −

h
a c a c b

a

ac a c b

a
2

2 2 2 2 2 2

2

2 2 2 2 2

2

4

4

2

4

( ) ( ) ( )

=
+ + − − − +

=
+ −  − + −( )( ) ( ) (2 2

4

22 2 2 2 2 2

2

2 2 2 2 2ac a c b ac a c b

a

a c b b a c acc

a

) 
4 2

=
+ −  − − ( ) ( )a c b b a c

a

2 2 2 2

24

A

B
D
a

C

c sin

c b

B

Heron of Alexandria

c. 10 AD–c. 70 AD
Nationality: Greek

A

c

x
a

a − x

h
b

B C
D
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=
+ + + − + − − +

=
+ + + + − + + −

( )( )( )( )

( )( )(

a c b a c b b a c b a c

a
a b c a b c b a b c

4
2 2

2

cc a b c a

a
s s b s c s a

a

)( )

( )( )( )

+ + −

=
− − −

2

4
2 2 2 2 2 2 2

4

2

2

⇒ =
− − −

⇒ = − − −

h
s s a s b s c

a

h
a

s s a s b s c

2
2

4

2

( )( )( )

( )( )( )

⇒ = − − − = ∆
1

2
ah s s a s b s c( )( )( ) .

8.13.9 m-n Theorem

Let D be a point on the side BC of a DABC  such that BD : DC = m : n and ∠ADC = θ, 
∠BAD = α and ∠DAC = β. Prove that 

 (i) ( ) cot cot cotm n m n+ = −θ α β

 (ii) ( ) cot cot cotm n n B m C+ = −θ

Proof:

Given 
BD

DC

m

n
=  and ∠ = = ∠ +ADC ABDθ α

∴ ∠ = −ABD θ α

Also ∠ = °− +ACD 180 ( )θ β

In DABD by using sine rule 

 
BD AD

sin sin( )α θ α
=

−
 (1)

In DADC 

 
DC AD AD

sin sin ( ) sin( )β θ β θ β
=

°− +( )
=

+180
 (2)

From Eq. (1) ÷ Eq. (2) we get, 

   
m

n

⋅
=

+
−

sin

sin

sin( )

sin( )

β
α

θ β
θ α

 As   
BD

DC

m

n
=








⇒
−

=
+m n(sin cos cos sin )

sin sin

(sin cos cos sin )

sin sin

θ α θ α
θ α

θ β θ β
θ β

..

⇒ − = +
⇒ + = −

m m n n

m n m n

cot cot cot cot

( ) cot cot cot .

α θ β θ
θ α β

 (ii) In DABD, α = θ − B. Also In DADC, β θ= °− +180 ( )C

A

B D Cm n

180° −  θθ

βα
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  In DABD, 
BD

B

AD

Bsin( ) sinθ −
=  (3)

  In DADC, 
DC

C

AD

Csin( ( )) sin180° − +
=

θ
⇒

+
=

DC

C

AD

Csin( ) sinθ
 (4)

  From Eq. (3) ÷ Eq. (4) we get 
m

n

C

B

C

B

sin( )

sin( )

sin

sin

θ
θ
+
−

=

  ⇒
+

=
−m C C

C

n B B

B

(sin cos cos sin )

sin sin

(sin cos cos sin )

sin sin

θ θ
θ

θ θ
θ

  
⇒ + = −
⇒ + = −

m C m n B n

m n n B m C

cot cot cot cot

( ) cot cot cot .

θ θ
θ

Build-up Your Understanding 16

 1. If the medians of a DABC make angles α, β, γ with each other, prove that
  cot α + cot β + cot γ + cot A + cot B + cot C = 0.
 2. In an isosceles right angled triangle a straight line is drawn from the mid-point 

of one of the equal sides to the opposite angle. Show that it divides the angle into 
parts whose cotangents are 2 and 3.

 3. Prove that the median through A divides it into angles whose cotangents are 2 cot A 
+ cot C and 2 cot A + cot B, and makes with the base an angle whose cotangent is 

1

2
 (cot C ~ cot B).

 4. Prove that the distance between the mid-point of BC and the foot of the 

perpendicular from A is 
b c

a

2 2

2

~
.

 5. Through the angular points of a triangle are drawn straight lines which make the 
same angle α with the opposite sides of the triangle; prove that area of the triangle 
formed by them is to the area of the original triangle as 4 cos 2α : 1.

 6. The measures of the sides of a triangle are integers and the area of the triangle is also 
an integer. One side is 21 and perimeter 48. Find the shortest side as well as the area of  
the triangle.

 7. Find a point P, in the interior of DABC, such that, the product of its distances from 
the sides is maximum.

 8. Consider the following statements about a triangle.
    (i) The sides a, b, c and area S are rational.

   (ii) a, tan , tan
B C

2 2
 are rational

  (iii) a, sin A, sin B, sin C are rational.
  Prove the following chain of results:
  Statement (i) ⇒ Statement (ii) ⇒ Statement (iii) ⇒ Statement (i).

 9. Given a triangle ABC, define the quantities x, y, z as follows: 

  
x

B C A
y

C A B
z

A B C
=

−
=

−
=

−
tan tan , tan tan , tan tan .

2 2 2 2 2 2
  Prove that, x + y + z + xyz = 0.
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 10. Prove that if the Euler line passes through a vertex, then the D is either right-
angled or isosceles.

 11. If the Euler line is parallel to BC prove that tan B . tan C = 3.

 12. If ∠BAC = 60°, prove that the Euler line forms with AB, AC an equilateral tri-
angle.

 13. Six different points are given on a circle. The orthocentre of the triangle formed 
by three of these points are joined to the centroid of the triangle formed by the 
other three points by a line segment. Prove that the 20 line segments, so formed, 
are concurrent.

 14. If D is the foot of the altitude from A in DABC and G is its centroid and DG is 
produced to meet the circumcircle at Q, then prove that ∠QAD = 90°.

 15. If P is the mid-point of AH and if PG extended meets the circumcircle at Q prove 
that PA′ || to AQ where A′ is the mid-point of BC.

8.13.10 Circles, Centres and the Triangle

8.13.10.1 Circumcircle and Circumcentre

The circle which passes through the vertices of a triangle is called circumcircle.
The centre of this circle is the point of intersection of perpendicular bisectors of 

the sides and called the circumcentre. Its radius is always denoted by R and is called 
circumradius.

Circumradius (R):

Circumradius R of the DABC is equal to
abc

4∆
⋅

Proof: From sine rule, 2R
c

C
=

sin
 

⇒ =R
abc

ab C2 sin
 (Multiplying ‘ab’ in numerator and denominator)

⇒ =R
abc

4∆
 As ∆ =








1

2
ab Csin

Notes:
 1. Circumcentre is a point which is always equidistant from the vertices of the 

 triangle.
 2. Circumcentre of an obtuse angled triangle lies outside the triangle.
 3. Circumcentre of an acute angled triangle lies inside the triangle.
 4. Circumcentre of a right angled triangle is the mid-point of the hypotenuse.

Example 133 If the internal bisector of ∠A of a triangle ABC meets the base BC at D 
and the circumcircle at E, show that AB ⋅ AC = AD ⋅ AE. Hence find an expression for 
the circumradius of DABC in terms of sides.

Solution:
In DABD and DAEC,
∠BAE = ∠EAC (since AE bisects ∠BAC)
Also ∠ABD = ∠AEC (Angles in the same segment of a circle)
∴ DABD ~ DAEC (AA criterion)
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∴ = ⇒ ⋅ = ⋅
AB

AE

AD

AC
AB AC AD AE.  (1)

∠ = + = +
−

ACE C
A C B

2 2 2

π

By sine rule in DAEC, we get

AE R
C B

R
C B

= +
−






 =

−





2

2 2
2

2
sin cos

π

=

−







+







+







=
+

2
2 2

2

R
C B C B

C B

R B C
cos sin

sin

(sin sin )

cos
AA

2








=
+








b c

A
2

2
cos

⇒ ⋅ =
⋅ + ⋅

=
⋅ + ⋅

AD AE
AD b AD c

A

AD b
A

AD c
A

A A
2

2

2 2

2
2 2

cos

sin sin

cos sin

⇒ ⋅ = =AD AE
A

R

a

2 4∆ ∆
sin

 (2)

Hence from Eqs. (1) and (2), we get 

⇒ = ⇒ =bc
R

a
R

abc4

4

∆
∆

.

Example 134 If x, y, z are perpendicular from the circumcentre of the sides of the 

DABC respectively. Prove that 
a

x

b

y

c

z

abc

xyz
+ + =

4
.

In DOBM, tan A
BM

OM

a

x
= =

2

Similarly, tan B = 
b

y2
 and tan C = 

C

z2

Also, A + B = π − C
tan(A + B) = tan(π − C)

tan tan

tan tan

A B

A B

+
−1

 = −tan C

⇒ tan A + tan B = −tan C + tan A tan B tan C

⇒ tan A + tan B + tan C = tan A ⋅ tan B ⋅ tan C

a

x

b

y

c

z

abc

xyz2 2 2 8
+ + =

⇒ 
a

x

b

y

c

z

abc

xyz
+ + =

4
.

A

AB
D

C
C

E

1

2

4

3

A  

C  B  

x  

a/2  
A  

M  

O 
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8.13.10.2 Bramhagupta's Theorem

In any triangle product of any two sides is equal to the product of the perpendicular 
drawn to the third side with circum-diameter 
In DABC, AD ⊥ BC. Let O be the circumcentre. Join AO and produced it to cut circum-
circle at E, then AE is the diameter and ∠ABE = 90° 

In DABE and DADC 

∠ =∠ = °ABE ADC 90
∠AEB = ∠ACD (Angles in the same segment)
∴ By AA similarly, ∆ ∆ ⋅ABE ADC∼

∴ =
AB

AD

AE

AC

⇒ ⋅ = ⋅
⇒ ⋅ = ⋅

AB AC AE AD

AB AC R AD2 .

Example 135 ABCD is a cyclic quadrilateral. Prove the result:

AC AB BC CD DA BD AB AD CB CD[ ] [ ]⋅ + ⋅ = ⋅ + ⋅

Solution: Let R be the circumradius to DABC.

Draw BM ⊥ AC and DN ⊥ AC

From DABC, BA ⋅ BC = 2R ⋅ BM (Bramhagupta’s theorem)

From DADC, DA ⋅ DC = 2R ⋅ DN (Bramhagupta’s theorem)

BA ⋅ BC + DA ⋅ DC = 2R (BM + DN)

∴ AC[BA ⋅ BC + DA ⋅ DC] = 2R[AC ⋅ BM + AC ⋅ DN]

i.e., AC[BA ⋅ BC + DA ⋅ DC] = 2R[2D1 + 2D2]

Where D1 and D2 are the areas of DABC and DADC respectively.

Thus, AC[BA ⋅ BC + DA ⋅ DC] = 4R[D1 + D2] = 4R [ABCD]
In the same way, we can show, by drawing the other diagonal BD and the perpen-

diculars from A and C to BD, that,
BD[AB ⋅ AD + CB ⋅ CD] = 4R[ABCD]
Thus, AC[BA ⋅ BC + DA ⋅ DC] = BD[AB ⋅ AD + CB ⋅ CD].

Example 136 ABCD is a cyclic quadrilateral, x, y, z are the distances of A from the 

lines BD, BC, CD respectively. Prove that 
BD

x

BC

y

CD

z
= + .

Solution:
In DABD by using Bramhagupta’s theorem

AB ⋅ AD = 2R ⋅ x (1)
In DABC
AB ⋅ AC = 2R ⋅ y (2)
In DACD
AC ⋅ AD = 2R ⋅ z (3)

By applying Ptolemy’s theorem in ABCD 

AC ⋅ BD = AD ⋅ BC + AB ⋅ CD
Divide by AC

BD = BC
AD

AC







  + CD

AB

AC







  (4)

A

C

E

B D
O

DN
M

A

B

C

D1 D2

x  

z  

B  

y  

D  

C  

A  

Bramhagupta

598 AD–670 AD
Nationality: Indian
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From Eq. (1)/ Eq. (2), we get, 
AD

AC

x

y
=   (5)

From Eq. (1)/ Eq. (3), we get 
AB

AC

x

z
=  (6)

∴ From Eqs. (4), (5) and (6), we get BD = BC ⋅ 
x

y
 + CD ⋅ 

x

y
.

⇒ 
BD

x

BC

y

CD

z
= + .

8.13.10.3 Incircle and Incentre

The circle that can be inscribed within triangle so as to touch each of its sides is called 
its inscribed circle or incircle. The centre of this circle is the point of intersection of 
angle bisectors of the triangle and hence it is equidistant from the sides of a triangle. 
The radius of the circle is always denoted by ‘r’ and is equal to the length of perpen-
dicular from its centre to any one of the sides of the triangle.

Some standard results:

 1. r = ⋅

∆
s

 2. r = (s − a)tan
A

2
 = (s − b) tan

B

2
 = (s − c) tan

C

2

 3. r = 4R sin 
A

2
.sin

B

2
.sin

C

2

Proof: Let the internal bisectors of the angles of the DABC meet at I. Suppose the 
circle touches the sides BC, CA, AB at D, E and F respectively.

Then ID, IE, IF are perpendiculars to these sides and ID = IE = IF = r

I

A  

C  B  y  

E  F  

x  

A/2  z  

x  

D  

B/2  C/2  

y  

z  

r r 

r 

a  

c 
b  

 1. Now
  [IBC] + [ICA] + [IAB] = [ABC] 

  
1

2

1

2

1

2
ar br cr+ + = ∆

  ⇒
1

2
 (a + b + c) ⋅ r = D

  ⇒ =r
s

∆
.  (As a + b + c = 2s) 
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 2. Since the lengths of the tangents drawn from an external point to the circle are 
equal

  ∴ BD = BF = x (Say)
  CD = CE = y (Say)
  AE = AF = z (Say)
  ∴ x + y = a (1)
  y + z = b (2)
  z + x = c (3)
  Adding 2(x + y + z) = a + b + c = 2s
  x + y + z = s (4)
  From Eq. (4) − Eq. (1), z = s − a = AE = AF
  From Eq. (4) − Eq. (2), x = s − b = BD = BF
  From Eq. (4) − Eq. (3), y = s − c = CD = CE

  In DIAE tan
A IE

AE

r

s a2
= =

−

  ⇒ r = (s − a) tan
A

2

  Similarly, r = (s − b) tan 
B

2
 and r s c

C
= −( ) tan

2
 3. In DIBD and DICD

  cot
B BD

r2
=  and cot

C CD

r2
=

  a BD CD r
B C

r

B

B

C

C
= + = +






 = +














cot cot

cos

sin

cos

sin2 2
2

2

2

2




  = 

r
B C B C

B C

cos sin sin .cos

sin .sin

2 2 2 2

2 2

+







 = r

B C

B C

sin

sin sin

+

























2

2 2

 = 

r
A

B C

sin

sin .sin

π
2 2

2 2

−







  a
r

A

B C
r

a
B C

A
=

⋅
⇒ =

⋅cos

sin sin

sin sin

cos

2

2 2

2 2

2

  ∴ = =r
R A

B C

A

R
A A B C

A

2
2 2

2

4
2 2 2 2

2

sin sin sin

cos

sin cos sin sin

cos
 (As a = 2R sin A)

  ⇒ =r R
A B C

4
2 2 2

sin sin sin .

Example 137 If the incircle of a right angled triangle ABC, touches the hypotenuse 
AC at K. Then prove that the area of right angle triangle is the product of CK and AK. 

Also prove that inradius is 
AB BC AC+ −

2
.

Solution: Since the length of the tangents drawn from an external point to the circle 
are equal 

Geometry Theory Part-3.indd   146 8/11/2017   2:48:56 PM



Geometry  8.147

∴ BL = BM = x (Say)
CL = CK = y (Say)
AM = AK = z (Say)
In DABC, by using Baudhayana theorem 
AC2 = AB2 + BC2

⇒ (y + z)2 = (x + z)2 + (x + y)2

y2
 + z2 + 2yz = x2 + z2 + 2xz + x2 + y2 + 2xy

⇒ 2yz = 2x2 + 2xz + 2xy

⇒ yz = x2 + xz + xy (1)

 Area of DABC = 
1

2
BC ⋅ AB

 = 
1

2
 (x + y) (x + z)

 = 
1

2
 (x2 + xz + xy + yz)

= 
1

2
 (yz + yz) = 

1

2
× 2yz (From Eq. (1))

= yz
[ABC] = CK ⋅ AK 
Also Inradius = x
And  AC = AK + KC = AM + LC = AB − x + BC − x

⇒ =
+ −

x
AB BC AC

2
.

Example 138 The incircle of DABC touch BC at D. Show that the circles inscribed in 
triangles ABD and CAD touch each other.

Solution:

To proof: AD AD′ = 0

We know that, BD s b= −  (where ‘s’ is semi perimeter)

⇒ =
+ − +

− − =
+ − +

AD
c s b AD

s b
c b s AD

0
2 2

( )

And AD
b s c AD

s c
c b s AD′ =

+ − +
− − =

+ − +
2 2

( )

⇒ = ′AD AD0

Hence we can say D0 and D′ are same points.

8.13.10.4 Orthocentre

Let ABC be any triangle and let AX, BY, CZ be the perpendiculars from A, B and C 
upon the opposite sides of the triangle. These are concurrent at H, which is called the 
orthocentre of the triangle

Some Standard Results:
 1. In an acute angled triangle orthocentre lies inside the triangle. In a right angled 

triangle, the orthocentre is at the right angled vertex. In an obtuse angled triangle 
orthocentre lies in the exterior of the triangle and behind the obtuse angle.

A

B C

O

L

M

x

x

z

y

y

z

K

A

B C

0DD

DQ S

P R

a

bc

H  

X  B  C  

y  

z  

A  
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 2. Out of four points A, B, C and H each point is the orthocentre of the triangle 
formed by other three.

  For DABC orthocentre is H
  For DABH orthocentre is C
  For DBCH orthocentre is A
  For DACH orthocentre is B
 3. There are 6 Cyclic Quadrilaterals in above diagram namely, BXHZ, CYHX, AZHY, 

BZYC, CXZA, AYXB.
 4. ∠BHC = 180° − ∠A = ∠B + ∠C
  ∠AHC = 180° − ∠B = ∠A + ∠C
  ∠AHB = 180° − ∠C = ∠A + ∠B

  Proof: In cyclic quadrilateral AZHY
  ∴ ∠ZHY + ∠A = 180°
  ∴ ∠ZHY = 180° − ∠A
  ∴ ∠BHC = ∠ZHY = 180° − ∠A
  Similarly others.
 5. Since HXCY is cyclic quadrilateral
  ∴ BX ⋅ BC = BH ⋅ BY (Power of the point B)
  Also AZXC is cyclic
  ∴ BX ⋅ BC = BZ ⋅ BA (Power of the point B)
  Combing the above result we get
  BX ⋅ BC = BH ⋅ BY = BZ ⋅ BA
  Similarly, CX ⋅ CB = CH ⋅ CZ = CY ⋅ CA and AZ ⋅ AB = AH ⋅ AX = AY ⋅ AC.
 6. The triangle XYZ formed by joining the feet’s of these perpendiculars is called the 

orthic triangle of the DABC.
 7. The orthocentre H of DABC is the incentre of Orthic triangle XYZ provided ABC 

is an acute angle triangle.

  Proof: Since BZYC is cyclic quadrilateral
  ∴ ∠BCZ = ∠BYZ = x
  Also HXCY is cyclic quadrilateral
  ∴ ∠HCX = ∠HYX = x
  ⇒ ∠HYX = ∠HYZ = x
  ⇒ HY bisects the ∠ZYX.
  Similarly HX and HZ bisects the ∠ZXY and ∠YZX respectively.
  Hence the orthocentre H of DABC is the incentre of DXYZ. Also A, B, C will be 

Ex-centres of DXYZ. In case of DABC obtuse angle triangle say ∠A be obtuse, 
then A will be incentre of orthic triangle and H, B, C will be Ex-centres of orthic 
triangle XYZ.

 8. In DABC, if AX, BY, CZ are the altitudes and DXYZ is the Orthic triangle then
  ∠ZXB = ∠YXC = ∠A
  ∠XYC = ∠ZYA = ∠B
  ∠XZB = ∠YZA = ∠A
  i.e., DABC ~ DAYZ ~ DXRZ ~ DXYC

Example 139 In DABC, if H is the orthocentre then find AH, BH, CH respectively.

Solution: In DBAY, AY = c cos A
In DAHY, AH = AY cosec C

 = c cos A 
1

sinC
 = 2R cos A

C 
x 

y 
B 

z 

x 

A 

y 

H 

XB

c

A

Y

H

C
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Similarly BH = 2R cos B
 CH = 2R cos C

Example 140 In DABC a, b and c represents the sides, find the sides and angles of the 
orthic triangle.

Solution: From point 8 we have
∠YXZ = 180° − 2A
Similarly ∠XYZ = 180° − 2B and ∠XZY = 180° − 2C
For side of DXYZ,
Consider DAZY, as AH is diameter of circumcircle of DAZY, by sine rule

ZY

A
AH R A

sin
cos= = 2

⇒ = =ZY R A A R A2 2cos sin sin
Similarly, XY = R sin 2C, ZX = R sin 2B
Thus sides of pedal triangle are 
a cos A, b cos B, c cos C or R sin 2A, R sin 2B, R sin 2C

Note: If given triangle is obtuse, say ∠C is obtuse then angles of pedal triangle are 
represented by 2A, 2B, 2C − 180° and the sides are a cos A, b cos B, − c cos C.

Example 141 AX, BY, CZ are the perpendiculars from the angular points of a DABC 
upon the opposite sides, prove that the diameters of the circumcircles of triangles AYZ, 
BXZ, and CXY are respectively a cot A, b cot B and c cot C and that the perimeters of 
the D XYZ and DABC are in the ratio r : R.

Solution: DXYZ is the orthic triangle of DABC
AH is diameter of circumcircle of DAYZ,

AH = 2R cos A = 
a

A
A

sin
cos  = a cot A

Similarly the diameters of circumcircle of DBXZ and DCXY are b cot B and c cot C.
Perimeter of DXYZ = YZ + ZX + XY
 = R(sin 2A + sin 2B + sin 2C)
 = R(2 sin(A + B) cos(A − B) + 2 sin C cos C)
 = R(2 sin(180° − C) cos(A − B) + 2 sin C cos (180° − A − B))
 = 2R sin C(cos(A − B) − cos(A + B))
 = 4R sin A sin B sin C

 = 4R
a

R

b

R

c

R

abc

R

abc

R R2 2 2 2

2

42





















 = =

⋅

Perimeter of DXYZ = 
2 2∆
R

rs

R
=

Perimeter of DXYZ : Perimeter of DABC = 
r s

R
s

( )
:

2
2  = r : R

Example 142 Find the area, circumradius and inradius of the orthic triangle of DABC.

Solution:
Since area of D

 = 
1

2
(Product of the sides) × Sine of the included angle

B  

A  

Y  
H

C  X  

 
HH 

Z  

B  

A  

Y  

H

C  X  

 
 

Z  
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 ∴ [XYZ] = 
1

2
 XY ⋅ XZ ⋅ sin ∠YXZ

 = 
1

2
R sin 2C ⋅ R sin 2B sin (180° − 2A)

 = 
1

2
R2sin 2A sin 2B sin 2C

Circumradius = 
YZ

YXZ

R A

A

R

2

2

2 180 2 2sin

sin

sin( )∠
=

°−
=

That is, circumradius of orthic triangle is half the circumradius of DABC.

The inradius of the orthic DXYZ = 
[ ]XYZ

Semi perimeter

= 
1

2

2 2 2

2

2R A B C

R A B C

sin sin sin

sin sin sin

= 2R cos A cos B cos C
Thus for orthic triangle

Area = 
1

2
R2 sin 2A sin 2B sin 2C

Circumradius = 
R

2
In radius = 2R cos A cos B cos C.

Example 143 If x, y, z be the sides of the orthic triangle, prove that

x

a

y

b

z

c2 2 2
+ + =

+ +a b c

abc

2 2 2

2

Solution From example 140 on page 8.149, we have  x = a cos A, y = b cos B and z = 
c cos C

Hence,
x

a

y

b

z

c2 2 2
+ + = + +

cos A cos B cos C

a b c

= 
b c a

abc

c a b

abc

a b c

abc

2 2 2 2 2 2 2 2 2

2 2 2

+ −
+

+ −
+

+ −

= 
a b c

abc

2 2 2

2

+ +
.

Example 144 If H is the orthocentre of DABC and AH produced meets BC at X and the 
circumcircle of DABC at K then prove that HX = XK.

Solution: In DBXH and DBYC
∠BXH = ∠BYC = 90°

∠XBH = ∠YBC 
∴ By AA similarly
DBXH ~ DBYC
∴ ∠BHX = ∠BCY = ∠C

Also ∠ACB = ∠AKB = ∠C

In DBXH and DBXK

C B 

Z 

X 

A 

Y 
H 

K 

B  

A  

Y  

C  X  

 
 

Z  
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∠BHX = ∠BKX = ∠C

BXH = ∠BXK = 90°
BX = BX (Common)

∴ By AAS Congruence DBXH ≅ DBXK

∴ HX = KX.

Example 145 If H is the orthocentre of DABC and S is the circumcentre and D is a 
mid-point of BC then prove that AH = 2SD.

Solution: Join CS and produce it to cut the circumcircle at F. Join FB and FA.
Since CF is a diameter 
∴ ∠FBC = ∠FAC = 90°
Since FB ⊥ BC and AX ⊥ BC
∴ FB | | AX | | AH
also FA ⊥ AC, BY ⊥ AC
∴ FA | | BY | | BH
∴ In quadrilateral AFBH
AF | | HB and FB | | AH
∴ AFBH is a parallelogram
∴ AH = FB
also in D CFB, S and D are the mid-points of CF and CB respectively
∴ By mid-point theorem

SD | | FB and SD = 
1

2 FB

⇒ SD = 
1

2
 AH [∴ AH = FB]

⇒ AH = 2SD

Example 146 If x, y, z are the distances of the vertices of the DABC respectively from 

the orthocentre then prove that 
a

x

b

y

c

z

abc

xyz
+ + = .

Solution:

 [ABC] = [BHC] + [CHA] + [AHB]

 D = 
1

2
yz sin(π − A) + 

1

2
zx sin(π − B) + 

1

2
xy sin (π − C)

 
abc

R4
 = 

1

2
yz  sin A + 

1

2
zx Bsin  + 

1

2
xy Csin

 =
1

2
xyz

A

x

B

y

C

z

sin sin sin
+ +









  =

1

2 2 2 2
xyz

a

Rx

b

Ry

c

Rz
+ +











 
abc

R4
 = 

xyz

R

a

x

b

y

c

z4
+ +











 ⇒ 
abc

xyz
 = 

a

x
 + 

b

y
 + 

c

z

Aliter: Since A + B + C = π
∴ A + B = π − C
⇒ tan(A + B) = tan(π − C)

B

F 

A

Y
H

CX  D

S

B 

A

Y

C X 

Z 

x

y Z 
H 
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⇒
+

−
= −

tan tan

tan tan
tan

A B

A B
C

1

⇒ tan A + tan B = −tan C + tan A tan B tan C

⇒ tan A + tan B + tan C = tan A tan B + tan C

⇒ 
sin

cos

sin

cos

sin

cos

sin

cos
.
sin

cos
.
sin

cos

A

A

B

B

C

C

A

A

B

B

C

C
+ + =

⇒ 
a

R A

b

R B

c

R C

a

R A

b

R B

c

R C2 2 2 2 2 2cos cos cos cos cos cos
+ + = 






















⇒ 
a

x

b

y

c

z

abc

xyz
+ + = .  (As x = 2R cos A similarly others)

Example 147 If H is the orthocentre of DABC. Prove that the radii of the circles cir-
cumscribing the triangles BHC, CHA, AHB, ABC are all equal.

Solution: Since ∠BHC = 180° − ∠A
∠AHC = 180° − ∠B
∠AHB = 180° − ∠C
Let R1 is the radius of the circumcircle of DBHC

∴ R1 = 
BC

BHC2sin∠
 = 

BC

A
R

2 180sin ( )° −
=

Similarly

 R2 = 
AC

B
R

2sin
=

 R3 = 
AB

C2sin
= R

 ∴ R1 = R2 = R3 = R

where R1, R2, R3 and R are the circumradii of Ds BHC, AHC, AHB and DABC

8.13.10.5 Euler Line

The circumcentre S, the centroid G and the orthocentre H of a  non-equilateral triangle 
are collinear and HG = 2GS. The line passing through H, G, S is called the Euler line.

Since AX ⊥ BC

SD ⊥ BC

∴ AX | | SD

Since 
AH

SD
=

2

1
 and 

AG

GD
=

2

1

⇒ 
AH

SD

AG

GD
=

also ∠HAG = ∠SDG
∴ By SAS similarity
DHAG ~ DSDG
⇒ ∠HGA = ∠SGD
Since AD is a straight line, H, G, S are collinear

also 
HG

GS

AH

SD
= =

2

1
 or HG = 2GS

B  

A  
Y  

C  X  

Z  
H  

180° − A

C  B  D 

G 

X  

H
S 

A
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8.13.10.6 Nine Point Circle

The circle through the mid-points of the sides of a triangle also passes through the feet 
of the altitudes and the mid-points of the lines joining the orthocentre to the vertices. 
This circle is called the nine point circle of the triangle as there are nine fixed points 
on it, namely three mid-points of sides, three feet of altitudes, three mid-points of line 
segment joining the orthocentre and vertex.

Proof:

Given: In DABC,
AX ⊥ BC, BY ⊥ AC and CZ ⊥ AB
H is the orthocentre.
D, E, F are the mid-points of BC, CA, AB respectively 
P, Q and R, are the mid-points of AH, BH and CH respectively,

A

B CD

H

E
R

P

X

Z

Y

Q

F

1

2
3

4

To prove: There is one circle passes through D, E, F, X, Y, Z, P, Q, R
In DABH, P, F are the mid-points of AH and AB respectively
∴ By mid-point theorem PF | | BH, i.e., PF | | BY. 
In DABC, F, D are the mid-points of AB, BC respectively
∴ By mid-point theorem FD | | AC
∵ ∠1 = ∠CYB = 90° (Interior angles)
Also ∠2 = ∠1 = 90° (Corresponding angles)
i.e., ∠PFD = 90° (1)
also ∠PXD = 90° (2)
Now In DAHC, P, E are the mid-points of AH, AC respectively
∴ By mid-point theorem
PE | | HC i.e., PE | | ZC
In DABC, E, D are the mid-points of AC, CB respectively 
∴ By mid-point theorem DE | | AB
∠BZC = ∠3 = 90° (Interior angles)
Also ∠4 = ∠3 = 90° (Corresponding angles)
∴ ∠PED = 90° (3)
From Eqs. (1), (2) and (3)
Taking PD as a diameter if we draw a circle then it must passes through F, X and E
∠PFD = ∠PXD = ∠PED = 90°.
i.e., P, F, D, X, E are concyclic.
Similarly Q, D, E, Y, F are concyclic and R, E, Z, F, D are concyclic.
Since out of these, three point D, E, F are common and since from any three non-

collinear points, there passes one and only one circle.
∴ P, Q, R, D, E, F, X, Y, Z are concyclic it is a nine point circle.
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Theorem: The nine point centre of a triangle is collinear with the circumcentre and the 
orthocentre and bisects the segment joining them. Also radius of the nine point circle 
of a triangle is half the radius of the circumcircle of the triangle.

Proof: Let S be the circumcentre of DABC
∵ D and X lie on nine point circle.
∴ Its centre lie on the perpendicular bisector of DX. Let U be the mid-point DX. Let 

the perpendicular from U on BC meets SH at N. Since SD | | NU | | HX and DU = UX
∴ SN = NH, i.e., N is the mid-point of SH.
Now, to show that N is the centre of the nine point circle. Draw NV ⊥ EY
Since, SE ⊥ AC and HY ⊥ AC
∴ SE | | HY
∴ SEYH is a trapezium and N is a mid-pont of SH
Also NV | | SE | | HY
∴ V is the mid-point of EY, i.e., NV is a ⊥ bisector of EY.
That is, N is the point of intersection of perpendicular bisectors of DX and EY.
∴ N is the centre of nine point circle.
If follows that circumcentre, nine point centre and orthocentre are collinear
The nine point centre is the mid-point of the segment joining the circumcentre and 

orthocentre.
Now to show that the radius of the nine point circle is half the circumradius.
Since PD is a diameter of the nine point circle so N is the mid-point of PD
∵ SH and PD bisect each other at N
∴ S, D, H P are the vertices of a parallelogram
⇒ SD = PH = AP
Now, SD | | AP, SD = AP
∴ S, D, P, A are the vertices of a parallelogram 
∴ DP = SA = R
⇒ 2PN = R
⇒ 2rN = R
⇒ rN = R/2
where rN is the radius of nine point circle.

Note: DPQR ≅ DDEF (by SSS congruence)
Where P, Q, R are the mid-point of AH, BH and CH and D, E, F are the mid-points of 
BC, CA, AB.
As PQ = DE = (1/2)AB

 QR = EF = (1/2)BC 

and RP = DE = (1/2) CA.

Theorem: In any triangle the circumcentre, the centroid, the nine point centre and the 
orthocentre are all collinear.

Proof: Through P draw PG′ | | HS
So as to meet AD in G′
Let AD meets SH in G
We will show that 
AG′ = G′G = GD
So as to conclude that
G divides AD in 2 : 1

A

B CD

H

E

S

P

X

YN
V

U

A

B

P

S G

G′

D XU C

H
N
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So consequently it is the centroid of DABC.
In DAGH, P is the mid-point of AH and PG′ | | HG
∴ G′ is the mid-point of AG
∴ AG′ = G′G. (1)
In DPDG′, N is the mid-point of PD and NG | | PG′
∴ by converse of mid-point theorem
G is the mid-point of DG′
i.e., G′G = GD (2)
∴ From Eqs. (1) and (2)
AG′ = G′G = GD
So AG/GD = 2/1
∴ AG = (2/3)AD
Thus G is the centroid of DABC which lies on the Euler line.

Aliter: Follow the proof given in Euler line.

Note: S, G, N, H are collinear with SG/GH = 1/2, SN/NH = 1/1, also SG/GN = 2/1.

S G
2 1 3

Circumcentre Centriod
N H

Nine
point centre

Orthocentre

: :

8.13.10.7 Escribed Circles of a Triangle

The circle which touches the sides BC and two sides AB and AC produced of a triangle 
ABC and remains out of the triangle is called the escribed circle opposite to the angle 
A. Its radius is denoted by ra (or r1). Similarly rb (or r2) and rc (or r3) denote the radii 
of the escribed circles opposite to the angles B and C respectively. The centres of the 
escribed circles are called the ex-centres. The centre of escribed circle opposite to the 
angle A is the point of intersection of external bisector of angle B and C. The internal 
bisector also passes through the same point. This centre is generally denoted by Ia (or 
I1) similarly others.

Standard results: In any DABC, we have

 1. r
s a

r
s b

r
S C

a b c=
−

=
−

=
−

∆ ∆ ∆
, ,

 2. r s
A

r s
B

r s
C

a b c= = =tan , tan , tan
2 2 2

 3. r R
A B C

a = 4
2 2 2

sin cos cos ;

  r R
A B C

b = 4
2 2 2

cos sin cos

  r R
A B C

c = 4
2 2 2

cos cos sin

Proof:
 1. Since each point on the angle bisector is equidistant from the arms of the angle.

∴ IaD = IaE = IaF = ra
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Now
[ABC] = [ABIa] + [ACIa] − [BCIa]

D = 
1

2
AB ⋅ IaF + 

1

2
AC ⋅ IaE − 

1

2
BC ⋅ IaD

= 
1

2
c ⋅ ra + 

1

2
b ⋅ ra − 

1

2
a ⋅ ra

= 
ra
2

(c + b − a) = 
ra
2

(a + b + c − 2a) = 
ra
2

(2s − 2a)

⇒ r
s a

a = −
∆

Similarly rb = 
∆

s b−
 and rc = 

∆
s c−

 2. Since the lengths of tangents to a circle from an external points are equal.
  ∴ AE = AF; BD = BF; CD = CE
  Now
   AE + AF = (AC + CE) + (AB + BF)
   = (AC + CD) + (AB + BD)
   AF + AF = AC + AB + (BD + CD)
   = AC + AB + BC
   = a + b + c = 2s
   2AF = 2s
   AF = s = AE

  In DIaAF, tan
A

2
 = 

I F

AF

r

s
a a=

  ⇒ ra = s tan
A

2

  Similarly, rb = s tan 
B

2
 and rc = s tan

C

2

 3. In DIaBD, we have

  tan
π −





 = =

B I D

BD

r

BD
a a

2

  or cot
B r

BD
a

2
=

  ⇒ BD r
B

a= tan
2

  Similarly, CD r
C

a= tan
2

  Now

  a BC BD DC r
B

r
C

a a= = + = +tan tan
2 2

  = +





r

B C
a tan tan

2 2

E  

Ia

ra

ra
ra  

rrrrarr 
F

B D

A

C  
 

A
/2

A
/2
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  = +

















r

B

B

C

Ca

sin

cos

sin

cos

2

2

2

2

 

  =
⋅ + ⋅

⋅

















r

B C B C

B Ca

sin cos cos sin

cos cos

2 2 2 2

2 2

  =

+






=

−







⋅
=r

B C

B C

r
A

B C

r

a

a a
sin

cos .cos

sin

cos cos

c
2

2 2

2

2 2

π
oos

cos cos

A

B C
2

2 2
⋅

  ⇒ =r
a

B C

Aa

cos .cos

cos

2 2

2

  r
R A

B C

A

R
A A B C

Aa =
⋅ ⋅

=
2

2 2

2

4
2 2 2 2

2

sin cos cos

cos

sin cos cos cos

cos

  ra = 4R sin cos cos
A B C

2 2 2
⋅ ⋅

  Similarly, r R
A B C

b = ⋅ ⋅4
2 2 2

cos sin cos ;  r R
A B C

c = ⋅ ⋅4
2 2 2

cos cos sin

8.13.10.8 Ex-central Triangle

Let ABC be a triangle and I be the centre of incircle. Let Ia, Ib, Ic be the centres of the 
escribed circles which are opposite to A, B, C respectively then DIaIbIc is called the 
ex-central triangle of DABC.

Since IB bisects ∠ABC : ∠ABI = ∠IBC = x (Say)

And IaB bisects ∠CBM : ∠CBIa = ∠MBIa = y (Say)

also 2x + 2y = 180°
⇒ x + y = 90°
∠IaBI = 90°
IaB ⊥ IbB

Thus IaIc ⊥ IB

Similarly, IaIb ⊥ IC

IbIc ⊥ IA
Hence DABC is the orthic triangle of its ex-central triangle IaIbIc.

Sides and angles of the ex-central triangle:

In above figure ∠BIaC = ∠BIaI + ∠CIaI

= ∠BCI + ∠CBI (As IBIaC is cyclic quadrilateral)

B  

A 

C

I 

IbIc

y y
xx
 

Ia
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= 
∠

+
∠C B

2 2

∠BIaC = 
180

2
90

2

° −
= ° −

A A

∴ ∠IbIaIc = 90° − 
A

2
Similarly 

∠IaIbIc = 90° − 
B

2
 

∠IbIcIa = 90° − 
C

2
 

We already proved BE = s ⇒ CE = s − a.
Also DC = s − b
⇒ DE = s − a + s − b = c
⇒ PIb = DE = c
In DIaIbP,

IaIb = c cosec
C

2

= 2R sin C cosec
C

2

I I R
C

a b =






4

2
cos

Similarly, IbIc = 4R cos
A

2
; IcIa = 4R cos

B

2
Area and circumradius of the ex-central triangle:

Area of D = 
1

2
 (Product of the sides) × (Sine of the included angle)

 = 
1

2
(IaIc)(IaIb) sin(∠IbIaIc)

 = 
1

2
4

2
4

2
90

2
R

B
R

C A
cos cos sin







 ⋅







 ° −








 D = 8
2 2 2

2R
A B C

cos cos cos

Circumradius = 
I I

I I I
b c

b a c2sin∠
 = 

4
2

2 90
2

R
A

A

cos

sin ° −







 = 2R.

Notes:
 1. The excentres Ia, Ib, Ic of DABC form a triangle, whose sides pass through the ver-

tices A, B, C. Since angle bisectors of an angle are at right angles. So the incentre 
I of DABC is the orthocentre of DIaIbIc.

 2. A, B, C are the feets of the altitudes of DIaIbIc, if follows that the circumcircle of 
DABC is the nine point circle of DIaIbIc. Hence the circumcircle of DABC is bisec-
tor of lines IbIc, IcIa, IaIb and also the lines IIa, IIb and IIc.

A

B C ED

P Ib

Ia

AB

I

Ic

IbIa C
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Example 148 In DABC, prove that 
1 1 1 1

r r r ra b c

+ + =  

Solution: 
1 1 1

r r ra b c

+ +  = 
s a s b s c−

+
−

+
−

∆ ∆ ∆

 = 
3 3 2s a b c s s− + +

=
−( )

∆ ∆

 = 
s

r∆
=

1

Example 149 If ra = rb + rc + r, then prove that angle A is a right angle.

Solution. Since ra = rb + rc + r
⇒ ra − r = rb + rc

∆ ∆ ∆ ∆
s a s s b s c−

− =
−

+
−

s s a

s s a

s c s b

s b s c

− −
−

=
− + −
− −

( )

( ) ( )( )

a

s s a

s b c

s b s c( )

( )

( )( )−
=

− +
− −

2

a

s s a

a

s b s c( ) ( )( )−
=

− −

⇒ 
( )( )

( )

s b s c

s s a

− −
−

=1

⇒ = ⇒ =tan2

2
1

2 4

A A π

⇒ =A
π
2

.

Example 150 If A, B, C are the angles of a triangle, prove that

cos A + cos B + cos C = 1 + 
r

R
.

Solution: For any α β γ α β γ α β γ, , , cos cos cos cos( )∈ + + + + +�

=
+ + +

4
2 2 2

cos cos cos
α β β γ γ α

⇒ cos A + cos B + cos C + cos(A + B + C) = 4
2 2 2

cos cos cos
A B B C C A+








+







+







⇒ cos A + cos B + cos C + cos(180°) = 4 90
2

90
2

90
2

cos cos cos° −





 ° −






 ° −








C A B

⇒ cos A + cos B + cos C − 1 = 4
2 2 2

sin sin sin
C A B























⇒ cos A + cos B + cos C =1 + 4
2 2 2

sin sin sin
C A B





















 = 1+

r

R
.
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Example 151 Tangents are parallel to the three sides are drawn to the incircle. If 
x, y, z are the lengths of the parts of the tangents with in the triangle then prove that 
x

a

y

b

z

c
+ +  = 1

Solution: Let PQ = x, PQ | | BC

SR = y, SR | | CA

TU = z, TU | | AB

We know that AF = AE = s − a

Also AF = AP + PF = AP + PL

And AE = AQ + QE = AQ + QL 

⇒ Perimeter of DAPQ = 2AE = 2(s − a)

We can see that DAPQ ∼ DABC

PQ

BC

APQ

ABC

s a

s
= =

−Perimeter of

Perimeter of

∆
∆

2

2

( )

⇒ =
−x

a

s a

s

Similarly, 
y

b

s b

s
=

−
 and 

z

c

s c

s
=

−

On adding, we get,

x

a

y

b

z

c

s a b c

s

s s

s
+ + =

− + +
=

−
=

3 3 2
1

( )

Example 152 Let points P1, P2, P3, …, Pn−1 divides the side BC of a DABC into n 
parts. Let r1, r2, r3, …., rn be the radii of inscribed circles and let q1, q2, …, qn be the 
radii of escribed circles corresponding to vertex A for triangle ABP1, AP1P2, …, APn−1 
C and let r and q be the corresponding radii for the DABC. Show that 

r

q

r

q

r

q

r

q
n

n

1

1

2

2

⋅ ⋅ ⋅ ⋅ =

Solution:
In DABC, we have

r

q

R
A B C

R
A B C

=
4

2 2 2

4
2 2 2

sin sin sin

sin cos cos

⇒ = ⋅
r

q

B C
tan tan

2 2

i.e., 
r

q
 is product of tangents of half of base angles.

So, 
r

q

B1

1

1

2 2
= tan . tan

α

And 
r

q
2

2

1 2180

2 2
=

°−





tan tan

α α

 = cot α1 tan α2

A

P
x

Q

E

U

CTDSB

R

y z

F
L

I

r

rr

B

A

C

C
2

I

Ia

q

M
Q

B
2

B
2

π
2

−
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And so on 
r

q
n

n

n n−

−

− −=
° −








1

1

2 1180

2 2
tan tan

α α
= − −cot tan

α αn n2 1

2 2

r

q

C Cn

n

n n=
°−






 =− −tan tan cot tan

180

2 2 2 2
1 1α α

Multiplying all, we get,

r

q

r

q

r

q

r

q
n

n

n

n

1

1

2

2

1

1

⋅ ⋅ ⋅ ⋅ ⋅−

−
= tan tan cot tan cot tan

B n n

2 2 2 2 2 2
1 1 2 2 1α α α α α













 ⋅⋅ ⋅





− −




cot tan .
αn C−








1

2 2

= tan . tan
B C r

q2 2
=

Example 153 Find the distance between the incentre and ex-centres of  DABC.

Solution:

A/2

A/2

C

A

Ia

D B E

F

We know that AE = s, AD = s − a ⇒ DE = s − (s − a) = a
⇒ IF = a

In DIIaF,

sec
A II

IF

II

a
a a

2
= =

II a
A

a = sec
2

Example 154 If I is the incentre of a D ABC and if AI meets the circumcircle in K prove 
that KI = KB.

Solution:
I is the incentre of DABC

∠IAB = (1/2)∠A

∠IBA = (1/2) ∠B

∠KBC = ∠KAC = (1/2) ∠A (1)

∴ ∠IBK= ∠IBC + ∠CBK = 
1

2
(∠A + ∠B)

Also In DABI by exterior ∠property

∠BIK = ∠IAB + ∠IBA = A/2 + B/2 (2)

In DIBK, ∠IBK = ∠BIK = 1/2(∠A + ∠B) (From Eqs. (1) and (2))

∴ KI = KB

C

A

B
1

180° −   1

P1
P2

2 n−1

Pn−1

α

α α α

A/2

A/2
B/2
B/2

A/2

A

B C

K

I
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Note: Angle bisector ∠A and ⊥ bisector of BC meet at the circumcircle. So K lies on 
the perpendicular bisector of BC ∴ KB = KC

Also IIa is the diameter of circumcircle of triangle IBIa, where Ia is the excentre as 
∠IBIa = 90°. Since mid-point of the hypotenuse is equidistant from the vertices, KI = 
KB = IaK = KC.

Example 155 Find the distance between the circumcentre and incentre of a triangle

Solution: In DABC, let AP be the angle bisector, where P is a point on its circumcircle. 
I is the incentre and O is the circumcentre of DABC. Let LIOM is a straight line, LM 
is a diameter.

OL = R = OM

Let IO = d,

∴ LI = R − d and IM = R + d,

Let IE ⊥ AB ∴ IE = r

In DAEI

sin
A r

AI2
=

AI = 
r

Asin /2

We know BP = IP (From previous problem)
Also in a D, angle bisector of ∠A and perpendicular bisector of BC meet at the 

circumcircle so OP is the perpendicular bisector of BC. 
∴ BK = a/2

In DBKP, cos
A BK

BP

a

BP2 2
= =

⋅

BP = 
a

A

R A

A
R

A

2 2

2

2 2
2

2cos

sin

cos
sin

/ /
= =

∴ PI = BP = 2
2

R
A

sin

∴ Considering power of the point I with respect to circumcircle, we get,
AI ⋅ IP = LI ⋅ IM = (R − d)(R + d)

⇒ = −
r

A
R

A
R d

sin
sin

2

2
2

2 2

⇒ d R Rr= −2 2 .

Example 156 Find the distance between the circumcentre and excentre.

Solution: Let O be the circumcentre and I be the incentre then AI produced passes 
through the excentre Ia.

Let AI meets the circumcircle in D 

Join CI, BI, CD, BD, CIa, BIa,

We know that DB = DC = DI = DIa (From previous problem)

Also D is the centre of the circle IBIaC

In DBCIa 

A

B

P

C

M

OL
E

K

Ir

d

A/2 A/2

A/2

A/2 a/2
B/2
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Circumdiameter IIa = 
BC

BI Casin∠
  (From sine rule)

II
a

Aa =
°−






sin 90

2

2DIa = 
2

2

R A
A

sin

cos
 (As IIa = 2DIa)

⇒ DIa = 
a

A
R A

A
2

2

2

2
2

cos

sin

cos
=

⇒ DIa = 2
2

R
A

sin  

By writing power of the point Ia with respect to circumcircle of DABC, we get,

IaQ ⋅ IaP = IaD ⋅ IaA

⇒ (IaO − R) (IaO + R) = 2
2 2

R
A

r
A

asin cosec⋅ ⋅

⇒ OIa
2 − R2 = 2Rra

⇒ OIa
2 = R2 + Rra

⇒ OIa = R Rra
2 2+

Similarly, OIb = R Rrb
2 2+ and OIc = R Rrc

2 2+ .

Example 157 Find the distance between the circumcentre and the orthocentre of 
DABC.

Solution: Let S and H be the circumcentre and orthocentre of DABC, and ∠B < ∠C.
SE ⊥ AB

∠ESA = ∠C

∴ ∠EAS = 90° − ∠C

Also ∠HAB = 90° − ∠B

∠SAH = ∠HAB − ∠BAS = 90°−∠B − (90°−∠C) = ∠C − ∠B
Also AH = 2SD = 2Rcos A and SA = R
For DSAH by using cosine formula

 SH2 = SA2 + AH2 − 2SA AH cos ∠SAH

 = R2 + 4R2cos2A − 2R ⋅ 2R cos A ⋅ cos (C − B)

 = R2 + 4R2cos A(cos A − cos(C − B))

 = R2 − 4R2 cos A (cos(C + B) + cos(C − B))

 = R2 (1 − 4 cos A (2 cos C ⋅ cos B))

 SH2 = R2 (1 − 8 cos A cos B cos C)

 SH = R A B C1 8− cos cos sin .

P

A

B

D
Q

C

Ia

I O

A

B C

C

D

S

HE

R

R

X
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Build-up Your Understanding 17

 1. Prove the following:

  

R
abc

rs
r r r r

r r r r

C
a b

A B
a b c

a b c= = + + − =
+ + −

= +
−

4

1

4 4

1

4 2
( )

cos
( )sec

( )
secc

sin( )

( )( )( )

C

a b

c A B

r r r r r r

r

r s

r r
a b c

a

2

2 4 4

1 12 2

2

2 2

=
−
−

=
− − −

= −








 −








 −










= =
+∑

∏
∑
∑

1 1 1 1

4
2

4

r r r r

a A

A

b c
A

A

b c

cos

sin

( ) tan

cos
== ∑
∏

r A

A

sin

sin2

 2. Prove the following:

  

∆ = = = − = − −

= +

rr r r rr
A

s s a
A A

bc s b s c

Rr A

a b c a cot ( ) tan cos ( )( )

(sin s

2 2 2

iin sin ) ( sin sin )
sin sin

sin( )
( )B C b C c B

A B

A B
a b

a

+ = + =
−

−

=

1

4
2 2

2
2 2 2 2

2 ++ +
+ +

= + +
b c

A B C

abc
A B C

2 2 2 3

5 3
1

4 2
2 2 2

(cot cot cot )

( )
(sin sin sin )

/

/
/33

 3. Show that the radii of the three escribed circles of a triangle are the roots of the 
equation, x3 − x2 (4R + r) + xs2 − rs2 = 0.

 4. If R1, R2 and R3 be the diameter of the excircles of a DABC (opposite to the verti-

ces A, B and C respectively), then prove that 
a

R

b

R

c

R

R R R

a b c1 2 3

1 2 3+ + =
+ +
+ +

.

 5. Prove that r r r r R a b ca b c
2 2 2 2 2 2 2 216+ + + = − + +( ).

 6. In a triangle ABC, the incircle touches the sides BC, CA and AB at D, E, F respec-
tively. If radius of incircle is 4 units and BD, CE and AF be consecutive natural 
numbers, find the sides of the triangle ABC.

 7. D, E and F are the middle points of the sides of the triangle ABC; prove that the 
centroid of the triangle DEF is the same as that of ABC, and that its orthocentre 
is the circumcentre of ABC.

 8. In a DABC, if 8R2 = a2 + b2 + c2, show that the triangle is right angled.
 9. In DABC, AD is the altitude through A; x, y, z are the inradii of DADC, DADB and 

DABC. Prove that x2 + y2 = z2.
 10. Let PQ be a diameter of the circumcircle of DABC whose centroid is G. Prove that 

PG bisects QH where H is the orthocentre of DABC.
 11. PQ is a chord of a circle. Through the mid-point M of PQ chords AB and CD are 

drawn. AD and BC meet PQ at K and L. Then prove that M is the mid-point of KL.
 12. Let the incircle touch the side BC of DABC at X. If A′ is the mid-point of BC then 

prove that A′I bisects AX.
 13. If h, m, t are the altitude, the median and the internal bisector respectively from 

the same vertex of a triangle then prove that 4R2h2(t2 − h2) = t4 (m2 − h2) where R, 
is the circumradius of the triangle.

 14. Prove that in any triangle ABC, b2 − c2 = 2a A′D where D is the foot of the altitude 
from A and A′ is the mid-point of AB.
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 15. If a circle be drawn touching the inscribed circle and circumscribed circles of a 

triangle and the side BC externally, prove that its radius is ⋅

∆
a

A
tan .2

2

 16. If each side of the triangle DEF is tangent to two of the three escribed circles of 
the triangle ABC such that all three escribed circles are circumscribed by DDEF, 

then prove that 
EF

a A

FD

b B

DF

c Ccos cos cos
.= =

 17. Let I and O be the incentre and circumcentre of DABC, respectively. Assume 
DABC is not equilateral (so I ≠ O). Prove that ∠AIO ≤ 90° if and only if 2BC ≤ AB 
+ CA.

 18. In triangle ABC, the circle touches the sides BC, CA, AB respectively at D, E, F. if 
the radius of the incircle is 4 units and if BD, CE, AF are consecutive integers, find

  (i) The perimeter of DABC (ii) The circumradius of DABC.
 19. AD, BE, CF are the altitudes of DABC. Lines EF, FD, DE meet lines BC, CA, 

AB in points L, M, N, respectively. Show that L, M, N are collinear and the line 
through them is perpendicular to the line joining the orthocentre H and circum-
centre O of DABC.

 20. A triangle has sides of lengths 18, 24, and 30. Show that the area of this triangle, 
whose vertices are the incentre, the circumcentre and the centroid of the original 
triangle, has an integer measure.

 21. Suppose the lengths of the three sides of DABC are integers and the in radius of 
the triangle is 1. Prove that the triangle is a right triangle.

 22. If a, b, c are the lengths of the sides of DABC, prove that there exist positive real 
members x, y, z, such that a = y + z; b = z + x; c = x + y;

   (i)  Express the inradius ‘r’ and circumradius ‘R’ in terms of x, y, z; hence deduce 
the following:

  (ii) (a) 
R

r

b

c

c

b
≥ +   (b) R ≥ 2r

 23. In DABC, AB = AC, ∠A = 100°, the bisector of ∠B meets AC in D. Prove that BC 
= BD + AD.

 24. The centre of the circumcircle of DABC with ∠C = 60° is O. Its radius is 2. Find 
the radius of the circle that touches AO, BO and the minor arc AB.

 25. On the sides AB, AC of DABC, squares AYXB arid AQPC are constructed outside 
the D. Prove that CX, BP meets on the perpendicular from H to BC.

 26. Prove that the straight line dividing the perimeter and area of a triangle in the 
same ratio passes through the incentre.

8.13.11 Area of a Quadrilaterals

8.13.11.1 Theorem 1

Area of a quadrilateral is equal to half of the product of diagonals and sine of angle 
included between them.

Proof: ABCD is any quadrilateral where AB = a, BC = b, CD = c and AD = d and 
∠DPA = α

Then
Area of DDAC = area DDPA + area DDPC A B

CD

a

b

c

d
Pα α
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 = 
1

2
DP ⋅ PA sin α + 

1

2
DP ⋅ PC sin(π − α) 

 = 
1

2
DP(PA + PC) sin α

Area DDAC = 
1

2
DP ⋅ AC sin α

Similarly area of DABC = 
1

2
 AC ⋅ PB ⋅ sin α

∴ Area ABCD = Area of DADC + Area of DABC = 
1

2
DP ⋅ AC sin α + 

1

2
 AC ⋅ PB 

sin α

= 
1

2
(DP + PB) AC sin α

Area ABCD = 
1

2
 BD ⋅ AC sin α

 = 
1

2
 (Product of the diagonals) × (Sine of included angle).

8.13.11.2 Theorem 2

Let length of sides AB, BC, CD, DA of a quadrilateral ABCD be a, b, c, d respectively 
and ‘2α’ be the sum of a pair of opposite angles of it and ‘s’ be the semi perimeter. 
Then area of the quadrilateral ‘D’ is given by 

∆ = − − − − −( )( )( )( ) coss a s b s c s d abcd 2α

Proof: Consider DABD and DBCD
By cosine formula in both triangles, we get

BD2 = a d ad A2 2 2+ − cos

And BD2 = b2 + c2 − 2bc cos C

⇒ b2 + c2 − 2bc cos C = a2 + d2 − 2ad cos A

⇒ b2 + c2 − a2 − d2 = 2(bc cos C − ad cos A) (1)

Also [ABCD] = D = [ABD] + [BCD] = 
1

2
 ad sin A + 

1

2
 bc sin C

⇒ 4D = 2 (ad sin A + bc sin C) (2)
Squaring and adding Eqs. (1) and (2), we get,
(b2 + c2 − a2 − d2)2 + 16 D2 = 4(bc cos C − ad cos A)2 + 4(ad sin A + bc sin C)2

 = 4[b2c2 + a2d2 − 2abcd cos A cos C + 2abcd sin A sin C]

 = 4[b2c2 + a2d2 − 2abcd (cos A cos C − sin A sin C)]

 = 4[b2c2 + a2d2 − 2abcd cos (A + C)]

 = 4[b2c2 + a2d2 − 2abcd cos 2α] (where A + C = 2α)

 = 4[b2c2 + a2d2 − 2abcd (2cos2α −1)]

 = 4[b2c2 + a2d2 + 2abcd − 4abcd cos2 α]

A
B

C

D

a

b

c

d
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 16D2 = 4(bc + ad)2 − (b2 +c2 − a2 − d2)2 − 16abcd cos2α
 = [2(bc + ad) + b2 +c2 − a2 − d2] [2(bc + ad) − b2 −c2 + a2 + d2] − 16abcd cos2α
 = [(b + c)2 − (a − d)2][(a + d)2 − (b −c)2] − 16abcd cos2α
 = (b + c + a − d)(b + c −a + d)(a + d + b −c)(a + d − b + c) − 16abcd cos2α
 = (2s − 2d)(2s − 2a)(2s − 2c)(2s − 2b) − 16 abcd cos2α
 (where 2s = a + b + c + d)
⇒ 16D2 = 16(s − a)(s − b) (s −c)(s − d) − 16 abcd cos2α
⇒ D2 = (s − a)(s − b)(s −c)(s − d) − abcd cos2α

⇒ = − − − − −∆ ( )( )( )( ) coss a s b s c s d abcd 2α

Notes: 

 1. For cyclic quadrilateral A + C = π, i.e., 2α = π ⇒ α
π

=
2

 ⇒ cos α = 0

  ⇒ Area of the cyclic quadrilateral = − − − −( )( )( )( ),s a s b s c s d  

where s
a b c d

=
+ + +

2

  This formula is known as Bramhagupta’s formula.
 2. For tangential quadrilateral a + c = b + d

  ∴ s
a b c d

=
+ + +

2
 = a + c = b + d

  ∴ s − a = c; s − c = a; s − b = d; s − d = b

  ∴ Area = ( )( )( )( ) coss a s b s c s d abcd− − − − − 2α

   = abcd abcd− cos2α = abcd( cos )1 2− α

   = abcd sin2α

   = abcd sinα  where 2α = ∠A + ∠C

 3. For Cyclic as well as tangential quadrilateral area = abcd  (As sin α =1)

8.13.12 Regular Polygon

A regular polygon is a polygon which has all its sides as well as all its angles are equal.
If the polygon has n sides them sum of the internal angles is (n −2)π and each angles 

is 
( )

.
n

n

− 2 π

B CL

DA
O

R
r

nn

a

π π

Let AB, BC and CD be three consecutive side of the regular polygon and let n be the 
number of its sides. Let O be the point of intersection of the bisectors of the angles 
∠ABC and ∠BCD. The point O is both the incentre and circumcentre of polygon and 
so BL = LC = a/2 where a is the side of the polygon.
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Thus we have OB = OC = R and OL = r, the circumradius and inradius respectively 
of n side regular polygon.

In DOLB sin
π
n

BL

OB

a

R
= =

/2
⇒ =R

a

n2
cosec

π

and tan
π
n

BL

OL

a

r
= =

/2
 ⇒ =r

a

n2
cot

π

So circumference of circumcircle = 2πR = π a cosec ⋅

π
n

Circumference of incircle = 2πr = πa cot ⋅

π
n

.

Also area of polygon (in terms of a) = n × [OBC] = n × (1/2) × BC × OL

= 
n

a
a

n

na

n2 2 4

2

× × =cot cot
π π

 

Area of polygon (in terms of ‘r’) = n BC OL× × ×
1

2
= n

a
r nr

n2
2× = tan

π

Area of polygon (in terms of R) = n×
1

2
 × BC × OL = 

n
a r

2
⋅ = n R

n
R

n
× ⋅sin cos

π π

=
n

R
n2

22 sin .
π

Example 158 Prove that difference of area of circumcircle and incircle of a regular 
polygon is area of a circle taking any one side of the polygon as diameter.

Solution: Area of circumcircle = =π
π π

R
a

n
2

2
2

4
cosec

Area of incircle π
π π

r
a

n
2

2
2

4
= cot

So area of circumcircle-area of incircle = π π πa

n n

2
2

4
cosec cot2 −





 = π

a

2

2








 = area of a circle taking any one side of the regular polygon as a diameter.

Build-up Your Understanding 18

 1. If 2a be the side of a regular polygon of n sides, R and r be the circumradius and 

inradius, prove that R r a
n

+ = cot .
π
2

 2. With reference to a given circle, A1 and B1 are the areas of the inscribed and cir-
cumscribed regular polygons of n sides, A2 and B2 are corresponding quantities 
for regular polygons of 2n sides. Prove that A2 is a geometric mean between A1 
and B1. Also prove that B2 is a harmonic mean between A2 and B1.

 3. Obtain a relation between the shortest diagonal, longest diagonal and a side of a  
regular nonagon. 
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 4. Two regular polygons of n and 2n sides have the same perimeter, show that their 

areas are in the ratio 2 1cos : cos .
π π
n n

+

 5. If a, b, c, d are the sides of a quadrilateral described about a circle then prove that 

ad
A

bc
C

sin sin .2 2

2 2
=

 6. Show that if a convex quadrilateral with side lengths a, b, c, d and area abcd  
has an inscribed circle, then it is a cyclic quadrilateral [Putnam, 1970]

 7. The circumference of the unit circle is divided into eight equal arcs by points A, 
B, C, D, E, F, G, H. Chords connecting point A, to each of the other points, are 
joined. Find the product of the lengths of all these chords. Generalize your result. 

 8. Consider A1A2A3, … An,  a regular polygon inscribed in a unit circle. Evaluate the 
following:

    (i) | A1A2 |
2 + | A1A3 |

2 +…+ | A1An |
2

   (ii) | A1A2 | | A1A3 | … | A1An |

  (iii) A Ai j
i j n1≤ < ≤
∏

 9. If A1, A2, A3, …, An be the vertices of a n-sided regular polygon, such that 

1

1 2A A
 = +

1 1

1 3 1 4A A A A
,  find the value of n. [INMO, 1992]

 10. Among all quadrilaterals with given lengths side of AB = a, BC = b, CD = c, DA 
= d, find the one with the greatest area.

 11. A regular octagon with 1 unit-long sides is inscribed in a circle. Find the radius of 
the circle. Also find the radius of its in-circle.

8.14 Construction of Triangles

It is well-known that a triangle can be constructed in each of the following cases:
 1. When all the three sides are given.
 2. When one side and two angles are given.
 3. When two sides and the included angle are given.

Beside the above three cases, there are many other cases when it is possible to con-
struct the triangle. We are going to describe some of them. But before we do so we 
shall discuss one case, which is of the special interest.

What can we do if two sides and one angle (other than the included angle) are given?
To construct a DABC when a, b, A are given:

There may exist no triangles, one triangle, or two triangles depending on the rela-
tion between the given parts as we shall see below. Because of the possibility of having 
two triangles, this case is called the Ambiguous case.

To discuss the existence and uniqueness of the solution we shall procced geometri-
cally first.

We construct angle A and cut of AC = b. This fixes the vertex C. with C as centre 
and ‘a’ as radius we draw an arc in order to locate (if possible)B.

For the sake of convenience let us consider the cases A < 90°, A > 90° separately.
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Case 1: A < 90°
Several possibilities arise:
 1. In a < p (where p = b sin A is the length of the perpendiculars from C on AX), then 

the arc does not cut AX and no triangle is possible.
 2. If a = p, then arc touches AX. Therefore, one triangle is possible and it is right 

angled.
C

A

b

X

a

 3. If a > p, then the arc cut AX at two points; both these point lie to the right of A if a 
< b; one of them lies to the right of A and the other coincides with A if a = b; and 
one of them lies to the right of A and the other to the left of A if a > b. Thus two 
triangles are possible if a < b and only one triangle is possible if a ≥ b, because 
of the possibility of two triangles, the case b sin A < a < b, A acute is called the 
ambiguous case.

C

A

b

X

a

  

C

A

aa
b

C

A

aa

B1B2B1 B1
  

C

A

aa
b

C

A

aa

B1B2B1 B1

Case 2: A > 90°:
The following possibilities arise:

 1. If a ≤ b, the arc does not cut AX at any point to the right of A and no triangle is 
possible.

C

A

b

X

a

B1B2

C

A

b
X

a

 2. If a > b, then the arc cuts AX at two points, only one of which lies to the right of 
A and therefore, only one triangle is possible. This completes the discussion.

Let us discuss above construction algebraically also
To discuss the case, when a, b, A are given Algebraically, we shall use the sine formula. 
For the sake of convenience we shall discuss the case A < 90°, and A > 90° separately.

Case 1: A < 90°:
The following possibilities arise:
 1. If a < b sin A, then form the formula  

  
a

A

b

Bsin sin
=  (1)

  sin B > 1 and consequently no solution is possible.

a
p

C

A

b

X

b

C

A

a

X

a

B1 B2

Geometry Theory Part-3.indd   170 8/11/2017   2:49:23 PM



Geometry  8.171

 2. If a = b sin A, then form (1), sin B = 1, so that B = 90°. Therefore, there is one 
solution and the triangle is right angled.

 3. If a > b sin A, then (1) gives two values of B, one of which is acute and the other obtuse.
  If a ≥ b, then A ≥ B, so that only the acute value of B is permissible and conse-

quently there is only one solution.
  If a < b then A < B, so that both the values of B are possible and consequently 

there may be two solutions.

Case 2: A > 90°:
The following possibilities arise:

 1. If a ≤ b, then A ≤ B, so that B must also been obtuse angle which is not possible. 
Hence no solution is possible.

 2. If a > b, then only the acute value of B is permissible and therefore, only one 
triangle is possible.

  Having determined B (wherever there exists a permissible value of B), we deter-
mine C by the formula C = 180° − (A + B). The remaining side c is then found as 
in the SAS case. In the ambiguous case the values of C and c corresponding to the 
values of B have to be found separately.

Remark: We can discuss the ambiguous case by using the cosine formula also.
If a, b, A are given, then the cosine formula for a gives

a2 = b2 + c2 − 2 bc cos A
c2 − 2 bc cos A + b2 − a2 = 0 (1)
Solving Eq. (1) as a quadratic in c, we have

c
b A b A b a

=
± − −2 4 4

2

2 2 2 2cos cos ( )

    = b cos A ± a b A2 2 2− sin  (2)
Since c is the length of a side of a triangle, therefore, it must be positive. We have 

therefore to determine as to how many of the values of c given by Eq. (2) are positive 
for any given set of values of a, b and A.

Two different possibilities arise:
 1. A < 90°; If A < 90°, cos A is positive.
  Three sub-cases arise:
    (i)  If a < b sin A, then a2 < b2 sin2A, so that a2 − b2sin2A < 0. The two values of 

c are imaginary and no triangle is possible.
   (ii)  If a = b sin A, then a2 = b2 sin2A, so that a2 − b2 sin2A = 0. There is only one 

value of c (= b cos A) from Eq. (2) which is positive. Therefore, only one 
triangle is possible.

  (iii)  If a > b sin A, then a2 > b2 sin2A, so that a2 − b2 sin2 A > 0. In this case Eq. 
(2) gives two real and distinct values of c. One of these values, namely

b A a b Acos ( sin )+ −2 2 2

  is surely positive; the other value

b A a b Acos ( sin )− −2 2 2

  is positive if b cos A > ( sin )a b A2 2 2−

  ⇒ > −b A a b A2 2 2 2 2cos sin

  ⇒ b2 > a2

  ⇒ b > a.
  Therefore two triangles are possible if b > a and only one triangle is possible if b ≤ a.
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 2. A > 90°: If A > 90°, cos A is negative so that b cos A is negative

  The value of b A a b Acos ( sin )− −2 2 2 is surely negative 

  The value of b A a b Acos ( sin )+ −2 2 2  is positive if

  ( sin ) cosa b A b A2 2 2− > −

  a2 − b2 sin2 A > b2 cos2 A,
  i.e., if a2 > b2

  i.e., if a > b
  Thus we find that when A > 90°, no triangle is possible a ≤ b and only one triangle 

is possible when a > b.

8.14.1 Summary of the Various Possibilities

 1. A < 90°
    (i) a < b sin A No triangle
   (ii) a = b sin A One triangle
  (iii) a > b sin A Two triangles if a < b; one triangle if a ≥ b
 2. A > 90°
   (i) a ≤ b No triangle
  (ii) a >b One triangle.

Example 159 Construct a triangle whose median lengths are given as ma, mb, mc.

Solution: Construct a DADE whose side are of length ma, mb, mc. Draw median AF 
and EH of this triangle, meeting each other at G. Produce AF to B so that GF = FB.

Join BD and produce it to C, so that DC = BD, Join AC.
DABC is the desired triangle.
We shall show that medians of DABC are of lengths equal to the sides of DADE.
Join GC to meet AD in O, Join BO and produce it to meet AC in L
Since BD = DC, by construction, therefore AD is a median of DABC.
Since G is the centroid of triangle AED.
Therefore, AG = 2GF = GF + FB = GB
So that G is the mid-point of AB. Consequently CG is the median of DABC. Also 

since O is the point of intersection of the medians AD and CG, therefore it is the cen-
troid of DABC, and consequently BL is also a median of DABC. 

Since GB and ED bisect each other at F, therefore, E, B, D, G are the vertices of a 
parallelogram. Since G and D are mid-points of AB, BC respectively, therefore GD | | 
AC and GD = (1/2)AC = AL. Now EB | | GD, and EB = GD, and GD | | AC, GD = AL, 
therefore, EB | | AL and EB = AL. Therefore E, B, L, A are the vertices of a parallelo-
gram. Consequently BL = EA.

Since EG | | DC and EG = DC, therefore E, D, C, G are the vertices of a parallelo-
gram. Consequently CG = DE. Since the medians AD, BL, CG of DABC are respec-
tively equal to the sides AD, AE, ED of DADE, the proof is complete.

Example 160 Given the lengths ma, mb of two medians and the length ha of a altitude, 
show how to construct the triangle.

Solution: Construct a right angled DALD such that AL = ha, AD = ma, and ∠ALD = 90°
Produce AD to H so that DH = 1/3 AD. With H as centre draw an arc equal to 2/3 mb 

cutting DL produced in C. With D as centre and DC as radius draw an arc cutting CD 
produced in B. Join AB, AC. Then ABC is the desired triangle.

A L

H
G D

O

F

E B

C

A

G
R

B D

H

C
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Proof: It is obvious that altitude AL = ha. Also since D is the mid-point of BC, there-
fore AD is a median. If G be the centroid, then GD = DH, and BD = DC. Therefore B, 
H, C, G are the vertices of parallelogram.

Therefore CH = BG. But CH = 
2

3
 mb. Therefore BG = 

2

3
 mb, showing that the 

length of the median from B is mb.

Example 161 Given the altitude ha, hb, hc of a triangle. Show how to construct the 
triangle.

Solution: If a, b, c be the lengths of the sides of the triangle, D be the area of the tri-
angle then 

aha = bhb = chc = 2D

showing that, a, b, c are proportional to 
1 1 1

h h ha b c

, ,  respectively.

By the construction for third proportional, we can construct 
1 1 1

h h ha b c

, , .

The DA′B′C′ having these lengths as sides will be equiangular to the desired 
triangle(ABC, say)

′ ′ = ′ ′ = ′ ′ =B C
h

C A
h

A B
ha b c

1 1 1
,

Draw two parallel lines XY and PQ distant ha from each other
Take a point A in XY and draw 
∠XAB = ∠A′B′C′. ∠YAC = ∠A′C′B′.
DABC is the desired triangle.

Example 162 Explain the construction of the DABC, with necessary proof, when its 
altitudes AD and BE and the median AM are given [RMO, 1993]

Solution:
Step 1: Construct a right angled triangle ADM, having its hypotenuse equal to the 
median AM and one of the sides equal to the altitude AD, a convenient way of doing 
this is to draw a line AM equal to the given median and then draw a semicircle having 
AM as a diameter, with A as centre and radius AD, draw an arc cutting the semicircle 
at D. Join AD.

Step 2: With M as centre and radius 1/2 BE draw an arc cutting the semicircle at H.

Step 3: Join AH and produce it to meet MD produced at C.

Step 4: With M as centre and radius equal to MC draw an arc meeting CM produced 
at B.
DABC is the desired triangle.

Justification: Since MB = MC(by construction), therefore M is the mid-point of BC. 
Therefore AM is a median. Also AD is an altitude by construction)

It only remains to be seen that the perpendicular from B to AC is equal to 2MH. This 
is an immediate consequence of the fact that in right angled DBEC, M is the mid-point 
of BC and MH | | BE(∠BEC and MHC both are right angles). Therefore

MH = 
1

2
 BE

BE = 2MH.

B C

A

BP C Q

YAX

A

E

B M D C
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Build-up Your Understanding 19

 1. Copy a segment. In other words, mark off a segment that exactly matches the 
length of a given segment on a different straight line.

 2. Copy an angle. Given an angle, make another angle of exactly the same size 
somewhere else.

 3. Bisect a segment.
 4. Bisect an angle. Given an angle, find a line through the vertex that divides it in half.
 5. Construct a line perpendicular to a given line through a point on the given line.
 6. Construct a line perpendicular to a given line and passing through a point not on 

the given line.
 7. Given a line L and a point P not on L, construct a new line that passes through P 

and is parallel to L.
 8. Construct an angle whose size is the sum or difference of two given angles. 
 9. Given three segments, construct a triangle whose sides have the same lengths as 

the segments.
 10. Construct the perpendicular bisector of a line segment. 
 11. Given three points, construct the circle that passes through all of them. 
 12. Given a circle, find its centre. 
 13. Given a triangle T, construct the inscribed and circumscribed circles. The in-

scribed circle is a circle that fits inside the triangle and touches all three edges; 
the circumscribed circle is outside the triangle except that it touches all three of 
the vertices of the triangle. 

 14. Construct angles of 90°, 45°, 30°, 60°, 72°.
 15. Construct a regular pentagon. (A regular pentagon is a five sided figure all of 

whose sides and angles are equal.)
 16. Given a point P on a circle C, construct a line through P and tangent to C.
 17. Given a circle C and a point P not on C, construct a line through P and tangent to C.
 18. Given two circles C1 and C2, find lines internally and externally tangent to both.
 19. Given segments of lengths A and B, construct a segment of length A + B or A − B. 
 20. Given segments of lengths A, B, and 1, construct a segment of length AB. 
 21. Given segments of lengths A and 1, construct a segment of length 1/A. Also con-

struct B/A length where segment of length B is provided. 
 22. Given segments of lengths A and B, construct a segment whose length is AB .  

Also draw A  where segments of length l is given.
 23. Given a rectangle, construct a square with exactly the same area.
 25. Given a semicircle centreed at a point C with diameter AB, find points I and J on AB, 

and points H and G on the semicircle such that the quadrilateral GHIJ is a square.
 26. Given a quadrant of a circle (two radii that make an angle of 90° and the included 

arc), construct a new circle that is inscribed in the quadrant (in other words, the 
new circle is tangent to both rays and to the quarter arc of the quadrant).

 27. Given a point A, a line L that does not pass through A, and a point B on L, con-
struct a circle passing through A that is tangent to L at the point B.

 28. Given two points A and B that both lie on the same side of a line L, find a point C 
on L such that AC and BC make the same angle with L.

 29. Given two non-parallel lines L1 and L2 and a radius r, construct a circle of radius 
r that is tangent to both L1 and L2. 

 30. (i) Construct an angle of 22
1

2
° ⋅ using a ruler and compass only.

  (ii) Use this construction to solve the following problem:
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  If v u=
°

=
°

1

22
1

2

1

22
1

2
tan sin

 and  then, v satisfies a quartic equation and u 

satisfies a quadratic equation with rational coefficients.
 31. (a) Construct a regular hexagon, inscribed in a circle.
  (b) Use this construction to draw two other circles to cut each other orthogonally.
  (c) Justify your construction.
 32. Construct a right angled triangle, with hypotenuse ‘c’ such that, the median drawn 

to the hypotenuse, is the GM of the two legs of the triangle. Justify.
 33. Given an angle ∠QBP and a point L, outside the angle ∠QBP. Draw a straight 

line through L, meeting BQ in A and BP in C, such that, DABC has a given perim-
eter. Justify your construction.

 34. Given the vertex A, the orthocentre H and the centroid G, construct the triangle. 
Justify your construction.

 35. Using a ruler and compass only, show how to bisect a triangle, by a straight line, 
perpendicular to the base, Justify your construction.

 36. Given a triangle ABC, explain how you will find
    (i) Points P, Q, R on the sides AB, BC, CA, such that APQR is a rhombus
   (ii)  Show that the area of this rhombus cannot exceed one half of the area of DABC.
  (iii) When does the equality hold?
 37. Given are three parallel lines. You need to construct an equilateral triangle with 

each parallel line containing one of the vertices of the triangle.
 38. Given any two rectangles anywhere in a plane, how can you draw a single line 

which will separate each rectangular region into two regions of equal area?
 39. Describe the method (with proof) of constructing the triangle when two of its 

sides are given along with the median to the third side.
 40. Describe the method (with proof) of constructing the triangle ABC, given the side 

BC and the medians BE and CF.
 41. Using only compasses construct segment 2, 3, 4, … and in general n times as 

great as a given segment AA1 (n is any natural number).

Solved Problems

Problem 1 In a D ABC, ∠A = 2∠B, if and only if, a2 = . b(b + c). [INMO, 1992]

Solution: It is given that
∠A = 2∠B

Let, ∠B = x.
Then, ∠ A = 2x
Produce CA to D, such that 
AD = AB
∴ ∠ABD = ∠ADB and ∠ABD + ∠ADB = ∠BAC = 2x 
∴ ∠ABD = ∠ADB = x.
DABC ∼ DBDC (AAA similarity)

BC

DC

AC

BC
=

i.e.,    
a

b c

b

a
b b c a

+
= ⇒ + =( ) 2

B
Y ′

X ′
A

YCX

l1

l2B1

l3

D

x

x
x

2x
b

aB C

A

c

c
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Converse: Given a2 = b (b + c)

To prove that: ∠ A = 2∠ B
Proof: We have the same construction as before and hence, use the same figure.

Now,    ∠ = ∠ = ∠ABD ADB BAC
1

2
 

Note: Here, we need to prove ∠BAC = 2∠ABC. We cannot take it for granted
In D ACB and D BCD,
since    a2 = b(b + c)

We have 
a

b c

b

a+
=

⇒     CB

CD

AC

BC
=

and ∠C is common
So, DBCD ∼ DACB
∠CBA = ∠CDB = ∠B (1)
And also, ∠ADB = ∠ABD
(since, AB = AD)
But, ∠BAC = sum of the exterior angles
= ∠ADB + ∠ABD (2)
= 2∠ADB = 2∠CDB
= 2∠CBA = 2∠B
which was to be proved.

Aliter 1: Draw AD, the bisector of ∠A, so that ∠BAD = ∠DAC = ∠B, as ∠A = 2∠B.
Now ∠ADC = 2∠B (Exterior angle)

Also,

∆ ∆

∴ = =

ABC DAC

AC

CD

AB

AD

BC

AC

~ ( )AAA

Thus, 
BC

AC

a

b

AB AC

AD CD

b c

BD CD
= =

+
+

=
+
+

 (as AD = BD, isosceles triangle)

i.e., 
a

b

b c

a
=

+

Thus, a b b c2 = +( ).

Converse: If a b b c A B2 2= + ∠ = ∠( ), . then 

(ii) Now, 

a b bc a b bc

R A R B R B R C

2 2 2 2

2 22 2 2 2

= + ⇒ − =

∴ − =

⇒

( sin ) ( sin ) ( sin )( sin )

sin22 2A B B C

i e A B A B B C

i e

− =
+ ⋅ − =
sin sin sin

. ., sin ( ) sin ( ) sin sin

. ., si

 

 nn ( ) sin [ sin ( ) sin ]

( , ,

A B B A B C

A B B A B C

− = + =
− =

as

Thus, as  are acutee)

.∴∠ = ∠A B2

A

B

B CD
a

B 2B

C b
B
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Aliter 2:
Given ∠A = 2∠B, prove a b b c2 = +( ).

A B A B B A B B

A B A B B A B

= ⇒ − = ⇒ − =
⇒ − ⋅ + = ⋅ +

⇒

2 sin ( ) sin

sin ( ) sin( ) sin sin ( )

siin sin sin sin

( sin ) ( sin ) ( sin )( sin )

2 2

2 22 2 2 2

A B B C

R A R B R B R C

− =

⇒ − =

⇒ aa b bc a b b c2 2 2− = ⇒ = +( ).

Aliter 3:

Given: In a D ABC, ∠ = ∠ =A B2 2α

To prove: a b b c2 = +( )

Proof: Using sine rule in D ABC, we get 
a b

sin sin2α α
= ⇒ =a b2 cosα  (1)

And by  using cosine rule in D ABC, we get  cos cosB
a c b

ac
= =

+ −
α

2 2 2

2

⇒ =
+ −a

b

a c b

ac2 2

2 2 2

 (from Eq. (1))

⇒ = + −a c a b c b b2 2 2 3 ⇒ − = − +a c b b c b c b2 ( ) ( )( )

⇒ = +a b b c2 ( )  ( )for c b≠ ⋅

In case of b c= ,  we will have α π α α
π

α
π

= − ⇒ = ⇒∠ = =3
4

2
2

A

⇒ = + = + = +a b c b bc b b c2 2 2 2 ( )

⇒ = +a b b c2 ( )

Hence proved.

Problem 2 Suppose, ABCD is a cyclic quadrilateral. The diagonals AC and BD inter-
sect at P. Let, O be the circumcentre of D APB and H, the orthocentre of DCPD. Show 
that O, P, H are collinear.

Solution: Given, ABCD is a cyclic quadrilateral.

‘O’ is the circumcentre of D APB.
To explain, if M is the mid-point of PB, then OM is perpendicular to PB in the in 

Fig. 3.12, H is the orthocentre of DCPD.
Let, OP produced meet DC in L.

To prove: O, P and H, are collinear.
To prove that H lies on OP or OP produced.
Or, in other words, OP produced is perpendicular to DC.

Proof: Since quadrilateral ABCD is cyclic,
∠CDB = ∠CAB = ∠PAB = ∠

1

2
POB (Since, O is the circumcentre of D PAB) = 

∠POM (= ∠BOM ) as OM is the perpendicular bisector of PB.
In D LDP and MOP,
∠LDP = ∠POM
∠DPL = ∠OPM (Vertically opp. Z s)
∴ ∠PLD = ∠PMO = 90° and hence the result.

 A

B Ca

bc

α

α

α

2

°180 3−

B
O

A

D
L

C

M
H

P

Geometry Theory Part-3.indd   177 8/11/2017   2:49:30 PM



8.178  Chapter 8

Aliter:
Join OP and produce it to meet CD at Q. If O, P, H are collinear, we need to prove 

that H lies on the line OP (produced).
⇒ PQ is an altitude in DPCD as H is the orthocentre of DPCD.
Let, ∠PDC = 90°; this shows that ∠BAC = x, so that ∠BOP = 2x (angle at the 

centre).

∴∠ = ∠ =
−

= −

∠ = −

OBP OPB
x

x

QPD x

180 2

2
90

90Thus, (Vertical opposite anngle)

Now, 

 is the

∠ = − ∠ +∠ = − − + = °
∴

PQD QPD PDQ x x

PQ

180 180 90 90( ) ( )

  altitude  are collinear.⇒ O P H, ,

Problem 3 In a D ABC, AB = AC. A circle is internally drawn touching the circum-
circle of D ABC, and also touching the sides AB and AC at P and Q, respectively. Prove 
that the mid-point of PQ is the incentre of D ABC.

Solution:
Let, ∠ ABC = ∠ ACB = β °.
AT is the angle bisector of ∠A. I is the mid-point of PQ. Now, AP = AQ as the smaller 
circle touches AB and AC at P and Q, respectively. The centre of the circle PQT lies 
on the angle bisector of ∠ A, namely, AT, since PQ is the chord of contact of the circle 
PQT. PQ ⊥ AT and the mid-point I of PQ lies on AT.

Now, to prove that I is the incentre of D ABC, it is enough to prove that BI is the 
angle bisector of ∠B and CI is the angle bisector of ∠C, respectively. By symmetry, 
∠PTI = ∠QTI = α

Now, ∠ ABT − 90° (∵ AT is diameter of �ABC )
∴ ∠PBT = 90°
Also, ∠PIT = 90°
∴ PBTI is cyclic.
 ∴ ∠PBI = ∠PTI = α (Angle in the same segment)
 ∠IBD = ∠ABD − ∠ABI = β − α
 ∠TBC = ∠TAC = 90° − β
 ∴ ∠IBT = ∠IBD + ∠DBT
 = β − α + 90° − β = 90° − α
Since, PBTI is cyclic,
 ∠IPT = ∠IBT = 90° − α (1)
 ∠BPT = 180° − ∠TPA = 180° − ∠API − ∠IPT
 = 180° − β − 90° + α
 = 90° + α − β (2)
But, APT is a tangent to circle PQT.
∴ ∠BPT = ∠PQT − ∠IQT
From Eqs. (1) and (2), we get
90° + α − β = 90° − α
2α = β
∴ ∠IBD = β − ∠PBI = 2α − α = α
∴ ∠IBD = ∠PBI
∴ BI is the angle bisector of ∠B.
Hence, the result.

DB

A

C

P

Q

O

x

2x

x90 – x
90 – x

A

O

P Q

D
B C

T

S

I
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Aliter:
Two circles touches internally then the line joining their centres passes through the 
point of contact.

AE is a diameter of a circle and since AB = AC

∴ AE bisects ∠A

∴ AE is a perpendicular bisector of BC

i.e., BC ⊥ AD

Also AP = AQ [as length of the tangents drawn from an external point to the circle 
are equal]

Also AB = AC

∴ 
AP

AB

AQ

AC
PQ BC= ⇒ �

Since AE ⊥ BC

⇒ AE ⊥ PQ at H

H is a mid-point of PQ as AE lies along the diameter of smaller circle as well.

In DPHE and DQHE

PH = QH

∠PHE = ∠QHE = 90°

HE = HE

∴ By SAS congruence, ∆PHE ≅  ∆QHE

⇒ ∠PEH = ∠QEH = θ
Since ∠APQ = ∠PEQ = ∠AQP = 2θ
Since PQ || BC

∴ ∠ABC = ∠ACB = ∠APQ = 2θ
Since AE is a diameters, ∠ABC = 90°

Also ∠PHE = 90°

∴ PBEH is a cyclic quadrilateral

∴ ∠PEH = ∠PBH = θ
∴ ∠HBC = 2θ − θ = θ
HB bisects ∠PBC and HA bisects ∠BAC

∴ H is the incentre of ∆ABC and H is the mid-point of PQ.

Problem 4 Prove that if the two angle bisectors of a triangle are equal, then the tri-
angle is isosceles. (This theorem is known as Steiner Lehmus Problem)

Solution: ABC is a triangle with AD and BE the bisectors of ∠A and ∠B, respectively. 
They intersect at K. Given, AD = BE.

Draw ∠BEF and ∠EBF equal to ∠BAD and ∠ADB, respectively. Draw AH and FG 
perpendicular to AC and FB (produced if necessary).

 (i) D ADB ≡ D EBF (ASA)

  AB = EF (∵ AD = BE, ∠DAB = ∠FEB, 

  DB = BF ∠ADB = ∠EBF )

A

P Q

D
B C

T

H

Jakob Steiner

18 Mar 1796–1 Apr 1863
Nationality: Swiss

Problem was proposed by 
Daniel Christian Ludolph 
Lehmus (Jul 3 1780–Jan 18 
1863) a German mathemati-
cian and it was solved by 
Steiner.
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 (ii) ∠AEF = ∠AEK + ∠KEF = ∠AEK + ∠EAK

  = ∠AKB

  = ∠KDB + ∠KBD

  = ∠EBF + ∠EBA

  = ∠ABF = ∠FEG = ∠ABH

 (iii) D ABH ≡ A FEG (By steps (i), (ii) and construction and AAS)

  ∴ AH = FG

  BH = EG

 (iv) D AFG ≡ D FAH (Hypotenuse and length)

  ∴ AG = FH

 (v) AE = AG − GE

  = FH − HB

  = FB

  = FD (by step (i))

 (vi) D ABE = D BAD (SSS) 

  ∴ ∠EAB = ∠DBA

  ⇒ ∠A = ∠B  ⇒ CB = CA.

Aliter:
Let ABC be a triangle, in which, angle bisectors of B and C are equal, i.e., BE = CF.

Then  from 

and 

CF

B

BC

BFC

a

B
C

BFC

BE

C

BC

sin sin
sin

sin

= =
+








∆

=

2

ssin
sin

BEC

a

C
B

BEC=
+








∆

2

 from 

As CF = BE,

sin

sin

sin

sin

sin

sin

sin

B
C

B

C
B

C

B

C

B
C

+






=

+







=
+






2 2

2
or 



+







=
⋅ +








⋅

sin

cos

cos

sin sin

sin s

C
B

B

C

C
B

C

B

2

2

2

2
2 2

2
2

or 

iin

sin sin )

. .,
cos

cos

cos c

C
B

B C

i e

B

C
B

+







=
−

2

2

2

(Expand  and 

 
oos( )

cos cos( )

cos cos

cos cos

B C

C B C

B A

C A

+
− +

=
+
+

A

B C

F E

I

×
×

G
C

D

E K

F

B

HA

90°

90°
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i e

B C

C
B C

C A

B C

. .,
cos cos

cos

cos cos

cos cos

cos cos
 2 2

2

2
2

1 22 2−
=

−
+

=
− −

22
1

2 2

2

2
2 2

−

+

−
=

−







cos cos

. .,
cos cos

cos

cos cos cos

C A

i e

B C

C

B C B

 
22 2

2 2
0

+







+

− = = ∠ ⋅

cos

cos cos

. ., cos cos

cos

C

C A

i e
B C

B C

B

 or

or, 

∠

22 2
0

2 2 2
+ =cos , ,

C A B C
, which is impossible as 

are all acute annd hence positive.

This proves the claim.

Problem 5 Let, r be the radius of the inscribed circle of a right-angled D ABC. Show 
that r is less than half of either leg and less than one fourth of the hypotense.

Solution: Draw the diameters through the points of contact of circle with the sides of 
the triangle.

GG′ < CD < AC 

where CD is the altitude of the right DABC, with ∠C = 90°.

⇒ 2r < AC

⇒ r
AC

<
2

Again, GG′ < CD < CB

⇒ 2r < CB

⇒ r
CB

<
2

Now, CD is less than half of a chord of the circumcircle of the right D ACB (∠C = 90°).

∴ ⋅ ≤CD
AB

2

⇒ GG CD
AB′ < ≤
2

or 2
2 4

r
AB

i e r
AB

< <. ., .

Problem 6 Let C1, be any point on side AB of a D ABC. Draw C1C meeting AB at C1. 
The lines through A and B parallel to CC1 meet BC produced and AC produced at A1 
and B1, respectively. Prove that

1 1 1

1 1 1AA BB CC
+ =

C

F

A BDG
E′

E

F ′

G′
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Solution: AA1, BB1 and CC1 are parallel line segments and hence,

 CC

A A

C B

AB
1

1

1=  (1)

Also   CC

B B

AC

AB
1

1

1=  (2)

Adding Eqs. (1) and (2), we have

 
CC

A A

CC

B B

C B AC

AB

AB

AB
1

1

1

1

1 1 1+ =
+

= =  (3)

Dividing Eq. (3) by CC1, we get 

1 1 1

1 1 1A A B B CC
+ =

Note: That ABB1A1 is a trapezium and C1C2 is the harmonic mean of the parallel sides 
AA1BB1, and C1C2 is parallel to the parallel sides.

Problem 7 Prove that the diagonals of a (convex) quadrilateral are perpendicular, if 
and only if the sum of the squares of one pair of opposite sides equals that of the other.

Solution: Let a, b, c and d be the measures of the sides AB, BC, CD, and DA of the 
quadrilateral. The diagonals intersect at O. Let OA = p, OB = r, OC = q and OD = s.

If AC is not perpendicular to BD, let ∠AOB be obtuse.
Then, by the extension of the Pythagoras theorem,

a2 > p2 + r2; b2 < r2 + q2

c2 > s2 + q2; d 2 < p2 + s2

a2 + c2 > p2 + r2 + s2 + q2 > b2 + d 2

Thus, a2 + c2 > b2 + d 2

which is a contradiction as it is given that a2 + c2 = b2 + d2 and ∠AOB  90°
If AC is perpendicular to BD, then

 a2 = p2 + r2

 c2 = s2 + q2

 a2 + c2 = p2 + q2 + r2 + s2 = (p2 + s2) + (q2 + r2)

 = d 2 + b2.

Problem 8 Let A and B be the points on a circle k. Suppose that an arc k′ of another 
circle l connects A with B and divides the area inside the circle k into two equal parts. 
Prove that arc k′ is longer than the diameter of k.

Solution: As arc k′ bisects the area of the circle k, so k′ cannot entirely lie on one side 
of any diameter of circle k.

Hence, every diameter of k intersects k′. Let, AC be one such diameter and k′ inter-
sects AC at D, Now the centre O of the circle k lies inside the circle l, hence the radius 
AO of circle k lies inside l and now, D lies on the radius OC.

Length or arc ADB > AD + DB.
As we have to prove that arc ADB > AC = AD + DC, we should show that DB > DC.

C2

C1

B1

A1

A B

C

D C

O

p

qs

r

BA a

bd

c

A

C

BO

l

D

k″

k ′

k
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Now the circle k″ with centre D and radius DC is a circle touching k, internally, and B 
lies outside this circle k″, so the radius of k″ is less than DB, i.e., DC < DB or DB > DC.

⇒ arc ADB > AD + DB > AD + DC = AC

⇒ arc ADB > the diameter of k.

Note: O lies inside circle k′ as every diameter of k meets the circle k ′ (i.e., arc AB) as 
k ′ bisects area in k.

Problem 9 ABC is a triangle, the bisector of ∠A, meets BC in D. Show that AD is less 
than the geometric mean of AB and AC.

Solution: Draw the circumcircle of DABC and let the bisector AD of ∠A meet the 
circumcircle again at E.

DABD is similar to DAEC (AA similarity)

∴ 
AD

AC

AB

AE
=

⇒ AB × AC = AD . AE > AD2 ( ∴ AE > AD)

⇒ AD AB AC< × which was to be proved.

Problem 10 Two given circles intersect in two points P and Q. Show that how to con-
struct a segment AB passing through P and terminating on the two circles such that 
AP ⋅ PB is a maximum.

Solution: Let, C1, C2 be two circles. We first show that if APB is a straight line such 
that there is a circle C touching C1 at A and C2 at B, then AB is the segment giving the 
required maximum.
Let, A′P and PB′ be any other chords so that A′PB′ may be collinear and the extension 
of these chords meet the circle C at C and D.

CP . PD = AP . PB > A′P × PB′

∴ AP . PB is maximum.
Now, we need to construct a chord APB. For this, we need to construct a circle C 

touching C1 and C2 at points A and B so that APB are collinear. Let us find the proper-
ties of the points A and B.

Let, O be the centre of circle C and O1, and O2 be the centre of circles C1, and C2. 
Now, C and C1 touches at A.

∴ AO1O are collinear. Similarly, BO2O are collinear. Let, AT, BS be the common 
tangents to circles C and C1, and C and C2 respectively.

Let, ∠PAT = x and ∠PBS = y since AT is tangent to circle C.

∠ = = ∠PAT x AOB
1

2
 (Angle in the alternate segment theorem)

Since, BS is tangent to circle C.

∠ = = ∠PBS y AOB
1

2

∴ x = y. Since, AT is tangent to circle C1, we get

∠ = = ∠PAT x AO P
1

2
1

A

B C

E

D

r

r

C

A

C1

C2 C
Q

B
DP B′

A′

T

P
x y

A B

O1

C1

C

C2

O2

O

S
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Similarly, since BS is tangent to circle C2, we get

∠ = = ∠PBS y BO P
1

2
2

∴ ∠AO1P = ∠AOB = ∠BO2P

∴  DAO1P ∼ DPO2B

∴ 
AP

PB

AO

PO

r

r
= =1

2

1

2

.

Therefore, the line segment AB must be such that P divides AB internally in the 
ratio r1: r2. Further, PO2 || OO1 and PO1 || OO2.

So, join PO1 and PO2. Through O1 draw a line parallel to PO2 to meet circle C1 in 
A. Through O2 draw a line parallel to PO1 to meet the circle C2 in B. Now, these two 
parallel lines drawn meet at O. If we draw a circle with O as centre and radius OA = 
OB, then the circle touches C1 at A and C2 at B. By retracing the arguments, we can 
prove that APB is collinear and AB is the required chord.

S1

C1

O1r1

l r2

O2

P1 P2

Q1

Q2

C2

Note: In the previous problem, the line AB and O1O2 meets in a point S1. Point S1 

divides O1O2 externally in the ratio r1: r2. The point S1 is called the external centre of 
similitude of circles C1 and C2. If we draw a line l through S1 meeting C1 in P1, Q1, and 
C2 in P2, Q2, then O1P1 || O2P2 and O1Q1 || O2Q2.

Moreover, the direct common tangents to the two circles C1 and C2 meet at Sr.

Problem 11 In a trapezium ABCD, AB || CD, m∠D = 2m∠B. If AD = a, CD = b, and 
the distance between AB and CD is h, give an expression for the area of the  trapezium.

Solution: Let the bisector of ∠D meet AB at E. Since,
CD || AB, ∠EDC = ∠DEA (Alternate interior angles) (1)
As ∠D = 2∠B

⇒ ∠ = ∠ = ∠DEA ADC B
1

2
 (2)

⇒ DE || BC (Corresponding angles are equal)
Hence, EBCD is a parallelogram and hence, EB = b units.
By Eq. (1), in DADE, ∠D = ∠E = θ and hence,
 AE = AD = a
So, AB = AE + EB = (a + b) units

So, the area of the trapezium is = +
1

2
2h a b( ) sq.units

= +
1

2
2h a b( ) sq.units.

A

a

E

h

b

B

CD

θ
θ

θ θ
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Problem 12 Let, M be the mid-point of the side AB of DABC. Let, P be a point on AB 
between A and M and let MD be drawn parallel to PC, intersecting BC at D. If the 
ratio of the area of DBPD to that of DABC is denoted by r, then examine which of the 
following is true?

 (i) 
1

2
1< <r  depending upon the position of P.

 (ii) r =
1

2

 (iii) 1

3

2

3
< <r  depending upon the position of P.

Solution: Join PD and MC and let them intersect at E.
Area of DBPD = Area of DBMD + Area of DMDP
= Area of DBMD + Area of DMDC
(DMDP = DMDC as both the triangles lie on the same base MD and between the 

same parallels PC and MD)
= Area of DCMB

=
1

2
Area of as  is the mid-point of ∆ABC M AB( )

Thus, 
Area of

Area of

Area of

Area of

∆
∆

∆

∆
BPD

ABC

ABC

ABC
= =

1

2 1

2

Thus, r =
1

2
 (independent of P)

Problem 13 Let O be an arbitrary point situated in the segment AB. Construct equi-
lateral D AOC and D BOD. Let, E be the point of intersection of AC and BD. Show that 
CODE is a parallelogram. When will it be a rhombus?

Solution: In the figure D AOC and D BOD being equilateral ∠COD = 180° − (∠COA 
+ ∠BOD) = 180° − (60° + 60°) = 60°.

The exterior ∠ODE of DOBD = 60° + 60° = 120°. Again, the exterior ∠OCE of 
DOCA = 60° + 60° = 120°.

Therefore, the remaining

∠CED = 360° − (120° + 120° + 60°) = 60°

In quadrilateral OCED, opposite angles are equal, implying that the opposite sides are 
parallel. Thus, it is a  parallelogram. In this parallelogram, if the adjacent sides OC = 
OD (i.e., all sides are equal), then it becomes a rhombus. For this, we should have AO 
= OC = OD = OB, i.e., AO = OB or O should be the mid-point of the segment AB (Also 
note that DAEB is also equilateral).

Problem 14 ABC is a triangle, ∠A = 30°, ∠B = 60° and AB = 10 cm. Find the length 
of the shorter trisector of ∠C.

Solution: In Fig. 3.33, CE and CD are the trisectors of ∠C. ∠CED = 90° and hence, 
CE < CD. (In DCED, CD is the hypotenuse.) Thus, it is required to find the length of 
CE.

AB = 10 cm, ∠B = 60°, ∠A = 30°

⇒ BC = 5 cm (and AC CM= 5 3 )

A P M

D

E

C

B

A O

D

E

C

B

A

B

C

D

E60°

30
°

30°
30° 30°
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Again, in DBCE,
∠CEB = 90°, BC = 5 cm, CE = 5 cos 30°

⇒ CE BE= =







5

2
3

5

2
cm

[CD can also be calculated from the right-angled DECD: ∠CED = 90°, ∠ECD = 30°,

CE =
5

2
3,  CD = 5 cm = DA. Thus, BE ED= =

5

2
cm.,  DA = 5 cm, CE =

5

2
3 cm,  

CD = 5 cm and clearly, 
5

2
3 5<  and the shorter trisector has a length of 

5

2
3 cm. ]

Problem 15 In DABC, in the usual notation, the area is 
1

2
bc sq.units. AD is the 

median to BC. Prove that ∠ = ∠ABC ADC
1

2
.

Solution: 

∆ = =
1

2

1

2
bc A bcsin

⇒ sin A = 1
⇒ ∠A = 90°.

Since AD is the median and ∠A = 90°, D, the mid-point of BC is the centre of the 
circumcircle of DABC.

So, AD = BD = DC

∠ = ∠ABC ADC
1

2

(Angle subtended by AC at the circumference =
1

2
 angle subtended by AC at the centre.)

Problem 16 Let, ABC be an acute angled triangle and CD be the altitude through C. If 
AB = 8 units and CD = 6 units, find the distance between the mid-points of AD and BC.

Solution: Let P, be the mid-point of AD and Q be the mid-point of BC.
Draw QR perpendicular to AB.
In DCDB and DQRB, CD and QR are both perpendicular to AB and hence, parallel.
Since, Q is the mid-point of CB, R is the mid-point of DB.
(by the basic proportionality theorem, DCDB = D QRB)

∴ QR CD= = × =
1

2

1

2
6 3units

∴ PR PD DR AD DB= + = + = × =
1

2

1

2
8 4( ) units

So, in the right-angled D PQR

PQ = + =4 3 52 2 .

Problem 17 ABCDE is a convex pentagon inscribed in a circle of radius 1 units with 
AE as diameter. It AB = a, BC = b, CD = c, DE = d, then prove that 
  a 2 + b 2 + c 2 + d 2 + abc + bcd < 4.

Solution: Since, AE is the diameter ∠ACE = 90° and AC2 + CE2 = AE2 = 22 = 4. By 
cosine formula (for DABC)

 AC2 = a2 + b2 − 2ab cos(180° − θ)

 = a2 + b2 + 2ab cos θ

B

c b

a
C

D

A

A B

Q

C

D

6

8
RP
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Similarly, in DCED
 CE2 = c2 + d2 − 2cd cos(90° + θ)
 = c2 + d2 + 2cd sin θ
∴ AC2 + CE2 = a2 + b2 + c2 + d2 2ab cosθ + 2cd sinθ

In ∆ACE
AC

AE
, sin= θ

⇒ AC = 2 sin θ > b  (AE = 2) (1)

and 
CE

AE
AE= =cos ( )θ 2

⇒ CE c= >2cosθ  (2)
(Because, in D ABC and D CDE, ∠B and ∠D are obtuse angles. Here, AC is the 

greatest side of DABC, and CE is the greatest side of DCDE)
AC2 + CE2 = a2 + b2 + c2 + d2 + 2ab cos θ + 2cd cos θ = 4 
⇒ a2 + b2 + c2 + d2 + ab ⋅ 2 cos θ + cd ⋅ 2 sin θ = 4 
⇒ a2 + b2 + c2 + d2 + abc + bcd < 4 (by Eqs. (1) and (2))

Problem 18 O is the circumcentre of DABC and M is the mid-point of the median 
through A. Join OM and produce it to N so that OM = MN. Show that N lies on the 
altitude through A.

Solution: Let AD be the median through A, and M be the mid-point of AD. Join OD.
Since, D is the mid-point of BC and O is the circumcentre, OD is perpendicular to 

BC.
In D DMO and D AMN,

DM = AM (M is the mid-point of AD)
OM = NM (Given)
∠DMO = ∠AMN (Vertically opposite angles)
So, the triangles are congruent.
∠MDO = ∠MAN (Corresponding angles of congruent triangles)
So, AN || OD (∠MDO and ∠MAN are alternate interior angles and are equal)
But, OD is perpendicular to BC and hence, AN produced is perpendicular to BC, 

i.e., N lies on the perpendicular through A to BC, i.e., N lies on the altitude through A).

Problem 19 Prove in D ABC, if one angle is equal to 120°, the triangle formed by the 
feet of the angle bisectors is right-angled.

Solution: Produce

BA X
� ���

to ;

∠CAX = 180° − 120° = 60°
Now, AC bisects ∠DAX.

So, in ⋅∆ABD BE,
� ���

 is

x

CB
D

A
XY

F E

60°

60° 60°

60°

x
y

y

90° − 

18
0° −

 90° + 
90°

O
A

a

b c

d

B D

C

E
 θ θ

 θ
 θ

O
M

XB

N

A

CD
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the internal bisector of ∠ABD and AE
� ���

 is the bisector of the exterior∠DAX of DBAD 
and so, E is the centre of excribed circle of DABD, opposite to the vertex B.

So, DE is the bisector of the exterior ∠ADC of DABD 

∠ADE = ∠CDE

Similarly, AB
� ���

 is the bisector of the external ∠DAY of DADC and CF
� ���

 is the internal 
bisector of ∠C. So, F is the centre of the excribed circle of DADC, opposite to vertex 
C.

So, DF is the bisector of the exterior ∠ADB of DADC 
So, ∠ADF = ∠FDB

∴ ∠ = + = + = × ° = °FDE x y x y
1

2
2 2

1

2
180 90( )

So, DFDE is a right-angled triangle at D.

Problem 20 A rhombus has half the area of the square with the same side length. Find 
the ratio of the longer diagonal to that of the shorter one.

Solution: If a is the side of the rhombus, then area of the rhombus is 
1

2
2 22a sin .θ ×

But, by hypothesis, this area is equal to 
1

2
2a ,

i.e., 1

2
22 2a a= sin θ

⇒ 2θ = 30° or 150°
⇒ θ = 15° or 75°.
[If the acute angle of the rhombus is 30°, the other angle which is obtuse is 150°.]

By sine formula, 
BD AB

sin sin( )2 90θ θ
=

−
 (In DABD)

⇒ BD
a

a=
×

=
2

2
sin cos

cos
sin

θ θ
θ

θ

Again, 
AC a

sin( ) sin180 2−
=

θ θ
 (In DABC)

AC : BD = cos θ : sin θ
[If θ = 15°, then AC > BD and if θ = 75°, BD > AC] 
AC : BD = cos 15° : sin 15° = cot 15°.

Problem 21 Two vertical poles 20 m and 80 m high stand apart on a horizontal plane. 
The height of the point of intersection of the lines joining the top of each pole to the 
foot of the other is in metres. Find a.

D ABF and D CDF are similar

Solution: ∠AFB = ∠DFC (Vertically opposite angles)
∠FAB = ∠FCD (Alternate interior angles)
by angle-angle similarity triangles are similar.

∴ 
AF

CF

AB

CD
= = =

80

20

4

1

⇒ AF

CF
=

4

1

90° − 

90° − 

90°

θ

θ

θθ

O

A B

D C

a

a

A

B

D

CE

a

F
80

20θ
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⇒ AF FC

FC

+
=

+
=

4 1

1

5

1
 

⇒ AC

FC
=

5

1

D ABC and D FEC are similar ( ∴ AB and FE are ||)
AB

FE

AC

FC
=

⇒ 80 5

1FE
=

or 5FE = 80

⇒ FE = 16

Thus, a = 16 metres.

Aliter: Using result of Problem 6, we get

1 1

20

1

80
16

a
a= + ⇒ = metres.

Problem 22 A ball of diameter 13 cm is floating so that the top of the ball is 4 cm 
above the smooth surface of the pond. What is the circumference in centimetres of the 
circle formed by the contact of the water surface with the ball.

Solution: We should find the circumference of the circle on AB as diameter.
CD = 4 cm

OC OB= = =
13

2
6 5. cm

So, OD = 6.5 cm − 4 cm = 2.5 cm

DB = − =( . ) ( . )6 5 2 5 62 2 cm

So, the circumference of the circle is 2π × 6 cm = 12π cm.

Problem 23 OPQ is a quadrant of a circle, and semicircles are drawn on OP and OQ. 
Show that the shaded areas a and b are equal.

Solution: Area of the quadrant = areas of the two semicircles + b − a [Since the sum 
of the areas of the two semicircles include the area shaded ‘a’ twice)

The area of quadrant =
1

4
2π r

i.e., 1

4

1

2 2

1

2 2
2

2 2

π π πr
r r

b a= 





 + 






 + −

⇒ 
1

4

1

4
2 2π πr r b a= + +

⇒ b − a = 0

⇒ a = b.

Problem 24 ABC is a right-angled triangle with ∠B = 90°. M is the mid-point of AC 
and BM = 117 cm.  The sum of the lengths of sides AB and BC is 30 cm. Find the 
area of the triangle.

A B

C

D

O 6.5 cm

4 cm

Q

O P

a

b
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Solution: M is the centre of the circum-circle of the right angled DABC and hence,

AM CM BM= = = 117 cm.

AC a c a c ac2 2 2 2 2= + = + −( )

= 900 − 2ac

But, AC = 2 117

( ∴ AC = 2AM = 2MC = 2BM)
So, AC2 = 4 × 117 = 900 − 2ac
⇒ 2ac = 900 − 4 × 117 = 900 − 468 = 432 sq. cm.

⇒ 
1

2

432

4
108 2ac = = cm

Problem 25 In a D ABC, the incircle touches the sides BC, CA and AB at D, E and F 
respectively. If the radius of the incircle is 4 units and, if BD, CE and AF are consecu-
tive integers, find the lengths of the sides of the triangle.

Solution: The inradius of the triangle is given by the  formula

r
s

=
∆

where D is the area of the triangle, s is the semi-perimeter.
Lets take BD, CE and AF are n − 1, n + 1, n,
so that the sides BC, CA and AB may be
2n, (2n + 1) and (2n − 1)

Area of the triangle = s s a s b s c( )( )( )− − −

         = − +3 1 1n n n n( )( )( )

And hence, 
∆
s

n n

n
=

−
=

3 1

3
4

2 2( )

⇒ 144n2 = 3n2(n2 − 1)
⇒ (n2 − 1) = 48
⇒ n = 7 (because −7 is not applicable.)
Therefore, the sides of the triangle are (2 × 7 − 1), (2 × 7) and (2 × 7 + 1) or 13 cm, 

14 cm, 15 cm or 15 cm, 14 cm and 13 cm

Problem 26 AD is the internal bisector of ∠A in DABC. Show that the line through 
D, drawn parallel to the tangent to the circumcircle at A, touches the inscribed circle.

Solution: Let, EF be the tangent to the circumcircle through A. AD is the bisector of 
∠A and DH is parallel to EF meeting AC at H.

Let the incircle touch the side BC at G.
∠ADH = 180° − ∠DAF

= °− −180
2

A
B

= +C
A

2
(Since, ∠HAF = ∠ABC, being angles in alternate  segments.)
If the incircle touches BC at G, then
∠ADG = ∠DAC + ∠ACD
 (Exterior angle = Sum of the remote interior angles)

A

B C

M

a

c

√117 cm

A

D

K
B C

G

I
H

E

F

B
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= +
A

C
2

i.e., ∠IDG = ∠IDH (1)
Let the tangents through D to the incircle meet it at G and K. Where G and K lies on 

the opposite sides of ID (Since, the incircle touches the side BC at G, here GD is one 
tangent from D, the other is DK).

So, ∠IDG = ∠IDK
But, ∠IDG = ∠IDH (from Eq. (1))
Therefore, ∠IDK = ∠IDH
But, both K and H are on the same side of ID and hence, K is a point of DH or DH 

is a tangent to the through D.

Problem 27 Given two concentric circles of radii R and r. From a point P on the 
smaller circle, a straight line is drawn to intersect the larger circle at B and C. The 
perpendicular to BC at P intersects the smaller circle at A. Show that

PA2 + PB2 + PC2 = 2(R2 + r2).

Solution: Let, BC meet the smaller circle at P and M.
Through P, draw PA perpendicular to BC meeting the smaller circle at A.
Since, ∠APM = 90°,
AM is the diameter of the smaller circle,
or, AM = 2r
Let OK be the perpendicular from O to BC.
OK = d units; BK = KC; PK = KM (1)
Now, PA2 + PB2 + PC2

 = PA2 (PC − PB)2 + 2PC ⋅ PB

 = PA2 + (PC − MC)2 + 2PC ⋅ PB (by Eq. (1))

 = PA2 + PM2 + 2PC ⋅ PB

 = AM2 + 2PC ⋅ PB 

 = 4r2 + 2PC ⋅ PB

Now, R OB OK BK d BC2 2 2 2 2 21

4
= = + = +

 r OM OK KM d PM2 2 2 2 2 21

4
= = + = +

∴ R r BC PM BC PM BC PM2 2 2 21

4

1

4
− = − = + −( ) ( )( )

 = + −
1

4
2 2 2 2( )( )BK PK BK PK

= (BK + PK)(BK − PK)

= (CK + PK)(BP)

= PC ⋅ BP 

Or 2(R2 − r2) = 2PC ⋅ PB

∴ PA2 + PB2 + PC2 = 4r2 + 2PC ⋅ PB

= 4r2 + 2(R2 − r2)

= 2R2 + 2r2 = 2(R2 + r2).

A

KB

O

CM
d

P
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Problem 28 A circle of radius r touches a straight line at a point M. Two points A and B 
are chosen on this line on opposite sides of M, such that MA = MB = a. Find the radius 
of the circle passing through A and B and touching the given circles, respectively.

Solution: Let, T and S be the centres of the smaller and the larger circles, respectively.
TS = distance between the centres of the two circles
     = SC − TC
     = (R − r)
In the first figure,
 SM = TM − TS
 = r − (R − r)
 = (2r − R)
In the second figure,
SM = SC − MC = (R − 2r)
The radius of the larger circle SA = R, and in the right ∠d DSAM

R2  = SA2 = a2 + SM2 = a2 + (R − 2r)2 = a2 + R2 + 4r2 − 4Rr
⇒ 4Rr = a2 + 4r2

⇒ R
a r

r
=

+2 24

4
Note that SM 2 = (R − 2r)2 = (2r − R)2 and hence, we get the same value for R.
In the third figure, there is yet another possibility. The larger circle may have AB as 

diameter still touching the smaller circle. In this special case, R = a = 2r. Since, M is 
the centre of the larger circle.

Problem 29 A tangent at P to a circle with centre O, cuts two other parallel tangents 
AC and BD at A and B. The parallel tangents touch the circle at C and D. Show that 
AC ⋅ BD is a constant.

Solution: AC || BD.
OC and OD are the radii through the point of contact of the tangents. If OQ is a radius 
parallel to AC and BD,

∴ C, O and D are collinear.
Join AO and BO.
In DACO and DAPO are congruent hypotenuse and leg congruence in right-angled 

triangles.
∴ ∠AOP = ∠AOC
Similarly, ∠BOD = ∠POB.
But, COD is a straight line.
Thus, ∠AOB = ∠AOP + ∠POB

= ∠ +∠ +∠ +∠
1

2
( )COA AOP POB BOD

= × ° = °
1

2
180 90

Again, OP is the radius through P, the point of contact of the tangent AB and hence, 
OP is perpendicular to AB.

Thus, AP . PB = OP2 = r2

But, AP = AC, PB = BD
∴ AC . BD = AP . PB = r2

which is a constant for any given circle.

A

D

M B

C

a

r
T

S

A

D

M B

S

C

a a
r

T

A
M = S

B

C

aa
r

T

A
B

OC 90° 90° D

P Q
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Problem 30 AB, BC, AD, and DF are four straight lines as shown in the figure and 
their intersections A, B, C, D, E, F form four triangles, D ADF, DCDE, DEBF and 
D ABC. Show that the circumcircle of these four triangles intersect at the same point.

Solution: Without loss of generality let us take that the  circumcircles of DDCE and 
DEFB meet at P.

We should show that the circumcircles of D ADF and D ABC, pass through P (i.e., 
ADPF and ABPC are cyclic quadrilaterals, and DCEP and FBPE are cyclic).

∠DCP = ∠DEP
(In the circle through DCEP, angles fall on the same  segment.) = ∠FBP (FBPE is 

a cyclic quadrilateral and exterior angle = interior opposite angle).
This implies, in the quadrilateral ABPC, exterior ∠DCP = interior opp. ∠ABP.
So, ABPC is a cyclic quadrilateral or the circumcircle of ABC passes through P.
Again, considering quadrilateral ADPF
∠ADP = ∠CDP = ∠PEB (CDPE is a cyclic quadrilaterial and interior ∠ = exterior 

opposite angle) = ∠PFB (in the circle through PEFB, PB subtends equal angles at E 
and F or angles on the same segment).

Thus, one interior ∠ of the quadrilateral ADPF = exterior opposite angle of the 
same quadrilateral.

So, ADPE is a cyclic quadrilateral and hence, the result.

Note: If you take any two triangles and consider their circumcircle, you will get the 
same result.

Problem 31 A circle AOB, passing through the centre O of another circle, cuts the 
latter circle at A and B. A straight line APQ is drawn meeting the circle AOB in P and 
the other circle in Q.

Prove that PB = PQ.

Solution:

 ∠PQB = ∠AQB

 = ∠
1

2
AOB = ∠

1

2
APB

 = ∠ +∠
1

2
( )PQB PBQ

⇒ ∠ − ∠ = ∠PQB PQB PBQ
1

2

1

2
⇒ ∠ = ∠PQB PBQ

⇒ PQ = PB

Problem 32 ABC is a triangle. AD, BE, and CF are the altitudes from the vertices A, 
B, and C, respectively. Show that the D DEC, D DBF, and D AEF are similar.

Solution: DDEF is called the pedal triangle.
‘O’ is the orthocentre of the D.
Quadrilaterals OECD, ODBF, OFAE, BCEF, ACDF and ABDE are cyclic.

∠FCA = ∠OCE = ∠ODE = ∠ADE (From cyclic quadrilateral OECD)

( ∴ ∠ADC = 90°)

But, ∠FCA = 90° − A
∴ ∠ADE = 90° − A

A B

E

F

C

D

PI

I

O

Q
BP

A

O

B CD

E
F

A
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∴ ∠EDC = ∠A ( ∴ ∠ADC = 90°)
∠DCE = ∠C of DABC
∴ ∠DEC = ∠B
Similarly, in DBFD,
∠FBD = ∠B
∠BFD = ∠C and ∠FDB = ∠A 
and in DAFE
∠FAE = ∠A, ∠AFE = ∠C, and hence, ∠AEF = ∠B.
Thus, D AFE, D BFD, and D CED are equiangular and hence, each being similar to 

DABC.

Problem 33 Given the base and vertical angle of a triangle, find the locus of its ortho-
centre and incentre.

Solution: Let, ABC be a triangle on the given base BC having its vertical angle 
(a given angle).

Let, BE and CF be the altitudes from B and C meeting at O which is the orthocentre.
∠FOE = 180° − ∠A
(As O, E, A, and F are concyclic.)
So, the locus of O is the circular arc on BC which contains an angle whose measure 

is 180° − A.
To find the locus of the incentre, let the bisectors of ∠B and ∠C meet at I.

∠ = °− +BIC B C180
1

2
( )

= °− ° − = ° +180
1

2
180 90

2
( ) .A

A

So, the locus is the arc of the circle on BC containing an angle whose measure is 

90
2

° +
A

.

Problem 34 Let, ABC be an arbitrary acute-angled  triangle. For any point, P, lying 
within this triangle, let D, E, F  denote the feet of the perpendiculars from P onto the 
sides AB, BC, and CA, respectively. Determine the set of all  possible  positions of the 
point P for which the DDEF is isosceles. For which positions of P will the DDEF 
become equilateral?

Solution: Suppose, DE = DF. Since, DPDB and DPEB are right, angled. P, D, B, E are 
concyclic, and PB is the diameter of the circle through these points.

∴ 
DE

B
PB

sin
=

(
sin sin sin

sin )in any by e formulatriangle,
a

A

b

B

c

C
R= = =2

⇒ DE = PB sin B
Similarly, DF = PA sin A
Since, DE = DF
⇒ PB sin B = PA sin A

⇒ 
PA

PB

B

A

b

a
i e

AC

BC
= = 








sin

sin
. .,

This implies that P must lie on a circle, called Appolonius circle

O

B C

EF

A

I

B C

A

PD

B

C

E

F

A
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The Apollonius circle corresponding to the points A, B and the constant 
b

a
.  

Since DDEF is isosceles, whenever any two of the three sides are equal, the locus of 

P is the set of three Apollonius circles A B
b

a
, , .







 The DDEF is equilateral, if and only 

if, the point P lies on any two of these circles, i.e., it will be the set of points common 
to the above circles taken two by two.

Notes:

 1. The locus is only that portion of the Apollonius circles that lie inside A as it is 
expected that the point to be inside the D.

 2. All the three circles are concurrent. The common point of concurrence lies inside 
DABC. Therefore, Only one point P exists, such that DDEF is equilateral.

Apollonius circle theorem:

A, B are two fixed points and P is a moving point, such that PA

PB
 is a constant.

Then the locus of P is a circle. (Prove)

Proof: Produce AP to Q.

Divide AB, internally and externally in the ratio 
PA

PB
= λ  at H and K, respectively.

AH

HB

PA

PB

AK

BK
= ⇒ =λ .

So, PH and PK are the internal and external bisectors of ∠APB and hence, ∠HPK = 
90°. So, P lies on a circle on HK as diameter.

Problem 35 A square sheet of paper ABCD is so folded that B falls on the mid-point, 
M, of CD. Prove that the crease will divide BC in the ratio 5 : 3.

Solution: When the square paper is folded, the vertex B touches the mid-point M of 
DC, the crease PQ, so formed, is the perpendicular bisector of MB.

Thus, MQ = BQ.
If QC = x units and the side of the square is ‘a’ is units, then the right DMCQ,

MQ = QB = a – x, MC
a

CQ x= =
2

,

⇒ ( )a x a x− = +2 2 21

4

⇒ 2
3

4
2ax a=

⇒ x a a= ≠
3

8
0as

Thus, CQ QB a a a: : : :
3

8

3

8
−








 =
3

8

5

8
a a:

 = 3 : 5.
∴ BQ : QC = 5 : 3.

P

K
BH

Q

A

A
P

B

C

Q

D M

N

90°

90°
a − x

a − x x

a/2

Geometry Theory Part-3.indd   195 8/11/2017   2:49:48 PM
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Problem 36 Given are three non-collinear points A, H and G. Construct a triangle 
with A as vertex, H as orthocentre and G as the centroid.

Solution:

 1. Join AG, and produce it to D, such that GD AG=
1

2

 2. Produce AH and draw DN perpendicular to AH produced to meet it at N. Extend 
DN on both the sides.

Draw DS perpendicular to DN to meet HG produced at S.
(H, G, S are colinear points. The line joining these points is called the Euler line. 

In a D, the circumcentre, the centroid, the orthocentre and nine-point centre lie on a 
line. This line is called the Euler line). On DN extended cut-off SB and SC, equal to SA 
on the opposite sides of D. Now, ABC is the required D with the given data (or draw a 
circle with centre S and radius SA, to cut DN extended at B and C).

Problem 37 If ∠A + ∠B + ∠C = π, then show that cot
sin sin

A
A

B C
+

⋅
sin

 retains the 

same value if any two of the angles A, B and C be interchanged.

Solution: cot
sin

sin sin
A

A

B C
+

⋅

 
= +

− +
⋅

cot
sin[ ( )]

sin sin
A

B C

B C

π

 
= +

+
⋅

cot
sin( )

sin sin
A

B C

B C

 
= +

+
⋅

cot
sin cos cos sin

sin sin
A

B C B C

B C

 = + +cot cot cotA C B

Thus, even when two of the three angles are interchanged, the value of the given 
expression remains the same.

Problem 38 Show that sin 55° − sin 19° + sin 53° − sin 17° = cos 1° 

Solution: sin 55° − sin 19° + sin 53° − sin 17°
 = (sin 55° + sin 53°) − (sin 19° + sin 17°)

 =
° °

−
°
⋅

°
2

108

2

2

2
2

36

2

2

2
sin cos sin cos

 = 2cos 1°[sin 54° − sin 18°]

 = °
+

−
−











2 1
5 1

4

5 1

4
cos

 = °× = °2 1
1

2
1cos cos

Problem 39 Find x, y, z ∈ R satisfying 
4 12x

x

+
=

+
=

+5 1 6 12 2y

y

z

z
 and xyz = 

x + y + z.

Solution: Let, x = tan α, y = tan β, z = tan γ, 
−

<
π

α β
2

, , γ
π

<
+
2

CB

S G

ND

H

A
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4 1 5 1 6 12 2 2(tan )

tan

(tan )

tan

(tan )

tan

α
α

β
β

γ
γ

+
=

+
=

+

⇒ 
4 5 6

sin sin sin
.

α β γ
= =

Again, tan α tan β tan γ = tan α + tan β + tan γ
⇒ tan α(tan β tan γ  − 1) = (tan β + tan γ)

⇒ − =
+

−
= +tan

(tan tan )

tan tan
tan( )α

β γ
β γ

β γ
1

⇒ tan(kπ − α) = tan(β + γ)
⇒ α + β + γ = kπ
Taking k = 1, we get α + β + γ = π which implies that there exists a triangle whose 

angles are α, β, and γ and whose sides opposite to these angles are proportional to 4, 
5 and 6.

Let the sides of such D be 4k, 5k and 6k. 

s = semi-perimeter of the triangle =
15

2

k

tan
( )( )

( )

α
2

5 6

4

5

2

3

2
15

2

7

2

1

7
=

− −
−

=
×

×
=

s k s k

s s k

k k

k k

x
t

t
= =

−
=

−
=tanα

2

1

2
1

7

1
1

7

7

32

Similarly, y = tan β = 
5 7

9
,  and z = tan γ = 3 7

tan
( )( )

( )
tan

( )( )

( )

β γ
2

4 6

5 2

4 6

6
=

− −
−

=
− −

−







s k s k

s s k

s k s k

s s k
and





where α, β, and γ are measures of the angles A, B, and C of DABC.

Problem 40 If a0 + a1cos x + a2cos 2x + a3cos 3x = 0 for all x ∈ R, show that a0 = a1 
= a2 = a3 = 0.

Solution: Let, f (x) = a0 + a1cos x + a2cos 2x + a3cos 3x
 f (0) = a0 + a1 + a2 + a3 = 0 (l)

 f
π
2







  = a0 − a2 = 0  ⇒ a0 = a2 (2)

 f a a a a
π
3

1

2

1

2
00 1 2 3







 = + − − =

⇒ 
1

2

1

2
02 1 3a a a+ − =

⇒ a a a3 2 1
1

2
= +( )  (3)
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f a
a aπ

4 2 2
00

1 3





 = + − =

⇒ a
a a

2
1 3

2
0+

−
=

( )

or a
a a

2
3 1

2
=

−( )
 (4)

Substituting in Eq. (1) the values obtained shown in Eqs. (2) and (3)

2
1

2
02 1 1 2a a a a+ + + =( )

⇒ 5a2 + 3a1 = 0

or a a2 1
3

5
=
−

 (5)

From Eqs. (4) and (5), we get:

1

2

3

5

1

2
1 3−









 =a a  (6)

Again, from Eqs. (3), (5), and (6), we get:

1

2

3

5

1

2 2

3

5

1

2 2

2

5

1

5 2

1 1 1

1 1

−








 = −


















= − × =

a a a

a a

⇒ 1

2

3

5

1

2 5
01− −









 =

.
a

⇒ ( )5 3 2 1

5 2
01

− −
=a

⇒ ( )
,

4 3 2

5 2
0

4 3 2

5 2
01

−
=

−
≠a but

∴ a1 = 0

∴ a3 = 0 as a a3 12
1

2

3

5
= −





















∴ a a2 1
3

5
0=

−
=

a0 = a2 = 0

Thus, a0 = a1 = a2 = a3 = 0. 

Problem 41 If any straight line is drawn cutting three concurrent lines OA, OB, OP 
at A, B, P, then

AP

PB

AO AOP

BO POB
=

sin

sin

O

A P
B

K
H 90°

90°
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Solution:

AP

PB

AOP

POB

AO PO AOP

BO PO BOP

AO AOP

BO BO

= =
⋅ ⋅

⋅ ⋅

=

∆
∆

1

2
1

2

sin

sin

sin

sin PP

or
AP

PB

AOP

POB

OA PH

BO PK

OA OP HOP

OA OP PO
= =

⋅

⋅
=

⋅ ⋅

⋅ ⋅

∆
∆

1

2
1

2

1

2
1

2

sin

sin KK

OP AOP

OP POB
=

sin

sin
.

Problem 42 ABC is a triangle. O, I and H are its circumcentre, in-centre and ortho-
centre. Show that ∠OAI = ∠HAI.

Solution: Let, AI meet the circumcircle at Q.
OA = OQ
(radii of the circum circle)
∠OAI = ∠OQI
O is the circumcentre and AQ bisects ∠BAC
∴ arc BQ = arc QC
∴ OQ is perpendicular to chord of arc BC
∴ OQ | | AH (both being perpendicular to the same line BC).
∴ ∠HAI = ∠HAQ = ∠AQO = ∠OAQ = ∠OAI
∴ AI bisect ∠HAO.

Problem 43 If the altitude AD meets the circumcircle of the DABC at P and, if H is the 
orthocentre, show that HD = PD.

Solution:
∠CPD = ∠CPA
= ∠CBA = ∠CBF 
= 90° − ∠FCB
= 90° − ∠HCD
= ∠DHC = ∠CHD
∴ CP = CH
∴ CD is the perpendicular bisector of PH (∵∠CDH = 90°)
∴ DH = DP or HD = PD.

Problem 44 ABC is a triangle. The altitudes from A, B, C meet the opposite sides BC, 
CA, AB at D, E, F. Here, H is the orthocentre of DABC. Show that the bisectors of the 
angles of DDEF are concurrent at H.

Solution: FHDB, EHDC and AFHE are cyclic quadrilaterals.
∴ In the cyclic quadrilateral FHDB
∠HDF = ∠FBH (angles in the same segment)
= ∠ABE
= 90° − A (1)

A

90°

H

O

B

K

P

A

90°
B

O H
I

Q

C

90°

90°

C

P

B

A

F

H

D
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In the cyclic quadrilateral EHDC.
∠EDH = ∠ECH (angles in the same segment)
= ∠ACF
= 90° − A (2)
From Eqs. (1) and (2), we get ∠HDF = ∠HDE 
i.e., HD bisects ∠FDE.
Similarly, we can prove that FH and EH bisect angles ∠DFE and ∠DEF, which 

implies that the bisectors of ∠D, ∠E, and ∠F of DDEF pass through H, the orthocen-
tre of DABC (i.e., H is the in-centre of the pedal DDEF).

Problem 45 ABC is a triangle that is inscribed in a circle. The angle bisectors of A, B, 
C meet the circle at D, E, F. Show that AD is perpendicular to EF.

Solution: Let AD intersect EF at M.

Consider the DIMF

∠MFI = ∠EFC

= ∠EBC (Angles in the same segment)

=
B

2
∠MIF = 180°−∠MIC

= °− ° − −





180 180
2 2

A C
AIC( )In ∆

= +
A C

2 2

= °−
1

2
180( )B

= ° −90
2

B

∴ ∠IMF = 180°− [∠MFI + ∠MIF]

= °− + ° −





180

2
90

2

B B = 90°

i.e., AD is perpendicular to EF.
Similarly, we can prove that BE and CF are perpendiculars to FD and ED.

Problem 46 Given a circle and two points A and B inside the circle. If possible, con-
struct a right-angled triangle inscribed in the circle, such that one leg of the right-
angled triangle contains A and another leg contains B.

Solution: On AB as diameter, draw a semi-circle to cut the given circle at, say, C and 
C′. Join CA and CB. Extend them to meet the circle at P, Q.
Then, DPCQ is the required triangle. Since, ∠ACB = ∠PCQ = 90°, PQ will be the 
diameter. Similarly, if the other point C′ is joined to A and B and extended to meet the 
given circle at P′, Q′, then DP′C′Q′ is the D satisfying the given condition.

The semi-circle on AB, as diameter, may cut the circle at two points or touch the 
circle, or the full circle itself may be in the interior of the given circle. Accordingly, 
there are two two right angled triangles, or one right angled triangle triangle, or no 
right angled triangle satisfying the hypothesis.

A

B D C

F E

C

D B

F

M

E A

I

Q′

P′

C′

C

A

B

P

O

Q
90°
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Problem 47 Let, ABCD be a square, and k be the circle with centre B passing through 
A and C. Let, I be the semi-circle inside the square with diameter AB. Let, E be a point 
on I, and the extension of BE meet the circle k at F. Prove that ∠DAF = ∠EAF. 

Solution:
 (i) BA = BF (Radius of the circle k.)
 (ii) ∠AEB = 90° (Angle in the semi-circle.)
 (iii) ∠EAF = 90° − ∠AFE = 90° −∠AFB
  = 90° − ∠BAF (BA = BF by Step (i))
  = ∠BAD −∠BAF
  = ∠FAD or ∠DAF.

Problem 48 Let l be a given line. A and B are the given points on the plane. Choose 
a point P on l, so that the longer of the segments, AP or BP, is as short as possible. 
(If AP = BP, either segment may be taken as the longer  segment).

Solution: If A is further away from l than B, i.e., B is nearer to l than A is, draw AA1 
perpendicular to l (first figure).

 (i) If AA1 > BA1, then A1 = P. For any other point, Q on l, BQ < AQ and AQ > AA1, 
as AQ is the hypotenuse of the right angled DAA1Q.

 (ii) If AA1 < BA1 draw the perpendicular bisector l1 of AB meeting l at P (second 
figure).

Now, AP = BP.
If Q is a point on l, such that B and Q are on the same half-plane determined by l1, 

then AQ > BQ. But, then AQ > AP, so the longer segment is not the least.
Again, if R is a point on l, so that A and R lies on the same half-plane determined 

by l, then AR < BR.
But, BR is not the shortest as ∠BPR > 90° and hence, BR > BP. Thus, the point on 

l with the required property is P.

Problem 49 Let, A and B be two points inside a given circle k. Prove that there exist 
infinitely many circles through A and B which lies entirely in k.

Solution: Join A and B to the centre (O) of the circle k.
If P is a point on OA, any circle with centre P and radius PA lies entirely inside k, 

since A is an interior point of k.
Similarly, if Q is a point on OB and the circle with its centre Q and radius QB lies 
entirely inside k.

Since, OA is less than the radius of the circle k, and the circle with O as centre and 
radius OA lies inside circle k. 

(It is the concentric circle with k) and circle with centre P and radius PA is a circle 
touching the concentric circle of k with radius OA internally, and hence, this circle lies 
entirely inside k. Similarly, for the point Q on OB, the following explanation can be 
given.

Let the perpendicular bisector of AB meet OA at C (or, this perpendicular bisector 
may meet OB).

Now, the set of centres of the set of circles passing through A and B are the points on 
this perpendicular  bisector.

Taking any point P on line segment DC as centre and radius PA = PB, an infinite 
number of circles can be constructed. All those would lie entirely on k. This is because 
there are infinite number of points as P on line segment DC.

D

A B

E

l

F

K
C

90°

A

B

P = A1

Q
l

90°90°

Q

P

B

R

A

A1

l1

B
k

D

C R
O A

AO

C

B

D
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Problem 50 Show that the radian measure of an acute angle is less than the harmonic 
mean of its sine and its tangent.

Solution: Let the acute angle in the problem be α. The harmonic mean of sin α and 
tan α is

2
1 1

2

1

4
2 2

2
2

2
22

sin tan

sin

cos

sin cos

cos
tan

α α

α
α

α α

α
α

+
=

+
= =

So, we should prove α
α

< 2
2

tan .

In Fig. 3.79, m∠AOB = α radians and the radius of the circle with centre O is 1 unit. 
i.e., OA = OB = 1.

Arc AB = d < ⋅
π
2

 sq. units

Let the tangents at A and B intersect at C. 
Let OB produced meet the tangent at A at the point D and BE perpendicular to AD. 

 (i) Area of the sector OAB 

  = × × =
1

2
1

2
α

α
 sq. units

  But the sector OAB is contained in the quadrilateral OACB.
 (ii) ∴ Area of the sector < Area of the quadrilateral. 
  ⇒ Area of the sector < 2 area of DOAC (∵DOAC = DOBC)

  Area of ∆OAC OA AC= × = × ×
1

2

1

2
1

2
tan

α
sq.  units

  ∴ 
α α
2

2
1

2 2
< × tan

  α
α

< 2
2

tan as required

Problem 51 Show that if α, β and γ are angles of an arbitrary triangle, then 

sin sin sin .
α β γ
2 2 2

1

4
<

Solution: α + β + γ  = 180° and hence, 
α β γ
2 2 2

, and  < 90°.

Since, 
1

2
90( )α β γ+ + = °

⇒ 1

2

1

2

1

2
90α β γ+ + = °

α
β γ β

2
90

1

2
90

1

2
90= ° − + < − < °( )

sin sin sin sin cos sin
α β

β
β β β

2 2
90

1

2 2 2 2
⋅ < ° −






 ⋅ =

= <
1

2

1

2
sin β

D

B

α

E
90°

C

A
FO
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 (i) Suppose, γ is the smallest of the 3 angles, then γ ≤
°
= °

180

3
60  and 

γ
2

30≤ °.  

 (ii) So, sin sin .
γ
2

30
1

2
≤ ° =

From Steps (i) and (ii), we have sin sin sin
α β γ
2 2 2
⋅ ⋅ < ×

1

2

1

2

⇒ sin sin sin .
α β γ
2 2 2

1

4
⋅ <

Problem 52 A semi-circle is drawn outwardly on chord AB of the circle with centre 
O and unit radius. The perpendicular from O to AB meets the semi-circle on AB at C.

 (i) Show that if C′ is any other point on the semi-circle, then OC > OC′.
 (ii) Determine AB, so that OC has maximum length.

Solution:

 (i) OC′ < OD + DC′ = OD + DC = OC
 (ii) Let, OD = a  units

So that

AD a= −1  units

∴ AD = BD = DC 

= 1− a units

∴ OC2 = (OD + DC)2

= + −( )a a1 2

= + −1 2 1a a( )

If OC is to be a maximum, then OC2 should also be a  maximum.

For this, 1 2 1+ −a a( )  should be maximum. 

i.e., a (1 − a) should be maximum.

a a a a a( )1
1

4

1

2
2

2

− = − = − −







So, a − a2 is a maximum, when a − =
1

2
0,  i.e., a =

1

2
.

This implies that OD a= = =
1

2

2

2
.

∴ In DAOB, OA = OB = 1

OD =
2

2

∴ AD = − = =1
1

2

1

2

2

2

∴ AB AD= =2 2

Thus, the sides of the DABO are in the ratio 1 : 1 : 2.  So ∠AOB = 90°.
Thus, to determine AB, draw two radii OA, OB, inclined at an angle of 90° at O.

90°

1

A

C

B

O
D

C ′

a√

1
 −

 a
√

Geometry Theory Part-3.indd   203 8/11/2017   2:49:59 PM



8.204  Chapter 8

Problem 53 AB is a chord of a circle with centre O, and ON is a radius perpendicular 
to AB, meeting AB at M. P is any point on the major segment. Join PM and extend it to 
meet the circle at Q. Join PN and let it intersect AB at R. Prove that RN > MQ.

Solution: Draw the diameter NON ′. Let, P ′ be the reflection of P in the diameter 
NON′. N is its own image under this reflection (Since N lies on the axis of reflection 
NON′).

Since, AB is perpendicular to NON′, R is reflected to the point R′, which is the inter-
section of P′N and AB. [PN → P′N and since, R ∈ PN and AB, R′∈P′N and AB, as AB 
is reflected to AB, (but not point-wise) as AB is perpendicular to N′N]. 

∴ RN = R′N 
PP′ and AB are parallel as both are perpendicular to NN′.
∴ ∠NR′M = ∠NP′P = ∠NQP
(NP subtends equal angles at P′ and Q on the circle) 
= ∠NQM 
i.e., NM subtends equal angles at R′ and Q.
∴ Points N, Q, R′, M are concyclic
∠R′MN = 90° (∵  R′M || P′P and NM perpendicular to AB and P′P) 
∴ R′N is the diameter of the circle through the points Q, R′, M, N and QM is a 

chord.
∴ R′N > QM 
(∠QNM = ∠QNN′ < 90° as NN′ is a diameter of the given circle.
∴ QM cannot be the diameter of the circle through QNMR′).

Problem 54 Suppose, two circles q and r intersect at A and B. P is a point on the 
arc of q which lies out side r. PA and PB are joined and produced to meet the second 
circle at C and D. Show that for all positions of P on the circle q, the length of CD is 
a constant.

Solution: Let, P′ be any other point on the arc of the circle q lying outside the circle r. 
Let, P′A and P′B meet the circle, again, at C′ and D′. 
We are required to show that CD = CD′.
∠PAP′ = ∠P′BP (Angle in the same segment)
Now, ∠C′AC = Vertically opposite ∠PAP′
= ∠P′BP
= Vertically opposite ∠D′BD 
In the circle r,  ∠C′AC = ∠D′BD
∴ arc C′C = arc D′D 
∴ arc C′C + arc C′D′ = arc D′D + arc D′C 

⇒ arc C′D′ = arc CD

∴ Chord C′D′ = Chord CD.

Problem 55 Show how to construct a chord BPC in a  given angle A, through a given 

point P, such that 
1 1

BP PC
+  is maximum, where P is in the interior of ∠A.

Solution: Draw PC′ || AB and P′C′ || BC as shown in the figure.
DAP′C′ is similar to DAPC.

[∵  ∠P′AC′ = ∠PAC, ∠ACP = ∠AC′P′] and DPC′P′ is similar to DABP.

[∵  ∠C′P′P = ∠BPA; ∠C′PP′ = ∠BAP]

BRR′

90°

N ′

P′

Q

M

N

P

O

A

P′

D′C′

P

q

B

D

C

A

r

A

B

C′
P′

P
C
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∴ 
′ ′

=
′P C

PC

AP

AP
 (1)

and 
′ ′

=
′P C

PB

P P

PA
 (2)

Adding Eqs. (1) and (2), we get: 

′ ′
+

′ ′
=

′ + ′P C

PC

P C

PB

AP P P

PA

⇒ ′ ′ +





 =P C

PC PB

1 1
1

or 
1 1 1

PB PC P C
+ =

′ ′

If the quantity 
1 1

PB PC
+  is a maximum, then P′C′ should be minimum.

But, C′P′ is minimum if C′P′ is ⊥ r to AP. But, P′C′ is parallel to BC and P′C′ 
perpendicular to AP implies BC should be perpendicular to AP. So, join the vertex 
A of the given angle to the given point P and draw perpendicular to AP through P, 
terminated by the arms of the given angle A at C and B. Now, we have the chord BPC 
satisfying the hypothesis.

Problem 56 If lines PB and PD outside a parallelogram ABCD make equal angles 
with the sides BC and DC res pectively, then prove that ∠CPB = ∠DPA.

Solution: Let, ∠PBC = ∠PDC = α
∠CPB = β
∠DPC = γ
∠APC = d

A B

P

C
D α

α

β
γ

δ
θ

θ

and, ∠ADC = ∠ABC = θ

In DCDP, 
CD PC

sin( ) sinγ δ α+
=  (1)

In DBCP, 
BC PC

sin sinβ α
=  (2)

From Eqs. (1) and (2), we get:

CD

BC
=

+sin( )

sin

γ δ
β

 (3)

In DAPD 
AD AP

sin sin( )γ θ α
=

+
 (4)
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In DAPB 
AB AP

sin( ) sin( )β δ θ α+
=

+
  (5)

From Eqs. (4) and (5), we get:

AB

AD
=

+sin( )

sin

β δ
γ

 (6)

But, CD = AB and
AD = BC.
∴ From Eqs. (4) and (6), we get:

sin( )

sin

sin( )

sin

γ δ
β

β δ
γ

+
=

+

∴ sin γ sin (γ + d) = sin β sin (β + d)
cos d − cos (2γ + d) = cos d − cos (2β + d)
∴ cos (2β + d) − cos (2γ + d) = 0
∴ 2 sin (γ + β + d) sin (γ − β) = 0
But, β + γ + d ≠ 0 and it cannot be = π
∴ sin (γ − β) = 0.
∴ β = γ.
Hence, the required result.

Aliter: Choose a point Q, such that both BCPQ and ADPQ are parallelograms (Q can 
be chosen to satisfy this condition as AD || BC and AD = BC).

A B

P

Q
CD α

α

β
γ

δ
θ

θ

Now, ∠BPQ = ∠BAQ = α
{PD || AQ and CD || AB ∴ ∠PDC = ∠QAB = α
∠CBP = ∠BPQ alternate angles for the parallel lines BC and QP}

∴ BQPA is concyclic.

∴ ∠APB = β + d = ∠AQB = ∠DPC

∵  DP || AQ and CP || BQ = γ + d
∴ β = γ,

hence, the result.

Problem 57 Given an isosceles DABC with base angle 40°. Extend AB to D, such that 
AD = BC. Join DC. Find ∠DCB.

Solution: Through D, draw a line DE parallel to BC to meet the line through C parallel 
to AB at E. Join AE to meet BC in F. Through F draw a line parallel to BD to meet DE 
in G. Join CG and AG. Through D draw a line parallel to CG to meet BC in H. DE = 
BC = AD = a. DADE is isosceles. DABF is also isosceles.
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∴ ∠DAE = ∠DEA = 70°
Now, AB = BF = c
∴ CE = BD = AD − AB = a − c
Also, CF = BC − BF = a − c
∴ CE = CF 
∴ GECF is a rhombus. 
∴ CG bisect ∠ECF
∴ ∠GCB = 20°.
Now, DGCH is a prallelogram with DG = BF = CH = BA = c 
DDBH = DGEC
{∵  DH = CG, BD = CE and ∠GCE = ∠BDH}
In DACG ∠ACG = ∠ACB + ∠BCG = 40° + 20° = 60° 
Since, GECF is a rhombus, FE ⊥ GC, 
∴ AE ⊥ CG
Also, EG = EC
∴ By symmetry,
DAEG = DAEC
∴ ∠GAC = ∠GAE + ∠EAC = 2∠EAC (by congruence) 
= 2[∠BAC −∠BAE] = 2[100° − 70°] = 60° 
∴ ∠ACG is an equilateral A
AC = CG = AG = b = c (∵  DABC is isosceles)
∴ DGCH is a rhombus.
∴ DC bisects ∠FCG 
∴ ∠DCB = 10°.

Aliter 1:

a

c
=

°
°
=

°
°

sin

sin

sin

sin

100

40

80

40

a

a c−
=

°−
=

°
° − °

=
°

° ⋅

sin( )

sin

sin

sin sin
cos

cos sin

40 80

80 40
10

2 60 2

α
α

00

10

2
1

2
2 10 10

1

2 10

°

=
°

⋅ ° °
=

°
cos

sin cos sin

∴ sin40° cot α − cos 40° = ⋅
1

2 10sin °

cot
cos sin

sin sin

sin sin

sin si
α =

° ° +
° °

=
° − ° +

°
2 40 10 1

2 10 40

50 30 1

2 10 nn

cos

sin sin

cos

(cos cos )

co

40

40
1

2
2 10 40

2 40 1

2 30 50

2

°

=
° +

° °
=

° +
° − °

=
ss

sin

cos cos

sin sin

cos cos

co

40

3 2 40

40 60

60 40

2 50 10

2

°

− °

=
° + °
° − °

=
° °

ss sin
cot

° °
=

10
10

∴ α = 10°.

CB

D E

FH

G

A

40°

40°

70°

70°
30°

cc

aa − c

100°

40° − αα
40°

40°
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Aliter 2:

Solution: Since AB = AC

∠ABC = ∠ACB = 40°
∴ ∠BAC = 100°
Construct an ∠ADX = 60°
Draw an arc DE on DX such that AD = DE.

Join AE which cuts BC at M and DC at K.

Now in ∆ADE, ∠ADE = 60° and AD = DE

∴ ∆ADE is an equilateral triangle

AD = DE = AE (1)

So ∠DAE = 60°; ∠EAC = 40°
In DAMC,

∠MAC = ∠MCA = 40°
⇒ AM = MC

Since BC = AD = AE

MC = AM

⇒ BC − MC = AE − AM
⇒ BM ME=  (2)

In DAMB and DCME

AM = CM

∠AMB = ∠CME = 80° (VOA)

MB = ME (Proved above)

By SAS Congruence

DAMB ≅ DCME

⇒ AB = CE

But AB = AC ⇒ AC = CE

Also AD = DE

∴ ACED is a kite

AE ⊥ CD

∴ DMKC, by ASP of triangle

90° + 80° + ∠MCK = 180°
⇒ ∠MCK = 10°
⇒ ∠DCB = ∠MCK = 10°

Problem 58 Let, ABC be a triangle of area D and A′B′C′ be the triangle formed by the 
altitudes ha, hb, hc of DABC as its sides with area D′ and A″B″C″ be the triangle formed 
by the altitudes of D A′B′C′ as its sides with area D″. If D′ = 30 and D″ = 20, find D.

Solution: Let a, b, c be the sides of DABC.
Let, ha, hb, hc be the sides of DA′B′C. They are also the altitudes of DABC.

Let, ′ ′ ′h h ha b c, ,  be the sides of DA″B″C″. They are also the altitudes of DA′B′C.

1

2

1

2

1

2

2
ah ah ah h

a
a b c a= = = ∴ =∆

∆

1

2

1

2

1

2
h h h h h ha a b b c c⋅ ′ = ⋅ ′ = ⋅ ′ = ′∆

A

B

D

E

X

M C

K

60 40

40 40

60

80
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′ =
′
=

′
=

′
h

h
a

a
a

a

2 2
2

∆ ∆
∆

∆
∆

′′ =
′ + ′ + ′

⋅
′ + ′ − ′

⋅
′ − ′ + ′

⋅
′ + ′ − ′

∆ 2

2 2 2 2
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∆
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∆

∆
∆

∆
∆

∆
∆

∆
∆

∆
∆

∆
∆∆

∆
∆

∆
∆

∆
∆

∆
∆







′
+

′
−

′





=
′

+ + + − − +

b c a
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4
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( )( )( )(bb c a+ − =

′
⋅ =

′
)

∆
∆

∆
∆
∆

4

4
2

4

2

D′ = 30, D″ = 20

∴ ∆
∆
∆

2
4

2

4

2

4 4

2 2

30

20

3 10

2 10
=

′
′′
= =

×
×

  ∆ =
×

=
3 10

2
45

2

.

Check Your Understanding

 1. Prove that, in DABC, whose sides AB, BC, CA have measures 4 cm, 3 cm and 5  
cm respectively, the medians AK and CL are mutually perpendicular.

 2. Let D be an arbitrary point on side AB of a given triangle ABC and let E be the in-
tersection point where CD intersects the external common tangent to the incircles 
of triangles ACD and BCD. As D assumes all positions between A and B, prove 
that the point E traces the arc of the circle.

 3. In DABC, M is the mid-point of BC. P is any point on AM; PE, PF are perpendic-
ulars to AB, AC respectively. If EF | | BC, prove the triangle is either right-angled 
or isosceles.

 4. Let C1 and C2 be circles whose centres are 10 units apart, and whose radii are 1 
and 3. Find the locus of all points M for which there exists points X on C1 and Y 
on C2 such that M is the mid-point of the line segment XY. [Putnam, 1996]

 5. Prove that the quadrilateral formed by the angle bisectors of a cyclic quadrilat-
eral, is also cyclic.

 6. AD, BE, CF are the altitudes of DABC. If P, Q, R are the mid-points of DE, EF, 
FD, respectively, then show that the perpendicular from P, Q, R to AB, BC, CA, 
respectively, are concurrent.

 7. The larger base of an isosceles trapezoid equals a diagonal and the smaller base 
equals the altitude of the trapezoid. Find the ratio of the smaller base to the larger 
base of this trapezoid.

 8. Suppose the angle formed by the two rays OX and OY, is the acute angle α and A 
is a given point on the ray OX. Consider all circles touching OX at A and intersect-
ing OY at B, C. Show that, the centres of all triangles ABC lie on the same straight 
line.

 9. Let I be the incentre of DABC. Let the incircle of DABC touch the sides BC, CA, 
AB at K, L, M respectively. The line through B parallel to MK meets the lines LM 
and LK at R and S respectively. Prove that ∠RIS is acute.

 10. In a rhombus ABCD, ∠A = 60°. Let K be a point on the diagonal AC; choose 
points L, M on AB, AC respectively, such that, KLBM is a parallelogram. Show 
that the triangle LMD is equilateral.

 11. Construct a triangle, given its perimeter, the angle opposite the base and the alti-
tude to the base. Justify.

 12. Given DABC. Let line EF bisects ∠BAC and AE ⋅ AF = AB ⋅ AC.
  Find the locus of the intersection P of lines BE and CF.
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 13. The diameter AB of a circle is divided into four equal parts at P, Q, R in that order. 
CD is a chord of the circle through P, such that, 2PD = 3AP. Find the ratio of the 
area of quadrilateral ACBD to that of triangle CAP.

 14. In DABC, ∠A = 75°; ∠B = 60°; CF and AD are the altitudes from C and A respec-
tively. H is the orthocentre and O is the circumcentre. Prove that O is the incentre 
of DCHD.

 15. In DABC, D is a point on BC, such that, AD is the internal bisector of ∠A. Sup-
pose ∠B = 2∠C. Also suppose CD = AB. Prove that ∠A = 72°.

 16. ABC is a scalene triangle. Equilateral triangles ABC, BCA, CAB, are drawn out-
side the triangle ABC. Prove that AA1, BB1, CC1 concur, say at a point K. Prove 
further that AA1 = KA + KB + KC.

 17. Let ABCD be a cyclic quadrilateral. Prove that the incentres of the triangles ABC, 
BCD, CDA and DAB form a rectangle.

 18. A circle cuts the sides of DABC internally as follows: BC at D, D′; CA at E, E′; AB 
at F′, F. If AD, BE, CF are concurrent, prove that, AD′, BE′, CF′ are also concurrent.

 19. The incircle of DABC has centre I and touches the side BC at D. Let the mid-
points of AD and BC be M and N respectively. Prove that, M, I, N are collinear.

 20. D, E, F are the feet of the altitudes of DABC and G, H, I are the points of contact 
of the incircle of DDEF with the sides of DABC. Prove that, DABC and DGHI 
have the same Euler’s line (i.e., the line through the circumcentre and centroid).

 21. Perpendiculars from a point P on the circumcircle of DABC are drawn to lines AB, 
BC with feet at D, E, respectively. Find the locus of the circumcentre of DPDE as 
P moves around the circle.

 22. The sum of two adjacent angles of a trapezium is 90°. The lengths of two parallel 
sides are ‘a’ and ‘b’ respectively. Show that the length of the line segment joining 

the mid-points of the two parallel sides is 
1

2
a b− .

 23. Let ABC be an acute angled triangle and let D, E, F be the feet of the perpendicu-
lars from A, B, C respectively to BC, CA, AB. Let the perpendiculars from F to 
CB, CA, AD, BE meet them at P, Q, R and N respectively. Prove that the points P, 
Q, M, and N are collinear.

 24. Circles S1 and S2 with centres O1, O2 respectively intersect each other at points A 
and B. Ray O1B intersects S2 at point F and ray O2B intersects S1 at point E. The 
line parallel to EF and passing through B intersects S1 and S2 at points M and N, 
respectively. Prove that B is the incentre of DEAF and MN = AE + AF. 
 [Russian MO, 1995]

 25. On the circumcircle of DABC, let A′ be the mid-point of arc. (Not containing A). 
Let I be the incentre of DABC. Prove the following results:

  (i) A, I, A′ are collinear.
  (ii) A′ is the circumcentre of DBIC.
 26. Given the base and the vertical angle of DABC, prove that the area and perimeter 

of DABC are maximum when the triangle is isosceles.
 27. Triangle ABC has a right angle at C. The internal bisectors of angles BAC and 

ABC meet BC and CA at P and Q respectively. The points M and N are the feet of 
the perpendiculars from P and Q to AB. Find angle MCN. [British MO, 1995]

 28. Let I be the incentre of DABC and let X, Y, Z be the feet of the perpendiculars 
from I on the sides BC, CA, AB respectively. If IX meets YZ as N, then prove that 
A, N and the mid-point A′ of BC are collinear.

 29. DABC has incentre I and the incircle touches BC, CA at D and E respectively. Let 

BI meets DE at G. Prove that, AG  is perpendicular to BG.
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 30. ABCD is a cyclic quadrilateral; points C1, A1are marked on the rays BA, DC re-
spectively, so that, DA = DA1 and CB = C1B. Prove that the diagonal BD intersects 
the segment A1 C1 at its mid-point.

 31. In an acute angled triangle ABC, ∠A is 30°, ‘H’ is the orthocentre and ‘M’ is the 
mid-point of BC. On the line HM, take a point T, such that HM = MT. Prove that 
AT = 2BC.

 32. Given any acute angled triangle ABC, let points x, y, z be located as follows: X is 
the point, where the altitude from A on BC meets the outward facing semicircle 
on BC as diameter. Points Y and Z are defined similarly. Prove the result:

  [BCX]2 + [CAY]2 + [ABZ]2 = [ABC]2, where the notation [PQR] denotes the area 
of DPQR.

 33. ABCD is a square. E is a point inside the square, such that ∠EBA = ∠EAB = 15°. 
Prove that DCED is equilateral.

 34. In DABC, suppose AB > AC. Let P and Q be the feet of the perpendiculars from B 
and C to the angle bisector of ∠BAC, respectively. Let D be on line BC such that 
DA ⊥ AP. Prove that lines BQ, PC and AD are concurrent.

 35. Through a point on the hypotenuse of a right angled triangle, lines are drawn 
parallel to the other two sides, so that the triangle is divided into a square and two 
triangles. If the area of one of the two small right triangles is ‘K’ times the area of 
the square, prove that the ratio of the area of the other triangle to the area of the 
first triangle is given by 1 : 4k2.

 36. ABCD is a line segment, trisected by the points B and C. P is any point on the 
circle where BC is its diameter. If the angles ∠APB and ∠CPD are respectively α 
and β, prove that, 4 tan α ⋅ tan β = 1.

 37. Prove in any DABC, if one angle is equal to 120°, then the triangle formed by the 
feet of the angle bisectors, is right angled.

 38. Let M be a point on the side of DABC. Let r1, r2, r be the radii of the inscribed 
circles of triangles AMC, BMC and ABC respectively. Let q1, q2, q be the radii of 
the inscribed circles of the same triangles that lie, in the angle ∠ACB. Prove the 

following result: 
r

q

r

q

r

q
1

1

2

2

× = .

 39. There are exactly 100 lattice points on the circumference of a circle with origin as 
the centre. Prove that the radius of this circle will either be an integer or 2  times 
an integer.

40.  ABC is a triangle with side lengths 13, 14, 15 units. If I be its incentre and R its 

circumradius, prove that the value of the expression, 
AI BI CI

R

⋅ ⋅
 is an integer. Is 

it a square?
 41. Let BB′ and CC′ be altitudes of triangle ABC. Assume that AB ≠ AC. Let M be the 

mid-point of BC, H the orthocentre of ABC and D the intersection of B′C′ and BC. 
Prove that DH ⊥ AM. 

 42. Prove that if the internal and external bisectors of ∠C of DABC are congruent, 
then, AC2 + BC2 = 4R2, where R is the circumradius of DABC.

 43. Point P is inside DABC. Determine points D on side AB and E on side AC such 
that BD = CE and PD + PE is minimum.

 44. Given a triangle ABC, let I be its incentre. The internal bisectors of the angles 
meet the sides in D, E, and F respectively. Prove that the area of DDEF is given 

by 
2abcs

a b b c c a( )( )( )
,

+ + +
 in the usual notation, S being the area of DABC.
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 45. Diagonals AC and CE of the regular hexagon ABCDEF are divided by the inner 

points M and N, respectively, so that 
AM

AC

CN

CE
r= =

  Determine r if B, M and N are collinear. [IMO, 1982]
 46. ABCDEF is a hexagon inscribed in a circle. Show that the diagonals AD, BE, CF 

are concurrent if and only if AB ⋅ CD ⋅ EF = BC ⋅ DE ⋅ FA.
 47. Let A = tan α tan β + 5; B = tan β tan γ + 5; C = tan γ tan α + 5; where α, β, γ are 

positive and α + β + γ = π/2. Prove the inequality: A B C+ + ≤ 4 3.

 48. Let DABC be a right triangle with ∠A being the right angle. Prove the inequality:  

sin B sin C ≤ 
1

2
.  Find the condition for which the equality holds.

 49. In DABC, prove that, in the usual notation,
  3(bc + ca + ab) ≤ (a + b + c)2 < 4(ab + bc + ca).
 50. If D is the area of DABC with sides a, b, c prove that, 

  (i) ∆ ≤ + +
1

4
( )( ).abc a b c  

  (ii) When does the equality hold?
  (iii) Also deduce the formula for the area of an equilateral triangle.
 51. Let A, B, C be an equilateral triangle. Let K, L, M be arbitrary points, chosen on 

the sides BC, CA, AB respectively.
  (i)  Prove that the area of one of the triangles AML, BKM, CLK is less than or 

equal (DABC). (That is a quarter of the area of DABC)
  (ii) When does the equality hold?

 52. Let ABCD be a convex quadrilateral with AC BD∩  ={E}. Let F1, F2, F 
be the area of DAED, DBEC, and quadrilateral ABCD. Prove the inequality: 

F F F1 2+ ≤ .  When does the equality occur?

 53. In an acute angled triangle ABC, prove the inequalities; 
    (i) cotA + cot B + cot C ≥ 3
   (ii) tan2A + tan2B + tan2C ≥ 9
  (iii) sin2 A + sin2B + sin2C ≤ 9/4
 54. Prove that, in an acute angled triangle ABC, the following inequalities hold:
  (i) cos A cos B cos C ≤ 1/8

  (ii) 
1

2
10

+ + +
≥

cos cos cos

cos cos cos

A B C

A B C

 55. Prove that, a2pq + b2qr + c2rp ≤ 0, whenever a, b, c are the lengths of the sides of 
a triangle and p + q + r = 0. (p, q, r ∈R)

 56. In DABC, show in the usual notation that, 
1 1 1 2
2 2 2a b c

s

abc
+ + ≥ .

 57. Which regular polygons can be obtained (and how) by cutting a cube with a plane?
 58. The sides AB, BC and CA of a triangle are c, a, and b respectively.

  If a2 + b2 − 1993c2, find the value of 
cot

cot cot

C

A B+
 59. Given a circle, a point P on it and a line intersecting the circle in two points, construct 

all chords of the circle through P which are divided by the line in the ratio 1 : 2.
 60. Given an arbitrary triangle ABC, let P and Q be the centres of squares on AB and 

AC, respectively, as shown in the figure. If M is the mid-point of BC, show that 
triangle PMQ is an isosceles right-angled triangle.B C

QP

A

M
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 61. Let, M be any point on AB. Squares AMCD and BMEF are constructed and the 
circumscribed circles of AMCD and BM BF intersect at M and N. Show that the 
lines AE and BC pass through N. 

A B

C
N

M

D

E F

 62. The exterior and interior bisectors of the angle A of DABC meet the side BC at E 
and D as shown in the figure. If AD = AE, find ∠BCA − ∠CBA. 

 63. ABC is a triangle with ∠B = 120° and BT is the bisector of ∠B meeting AC at T. 
Prove that BT is the Harmonic Mean between BC and BA.

 64. ABC is a triangle. The internal and external bisectors AP and AQ of ∠A meets the 
line BC at P and Q,  respectively. Prove that BC is the Harmonic Mean between 
BP and BQ.

 65. ABCD is a cyclic quadrilateral. The chords AB and DC produced to meet at Q. AD 
and BC produced to meet at P. The bisectors of angles Q and P meet the circle at 
U, V, T and S, respectively. Show that PV and QS intersect at right angles.

 66. ABCD and PQRS are two squares circumscribed and inscribed about a circle with 
centre O and radius 1 unit and the diagonals PR and QS of PQRS lie along the 
diagonals AC and BD. If K, L, M and N are the mid-points of PA, QB, RC and SD, 
show that KLMN is a square and compare the perimeter of this square to that of 
the circumference of the circle.

 67. AB is a directed line segment and is divided at C, so that BA ⋅ BC = AC2. Prove 
that AB2 − AC2 = AB ⋅ AC.

 68. In an acute angled triangle ABC, ∠A = 30°, O is the ortho-centre and M is the 
mid-point of BC on the line OM; T is the point, such that OM = MT. Show that AT 
= 2BC. [INMO, 1995]

 69. Two right-angled triangles ABC and FDC are such that their hypotenuses AB = p 
and FD = q intersect in E as shown in the figure. Find x (the distance of the point 
E from the side FC) in terms of α = ∠BAC, β = ∠DFC and the length of the two 
 hypotenuses.

 70. Equilateral DADC is drawn externally on side AC of DABC. Point P is taken on 
BD. Find ∠APC if BD = PA + PB + PC.

Challenge Your Understanding 

 1. Prove that the bisector of an angle of a triangle is equal to or less than half the sum 
of the arms of the angle.

  Apply this result to prove the following problem:
  In the figure, P is the mid-point of the line segment AB, ∠BAC = 60° and ∠ABD 

= 120°. X is any point on AC such that, XP extended meets BD at Y. Prove that the 
length of XY is greater than or equal to the length of AB.

C

X

D
120°60°

P

A

B
Y

A

B D C E

A
C

D

B
E

G

90°
F

α β
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 2. A circle passing through vertices B and C of triangle ABC intersects sides AB and 
AC at C′ and B′, respectively. Prove that BB′, CC′ and HH′ are concurrent, where 
H and H′ are the orthocentres of triangles ABC and AB′C′, respectively. 
 [IMO shortlisted problem 1995]

 3. Point C lies on the minor arc AB of the circle centreed at O. Suppose the tangent 
line at C cuts the perpendiculars to chord AB through A at E and through B at F. 
Let D be the intersection of chord AB and radius OC. Prove that CE ⋅ CF = AD ⋅ 
BD and CD2 = AE ⋅ BF.

 4. Two circles P1 and P2 intersect in two points P and Q. The common tangent of P1 
and P2, nearer P than Q, touches P1 and P2 at A and B respectively. The tangent to 
P1 at P intersects P2 at E (distinct from P). The tangent to P2 at P meets P1 at F 
(distinct from P). Let H and K be two points on the rays AF and BE respectively, 
such that, AH = AP, BK = BP. Prove that the points A, H, Q, K, B are all concyclic.
 [AMTI, 2008]

 5. Suppose A is a point inside a given circle and is different from the centre. Con-
sider all chords (excluding the diameter) passing through A. What is the locus of 
the intersection of the tangent lines at the endpoints of these chords?

 6. The circumference of the circle is divided into 8 arcs by a convex quadrilateral 
ABCD, with four arcs lying inside the quadrilateral and the remaining four arcs 
lying outside it. The lengths of the arcs lying inside the quadrilateral are denoted 
by p, q, r, s in counterclockwise direction, starting from some arc. Suppose p + r 
= q + s. Prove that the quadrilateral ABCD is cyclic. [RMO, 2002]

 7. If A, B, C, D are four distinct points such that every circle through A and B inter-
sects or coincides with every circle through C and D, prove that the four points 
are either collinear or concyclic. [Putnam MO, 1965]

 8. The cyclic octagon ABCDEFGH has sides a, a, a, a, b, b, b, b  respectively. 
Show that the radius of the circle circumscribing the octagon is given by, 

1

2
22 2( ).a ab b+ +  [RMO, 2002]

 9. A circle intersects a triangle ABC at six points A1, A2, B1, B2, C1, C2, where the or-
der of appearance along the triangle is A, C1, C2, B, A1, A2, C, B1, B2, A.  Suppose 
B1C1, B2C2 meets at X, C1A1, C2A2 meets at Y and A1 B1, A2B2 meets at Z. Show 
that AX, BY, CZ are concurrent.

 10. In DABC, let D be the mid-point of BC. If ∠ADB = 45° and ∠ACD = 30°,  
determine ∠BAD. [RMO, 2005]

 11. Let ABC be a triangle and D the foot of the altitude from A. Let E and F be on a 
line passing through D such that AE is perpendicular to BE, AF is perpendicular 
to CF, and E and F are different from D. Let M and N be the mid-points of the 
line segments BC and EF, respectively. Prove that AN is perpendicular to NM.
 [APMO, 1998]

 12. Let ABC be a triangle. Let M and N be the points in which the median and the 
angle bisector, respectively, at A meet the side BC. Let Q and P be the points in 
which the perpendicular at N to NA meets MA and BA, respectively, and O the 
point in which the perpendicular at P to BA meets AN produced. Prove that QO is 
perpendicular to BC. [APMO, 2000]

 13. Assume DABC is isosceles with ∠ABC = ∠ACB = 78°. Let D and E be points on the 
sides AB and AC respectively, so that, ∠BCD = 24° and ∠CBE = 51°. Find ∠BED.

 14. Two circles with centres O1 and O2 intersect at points A and B. A line through A 
intersects the circles with centres O1 and O2 at points Y, Z, respectively. Let the 
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tangents at Y and Z intersect at X and lines YO1 and ZO2 intersect at P. Let the 
circumcircle of DO1O2B have centre at O and intersect line XB at B and Q. Prove 
that PQ is a diameter of the circumcircle of DO1O2B.

 15. Let D, E, F be points on the sides BC, CA, AB respectively of DABC. Let R be the 
circumradius of the DABC. Prove that the geometrical inequality: 

  
1 1 1 2

AD BE CF
DE EF FD

s

R
+ +






 + + ≥( ) .

  Where ‘s’ is the semi perimeter of the DABC.
 16. Let ABCDEF be a convex hexagon such that

  ∠B + ∠D + ∠F = 360° and 
AB

BC

CD

DE

EF

FA
. . .=1  Prove that 

BC

CA

AE

EF

FD

DB
. . =1.

 [IMO Shortlisted Problem, 1998]
 17. DABC is scalene with ∠A having a measure greater than 90°. Determine the set of 

points D which lie on the extended line BC for which AD BD CD= ⋅  where  

| BD | refers to the (positive) distance between B and D. [INMO, 1989]

 18. Let ABCD be a cyclic quadrilateral. Let E and F be variable points on the sides 
AB and CD, respectively, such that AE : EB = CF : FD. Let P be the point on the 
segment EF such that PE : PF = AB : CD. Prove that the ratio between the areas 
of triangles APD and BPC does not depend on the choice of E and F. 
 [IMO Shortlisted Problem, 1998]

 19. For three points P, Q, R in the plane, we define m(PQR) to be the minimum of the 
lengths of the altitudes of DPQR  (Note that m(PQR) = 0, where P, Q, R are collinear).

  Let A, B, C be the given points in the plane. Prove that for any point X in the plane,
  m(ABC) ≤ m(ABX) + m(ACX) + m(BCX). [IMO, 1993]

 20. In the convex quadrilateral ABCD, the diagonals AC and BD are perpendicular 
and the opposite sides AB and DC are not parallel. Suppose the point P, where the 
perpendicular bisectors of AB and DC meet, is inside ABCD. Prove that ABCD is 
a cyclic quadrilateral if and only if the triangles ABP and CDP have equal areas.
 [IMO, 1998] 

 21. Circles G1 and G2 touch each other externally at a point W and are inscribed in a 
circle G. A, B, C are points on G such that A, G1 and G2 are on the same side of chord 
BC, which is also tangent to G1 and G2. Suppose AW is also tangent to G1 and G2. 
Prove that W is the incentre of triangle ABC. [IMO Shortlisted Problem, 1992]

 22. Four points are given in space, in general position (i.e., they are not coplanar and 
any three are not collinear). A plane  π is called an equalizing plane if all four 
points have the same distance from π. Find the number of equalizing planes. 
 [Israeli MO, 1995]

 23. Circles G1 and G2 touch each other externally at a point W and are inscribed in a 
circle G. A, B, C are points on G such that A, G1 and G2 are on the same side of 
chord BC, which is also tangent to G1 and G2. Suppose AW is also tangent to G1 
and G2. Prove that W is the incentre of triangle ABC.

 24. Hexagon ABCDEF is inscribed in a circle so that AB = CD = EF. Let P, Q, R 
be the points of intersection of AC and BD, CE and DF, EA and FB respectively. 
Prove that triangles PQR and BDF are similar.

 25. Given a non-equilateral triangle ABC and its circumcircle S; let A′ denotes the 
point of intersection of the tangents to S at B and C; define likewise the points B′ 
and C′.
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   (i) Show that the lines AA′, BB′, CC′ concur.
  (ii)  Let the point of concurrence be K. Let G denotes the centroid of DABC. Prove 

that, KG | | BC, iff 2a2 = b2 + c2 (where a, b, c are the lengths of the sides of 
DABC).

 26. In a disk with centre O, there are four points such that the distance between every 
pair of them is greater than the radius of the disk. Prove that there is a pair of 
perpendicular diameters such that exactly one of the four points lies in side each 
of the four quarter disks formed by the diameters.

 27. ABC is a triangle. On AB and AC as sides, two squares ABDE and ACFG are 
drawn outside the triangle. Prove that, CD, BF and the altitude through A of 
D ABC are concurrent.

 28. Two intersecting circles ∑1 and ∑2 have a common tangent, which touches ∑1 at 
P and ∑2 at Q. The two circles meet at M, and N, where N is nearer to PQ than M. 
The line PN meets the circle ∑2 again at R. Prove that MQ bisects ∠PMR.

 29. In a non-equilateral triangle ABC, the sides a, b, c form an arithmetic progression. 
Let I and O denote the incentre and circumcentre of the triangle 

   (i) Prove that IO ⊥ BI.
  (ii)  Suppose BI extended meets AC in K and D, E are the mid-points of BC, BA 

respectively. Prove that I is the circumcentre of DDKE.
 30. Let a, b, c denote the measures of the sides of DABC, while their respective 

opposite angles be denoted by α, β and γ. If a + b = tan
γ
2

 (a tan α + b tan β), 

prove that, the triangle is isosceles always.
 31. In DABC, ∠A is a right angle. Squares ACDE and ABGF are described on AC and 

AB respectively, externally to the triangle. BD cuts AC in M and CG cuts AB in N. 
prove that AM = AN.

 32. DABC has a right angle at A. Among all points P, on the perimeter of the triangle 
find the position of P, such that AP + BP + CP is minimized.

 33. Let n be an integer ≥ 3. Prove that there is a set of ‘n’ points in the plane, such 
that, the distance between any two points is irrational and each set of three points 
determines, a non-degenerate triangle with rational area.  

 34. 2009 concentric circles are drawn with radii one unit to 2009 units. From a point 
on the outer most circles, tangents are drawn to the inner circles. Discover the 
number of tangents which will have integer measure   in this problem. Also locate 
these tangents.

 35. Given a triangle ABC let I be its incentre. The internal bisectors of the angles A, 
B and C meet the opposite sides in A′, B′, C′ respectively. Prove the inequality 

1

4

8

27
<

′
⋅

′
⋅

′
≤

AI

AA

BI

BB

CI

CC
  [IMO, 1991]

 36. Let P be a point inside DABC and D, E, F be the feet of the perpendiculars from 
P to the lines BC, CA, and AB respectively. Find all P, which will minimize the 

expression 
BC

PD

CA

PE

AB

PF
+ + .

 37. In D ABC, r is the inradius and rA (similarly rB, rC) the radius of the circle, which 
touch the incircle and the sides emanating from the vertex A (similarly B and C). 
Prove the inequality: r ≤ rA + rB + rC.

 38. Let DABC and a point P in its interior be given. Show that at least one of the 
angles ∠PAB, ∠PBC, ∠PCA is less than or equal to 30°.

 39. Let a, b, c denote the measures of the sides of a triangle, prove the following 
inequality a2(a + b + c) + b2(b + c + a) + c2(c + a + b) ≤ 3abc.
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 40. In a triangle of base ‘a’, the ratio of the other two sides is ‘r’ where r < 1. Prove 

that the altitude to the triangle is less than or equal to 
ar

r1 2−






 .

 41. Let A, B, C be a triangle with sides a, b, c. Consider a triangle A1B1C1 with sides 
lengths as a + b/2, b + c/2, c + a/2. Prove the inequality: [A1B1C1] ≥ 9/4 [ABC] in 
the usual notation.

 42. In an acute angled triangle ABC, the internal bisector of ∠A intersects BC at L 
and intersects the circumcircle of DABC at N. From the point L, perpendiculars 
are drawn to AB and AC, the feet of the perpendiculars being K and M respec-
tively. Prove that the quadrilateral AKNM and triangle ABC have the same area.

 43. A Pythagorean triangle is a right angled triangle, in which all the three sides are 
of integer lengths. Let a, b be the legs of a Pythagorean triangle and h be the 
altitude to the hypotenuse c. Determine all such triangles, for which the relation 
1 1 1

1
a b h
+ + =  is true.

 44. If the perimeter of a triangle is given, prove the inequality,

    (i) ∆ ≤
s2

3 3

   (ii) r
s

≤ ⋅

3 3
 

  (iii) R
s

≥
3 3

4 2

  (iv) Hence deduce the inequality: R ≥ 2r
   (v) When does the equality hold (in iv)?
 45. In a quadrilateral ABCD, it is given that AB | | CD. The diagonals AC and BD are 

perpendicular to each other. Prove the following inequalities: 
    (i) AD ⋅ BC ≥ AB ⋅ CD 
   (ii) AD + BC ≥ AB + CD.
 46. Given two non-intersecting circles in a plane. They have two internal common 

tangents and two external common tangents. Show that the mid-points of these 
four tangents are collinear.

 47. Let r1, r2, r3, r4 be the radii of four mutually externally tangent circles. Prove that

  
2 1
2

1

4

1

4 2

r rkk kk

=










= =
∑ ∑ .

Note: This result is known as Descartes’s circle theorem.

 48. In convex quadrilateral ABCD, the diagonals AC and BD are perpendicular and 
the opposite sides AB and DC are not parallel. Suppose that the point P, where the 
perpendicular bisectors of AB and DC meet, is inside ABCD. Prove that ABCD is 
a cyclic quadrilateral if and only if the triangles ABP and CDP have equal areas.
 [IMO, 1998]

 49. Let ABCD be a convex quadrilateral with perpendicular diagonals meeting at O. 
Prove that the reflections of O across AB, BC, CD, DA are concyclic. 
 [USA MO, 1993]

 50. The incircle of triangle ABC touches BC, CA and AB at D, E and F respectively. 
X is a point inside triangle ABC such that the incircle of triangle XBC touches BC 
at D also, and touches CX and XB at Y and Z respectively. Prove that EFZY is a 
cyclic quadrilateral. [IMO Shortlisted Problem, 1995]

Geometry Theory Part-3.indd   217 8/11/2017   2:50:12 PM



8.218  Chapter 8

 51. ABC is a right-angled triangle with ∠C = 90°. The centre and the radius of the 
inscribed circle is I and r. Show that

  AI BI AB r× = × ×2 .

 52. Let AB and CD be two perpendicular chords of a circle with its centre O and ra-
dius r. Let, X, Y, Z, W, in cyclical order, denote the four parts into which the disc 

is thus divided. Find the maximum and minimum of the quantity 
E X E Z

E Y E W

( ) ( )

( ) ( )
,

+
+

 

where E(u) denotes the area of u.
 53. Let, ABCD be a rectangle and M, N and P, Q be the points of intersection of 

line l with sides AB, CD, and AD, BC, respectively (or their extensions). Given 
the points, M, N, P and Q and the length p of side AB.  Construct the rectangle. 
Under what conditions can this problem be solved and how many solutions does 
it have?

 54. Let A, B, C, D be the four given points on a line l. Construct a square, such that 
two of its parallel sides or their extensions go through A and B, and the other two 
sides (or their extensions) go through C and D.

l
A B C D

 55. The diagonals AC, BD of the quadrilateral ABCD intersect at the interior point O. 

The areas of the D AOB and D COD are s1 and s2, respectively, and the area of the 

quadrilateral is s. Prove that s s s1 2+ ≤ . When does equality hold?

 56. M is the mid-point of the hypotenuse AC of a right angled D ABC. The perpen-
dicular MP to AC meets AB produced at P and intersects BC at N. If MN = 3 cm 
and PN = 9 cm. Find the length of the hypotenuse. Also calculate the length of the 
sides AB and BC.

 57. In DABC, AB ≠ AC. The bisectors of ∠B and ∠C meet their opposite sides AC 
and AB at B′ and C′. The two bisectors intersect at I. Prove that, if IB′ = IC′ then 
∠BAC = 60°.

 58. Let ABCD be a rectangle with AB = a and BC = b. Suppose, r1 is the radius of 
the circle passing through A and B and touching CD . r2 is the radius of the circle 
passing through B and C and touching AD.

  Show that r r a b1 2
5

8
+ ≥ +( ).

 59. Let AC and BD be two chords of a circle with centre O and AC and BD intersect at 
right angle at the point M, in the interior of the circle. K and L are the mid-points 
of the chord AB and CD, respectively. Prove that OKML is a parallelogram.

 60. Given a circle of radius 1 unit and AB is a chord of the circle with length 1 unit. 
If C is any point on the major segment, show that

  AC BC2 2 2 2 3+ ≤ +( )

 61. From a point E on the median AD of DABC, the perpendicular EF is dropped to 
the side BC. From a point M on EF, perpendiculars MN and MP are drawn to the 
sides AC and AB, respectively. If N, E, P are collinear, show that M lies on the 
internal bisector of ∠BAC.

 62. Prove that of all straight lines drawn through a point of intersection of two circles 
and terminated by them, the one which is parallel to the line of centres is the greatest.

 63. ABCD is a rectangle. Its diagonals AC and BD intersect at O. A straight line 
through B, intersects DC at E and DA at F. Here, OE = OF.

  Show that 
CD

AF

AF

EC

EC

BC
= = .
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 64. Let P be any point inside the parallelogram ABCD, and R be the radius of the 
circle through A, B and C. Show that the distance from P to the nearest vertex is 
not greater than R.

 65. P is a variable point on the arc of a circle cut off by the chord AB. Prove that the 
sum of the lengths of the chords AP and PB is maximum when P is at the mid-
point of the arc AB.

 66. If A and B are two fixed points on a given circle and XY is a variable diameter of 
the same circle, then determine the locus of the point of intersection of lines AX 
and BY. You may assume that AB is not a diameter.

 67. Consider the two triangles ABC and PQR shown in the figures. In DABC, ∠ADB 
= ∠BDC = ∠CDA = 120°. Prove that x = u + v + w.

A

B

C

b

c

u

w
v

a

D

 

R

M

Q

b

x

x
x

c

a

P

 68. Let, OX and OY be two perpendicular lines meeting at O. A, C are points on OY 
such that OA = 1 unit and OC = b units and B is a point on OX, such that OB = a 
units. BD and CD are drawn perpendicular to OX and OY meeting at D. Circle on 
diameter AD, intersects OX at R1 and R2. Show that OR1 and OR2 are the roots of 
the quadratic equation x2

 − ax + b = 0.
 69. Let ABC be a right-angled triangle which is right angled at A. S be its circum-

cirlce. Let, S1 be the circle touching AB, AC and circle S internally. Let, S2 be the 
circle touching AB, AC and S externally. If r1 and r2 are the radii of circles S1 and 
S2, show that r1r2 = 4 area (DABC).

 70. Let, D, E be points on the side BC of a DABC such that ∠BAD = ∠CAE. If the 
incircle of the DABD and DACE touch the side BC at M and N, show that 

  
1 1 1 1

MB MD NC NE
+ = + .

 71. ABC is an equilateral triangle and E is any point on AC  produced and the equilat-
eral DECD is drawn. If M and N are the mid-points of AD and EB, respectively, 
prove that DCMN is equilateral. 

A

C D

B

N

E

M

 72. Let, M be the centre of a circle and A, B are two points on the circle, not diametri-
cally opposite. The tangents at A and B intersect at C. Let, CM intersect the circle 
in D, and suppose that the tangent through D intersects AC and BC at E and F, 
respectively, as in the adjoining figure.

A

C

D

B

E
N

M

α α

A B

FE D

M

C
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  Show that (a) the area of the quadrilateral ADBM is the geometric mean of the 
areas of triangle ABM and quadrilateral ACBM. (b) The area of pentagon AEFBM 
is the harmonic mean of the areas of quadrilaterals ADBM and ACBM. 

 73. The point P on the side BC of DABC divides BC in the ratio 1 : 2. i.e., BP : PC = 
1 : 2. ∠ABC = 45°, ∠APC = 60°. Calculate ∠ACB. [Without using trigonometry.] 

A

B

C

P

2

1

60°

45°

 74. A line cuts a rectangular region into two regions of equal area. Show that it passes 
through the intersection of the diagonals of the rectangle.

 75. Let A, B, C and D be non-coplanar point such that ABCD is a three-dimensional 
pyramid like solid. Given BA = BC = DB = AC = CD = AD = a unit, R and S are 
the mid-points of CD and AB, respectively. Prove that RS is perpendicular to both 
BA and CD.

 76. In the given figure, plane π and plane S intersect at the line AB. The angle be-
tween the planes π and S, i.e., the dihedral angle ∠πABS is formed. CG is per-
pendicular to the plane π (c on S and G on π) and DG is perpendicular to AB and 
CD is perpendicular to AB. D is the mid-point of AB, BC = AC. If AB = 4 6,  AG 
= 6, ∠CBG = 45° = ∠CAG, then find the length of CG and measurement of the 
dihedral angle ∠SBAπ.

 77. ABCD is a regular tetrahedron, that is, it is a solid with four faces, each of which 
is an equilateral triangle. N and M are the mid-points of the sides AB and CD, 

respectively. Show that NM = 
AB

2
.  If AH is drawn perpendicular to the plane of 

the base DBCD, show that AH = 2 AB.

 78. An equilateral triangle has one side in a given plane. The plane of the triangle is 
inclined to the given plane at an angle of 60°. What is the ratio of the area of the 
triangle to the area of its projection on the plane?

 79. ABCD is a square, and E is a point on AB  extended. CE is joined and F is a point 
on AD, such that ∠FCE = 90°. If the ratio of the area of DFCE and the square 
ABCD is p/q, find BE in terms of side AB of the square. For what values of p/q, 
BE is of rational length?

 80. Problem on electricity: If we have an electrical circuit consisting of two wires 
in parallel with resistances R1 and R2, then the resistance R of the circuit is given 

by the equation 
1 1 1

1 2R R R
= + .  The following diagram helps in finding the values 

of one of R, R1, and R2 given the value of the other two. ∠BOA = 120° and OC
� ���

 

bisects ∠BOA and OA OB OC, ,
� ��� � ��� � ���

and  are marked with numbers (co-ordinated) at 

equal distances as shown in the figure.

  The segment joining the point marked 3(P) on OB and the point marked 6(Q) on 
OA cuts OC at the point 2(R) showing that the sum of the reciprocals of 6 and 3 
is the reciprocal of 2(R).

  Prove that this method works for all points.

A

G

π

Σ

C
B

D

A

B D

C
M

N

H

1   2  3  4   5   6

11
22

33
4

60°
60°

A
O

C

B

P
R

Q
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 81. ABC is a triangle and a square PQRS is inscribed in the DABC with the side PQ 
lying along BC. AD is the altitude from A to BC of the triangle. Prove that 2PQ is 
the Harmonic Mean between BC and AD.

 82. The adjoining drawing shows how a sheet of ruled paper can be used to divide a 
line segment AO into n equal parts (here, into 5 equal parts). With O as centre, 
an arc of radius OA is drawn to intersect the (n + l)th line from AO at B. Explain, 
how OA can be divided into n equal parts. Prove your construction. Assume that 
the lines of paper are evenly spaced.

 83. ABC and A′B′C′ are two triangles in the same plane, such that the lines AA′, BB′ 
and CC′ are mutually parallel. Let, [ABC] denote the area of triangle ABC, with 
appropriate I sign, etc. Prove that

  3[ABC] + [A′B′C] =  [AB′C] + [BC′A′] + [CA′B′]+ [A′BC] + [B′CA] + [C′AB].
 84. ABCD and A′B′C′D′ are square maps of the same region, drawn to different scales 

and super-imposed as shown in the figure. Prove that there is only one point O 
on the small map which lies directly over point O′ of the large map, such that O 
and O′ each represent the same place of the country. Also, give an Euclidean 
construction (Straight edge and compasses) for O.

 [USA MO, 1978]
 85. In a triangle ABC, choose any points K ∈ BC, L ∈ AC, M ∈AB, N ∈ LM, R ∈ MK 

and F ∈ KL. If E1 E2, E3, E4, E5, E6 and E denote the areas of the triangles AMR, 
CKR, BKF, ALF, BNM, CLN and ABC respectively, show that E ≥ 8 (E1 

. E2 
. E3 

. 
E4 

. E5 
. E6)

1/6.

 86. Let, ABC be an acute angled triangle. Three lines LA, LB and LC are constructed 
through the vertices A, B, and C, respectively, according to the following pre-
scription. Let, H be the foot of the altitude drawn from the vertex A to the side 
BC. Let, SA be the circle with diameter AH; let SA meet the side AB and AC at M 
and N respectively, where M and N are distinct from A, then LA is the line through 
perpendicular to MN. The lines LB and LC are constructed, similarly. Prove that 
LA, LB, and LC are concurrent.

 87. ABC is a right-angled triangle at A, and two circles with radii r1 and r2, respec-
tively, touches both AB and AC. One of them touches the circumcircle of ABC 
internally, and the other externally. Show that 4 DABC = r1r2. [INMO, 1993]

 88. Given any acute-angled DABC, let points X, Y and Z be located as follows: X 
is the point where the altitude from A on BC meets the outward facing semi-
circle drawn on BC as diameter. Points Y and Z are located similarly, prove that 
[BCX ]2 + [CAY]2 + [ABZ]2 = [ABC]2. [INMO, 1991]

 89. Let, C1 and C2 be two concentric circles in the plane with radii R and 3R. Show 
that the orthocentre of any triangle inscribed in circle C1 lies in the interior of circle 
C2. Conversely, show that every point in the interior of C2 is the orthocentre of some 
triangle inscribed in C1.

 90. In the figure ABCD is a rectangle, find the radius of all circles.

72

100

D C

BA

A

B

O
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Answer Keys

 Chapter 1  POLYNOMIALS

Build-up Your Understanding 1

 1. x4 − 20x2 + 16 = 0
 2. x3 − 18x − 110 = 0
 3. x4 − 10x3 + 32x2 − 34x + 7 = 0

 5. 
1

2

 8. 1984 

 9. k is a multiple of 3

 10. P(x) = a(x − 2)(x − 4)(x − 8), a ∈ �

Build-up Your Understanding 2

 1. x = 1, 1, 1, 1
 2. x = −1, −2, −3, −4

 3. x = −
1

2

4

3
,  

 4. x = −1

 5. x b a b b= − = − ∈
1

2

1

2
4, , ; ,   where  �

 6. a ∈(−∞, −6) ∪ (2, ∞), b = −2a

 8. 8 6 1 03x x− + =

 9. 64 96 36 3 06 4 2x x x− + − =

 10. (a) 64 96 36 3 06 4 2x x x− + − =

  (b) 8 6 1 03x x− − =

 11. (a) 3 27 33 1 06 4 2x x x− + − =

  (b) x x x6 4 233 27 3 0− + − =

 12. 64 96 36 1 06 4 2x x x− − − =
 13. −3, 24 

 14. 86

Build-up Your Understanding 3

 2. a b c a b c nn n n n2 1 2 1 2 1 2 1− − − −+ + = + + ∈( ) ,  �

 3. −5

 4. 135

 5. 11182 

 6. 
2

3
4,  

 7. x3 − 9x2 + 26x − 24 = 0, 353

 8. 
209

2
334,  

 9. ( , , ) ( , , ), ( , , ), ( , , )x y z a a a= 0 0 0 0 0 0
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AK.2  Answer Keys

 11. ( , ) ( , ), ( , ),

, , ,

x y

i i i i

=

− +









+ −






3 2 2 3

5 51

2

5 51

2

5 51

2

5 51

2 


 12. 16, 81

Build-up Your Understanding 4

 1. −2
 2. 2, −2
 4. −1

Check Your Understanding

 1. 2
 2. 888883
 3. x∈ ∞[ , )3
 4. −5

 6. ± 2

 7. −
3

2

 10. p

 13. a = 3, k = 17
 15. 3
 20. At most one positive root and at most three negative 

roots.
 22. 899

 28. x
abc

ab bc ca
y

abc

ab bc ca

z
abc

ab bc ca

=
+ −

=
− + +

=
− +

2 2

2

, , 

 29. ( , , ) ( , , ) ,x y z a b a b a b= − − ∈where �

 30. ( , , ) ( , , ), ( , , ),

, , , , ,

x y z = − − −

−








 − −

1 3 2 1 3 2

5

13

11

13

7

13

5

13

11

13

77

13











 31. − −
1

3

3

2
, , ,1 4

 33. ( , , ) , ,x y z
a a a

= 





3 3 3

 36. −1970 500,

 37. 41
 40. n = 1
 42. (i) z x y x y z x y4 2 2 2 2 2 2 2 22 2 0− + − + − =( ) ( )

  (ii) ( , ) ( , ), ( , ) ( , ),

[ , ]

x y a a a= ± ± ± ± ∈
−

0 1 1 0

1 1

or where 

 44. 1996002

 48. x2 1

2
−

 49. ( , , ) ( , , ), ( , , )a b c = − −2 0 1 2 0 1

Challenge Your Understanding

 1. P x ax x x x x a( ) ( )( )( ) ( ),= − − − … − ∈1 2 3 29 �  

 2. P x( ) ≡ 0

 6. 5

 7. x x x3 22 2 2+ + +

 12. min( ) ; ( , ) ,a b a b2 2 4

5

4

5

2

5
+ = = − −








 13. a a a ak
k k

k0 1 2

2 1 1

24 4
4 4

3
1= = − =

−
=

− −
, , ,

 16. a b c d e= = = = = −0
1

3

1

3
, or

 17. (x, y) = (0, 0), (19, 95)

 18. (x, y) = (3, 4), (−3, −4)
 19. 8
 20. 105336
 21. 5, 5, −13, 5, 5, 5, −13, 5, 5, −13, 5, 5, 5, −13, 5, 5

 22. 
( ) ( )C A B B C A

B A
1 1 2 1 1 2

1 1

− + −
−

 26. x = − ±2 1 5,

 27. 2008! − 1

 28. 
1 1

2

+ −
+
( )n

n

 29. 
n

n

n+ + −
+

+1 1

2

1( )

 33. ± − ± + ± + − ± − −

± + − − ± − − +

( ), ( ), ( ), ( ),

( ), (

x x x x x x

x x x x x x

1 1 1 1

1 1

2 2

3 2 3 2 ))

 

 37. No

 41. f x f x x x n

f x x x n

n n

n

( ) ; ( ) ( ) , ;

( ) ( ) ,

≡ = − − ∈

= − + + ∈

0 1

1

0

2
0

�

�

 42. f x f x x nn( ) ; ( ) ( ) ,≡ = + ∈0 12
0�

 43. f x f x x nn( ) ; ( ) ( ) ,≡ = + ∈0 12
0�
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Answer Keys  AK.3

 44. f x f x x x x x

m n p

m n p( ) ; ( ) ( ) ( ) ( )

, , .

≡ = − − + +
∈

0 1 12

0where �

 48. Only possible for n = 2 and 4

  

for forn a a a a a n

a a a a a a a

= = + ∈ =
= − +

2 2 4

1 1
1 2

1 2 3 4

, ( , ) ( , ), ; ,

( , , , ) ( , ,

�
,, ),a a+ ∈2 �

 Chapter 2  INEQUALITIES

Build-up Your Understanding 1

 6. 2

Build-up Your Understanding 3

 8. (a) 8 (b) 
81

4

Build-up Your Understanding 6

 1. 1

Check Your Understanding 

 3. 2
 19.  96 for x = 4, y = 2, z = 4.

 24. Yes
 33. a = b = c = d

 34. ( , ) ,x y = − −







1

2

1

2

Challenge Your Understanding

 3. P becomes incentre
 5. Equality never holds
 6. a = b = c

 18. Hypotenues Area= =30 3 6,

 26. a, b, c are negative
 27. a = b = c = d = 3
 31. S ∈ ( , )1 2

 32. 3

 Chapter 4  RECURRENCE RELATION

Build-up Your Understanding 1

 1. a nn
n= ⋅ − ∈−3 2 11 , �

 2. a nn

n

= + −





 ∈

16

5

44

5

1

4
, �

 3. a a n nn1 2 2 1 2= = − ≥, ,

 4. a
n n

a
n

n
n k

k

n

=
+

=
+=

∑2

1

2

11( )
,  

 5. a
n

nn n
= − ∈

−

2 1

22 1
, �

 6. an = (n − 1!) 
1

0

1

kk

n

!=

−

∑

 7. an = n! 4
3

2
−

+







n
n

 8. an = 1 − 2
1 1+ −









( )n

n

 9. a n nn = −( ) − ∈2 1 1( )! , �

 10. a
n n

nn = +
∈

1

1( )
, �

 11. x n nn
n= + ∈−2 12 1( ), �

 12. a
n

n
nn =

−
∈

2

2

1

3
, �

Build-up Your Understanding 2

 1. an = 3

3 1

1

1

n

n

−

− +

 2. a nn n
=

⋅ −
∈

−

1

2 3 11
, �

 3. an

n

n
=

+

−

−

3

1 3

1

1

 4. an

n

n
=

⋅ +
⋅ −

−

−

3 2 1

3 2 1

1

1
 

 6. an
n= −

32

 7. a nn
n= ∈− −22 11

, �

 8. x x nn
n= − − ∈−

1 1 1
2 1

( ) , �

 9. a n n n
a

n

n
nn

kk

n

= + ∈ =
+

∈
=
∑3 1

1

3 11

( ), ;
( )

,� �
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Build-up Your Understanding 3

 1. xn

n n

=
+ −+2 1

3

1 ( )

 2. an = 2 ⋅ 3n − (−1)n

 3. an = (n + 1) 2n−2

 4. an = (29n − 81) (−3)n−3, n ≥ 0

 5. an = 6n + 1
 6. (a) an = 3n+1 − 2n+1

  (b) an = (3 − n) 3n−1 

 7. an = 2 ⋅ (−1)n+1 + 2(n − 1)2n.

 8. an = a + (b − a − 1)n + n2

Build-up Your Understanding 4

 1. b n nn
n= − − ∈+2 11 , �

 2. a n n a n nn
n

k
k

n
n= ∈ = − + ∈−

=
∑2 1 2 11

1

, ; ( ) ,� �

 3. an = 3n + 2n 

 4. a n n n

a a a
n

n

n

= − + ∈
= = = −

2 2 15 11

448

2

5 6

( ), ;

min

�

 5. a n nn
n= − + ∈−2 12 1, �

 6. an = 3n + n2

 7. an = 5 ⋅ 3n + 2n + 3 − 6 ⋅ 2n

 8. an = 2 ⋅ 9n + 7n

 9. a n nn
n= − + ∈( ) ,2 2 3 �

 10. a
n n

nn = − +
∈

1

2 32
, �

 11. Sequence is periodic with period 5. As 2017 ≡ 2 mod 5
  ⇒ x2017 = x2 = 2

Check Your Understanding

 1. (a) an = 3 ⋅ 2n − 2 ⋅ 4n

  (b) an = 2 ⋅ 3n + n2 + 3n − 1
  (c) an = (5n − 9) 3n−1 + 2n+2 
 2. a2017 = 1
 4. an = n ⋅ n!
 5. a2017 = 22015 ⋅ 2018 = 22016 ⋅ 1009

 6. a
n n

n = +
1

1( )
 

 7. a a n n nn1 1 1 1 2= = − − ≥, ( )(( )!),

 8. a
n

n
n = −

−1
 

 9. an = 
1

5

1 5

2

1 5

2

2 2
+







 −

−























n n

 10. a
n

n

n

=
−








− −















+
+








− +

1
2

2 5 2

5

1 5

2

2
5 2

5

1 5

2

!















n

 11. xn = cos(2n arc cos x0)

 14. a a n n

a n n n n

n

k
k

n

1

2 3 2

1

9 6 1 2

12 24 13 32 1

= = + ≥

= + + + ≥
=
∑

, , ;

, .

 15. a a
n n

nn1 0
1

1
2= =

−
≥,

( )
,

 16. c c
n n

n
n

a b c
n

a b

n

n

k k k n
k

n

k

1

1

9
3 1 3

2 5
2

29

72

1

3 2

= =
+ +
+

≥

= −
+=

∑

,
( )( )

, ;

( )
; kk k

k

c =
=

∞

∑ 29

721

 17. an
nn= −22

 18. an
n=

−





−

10
2

1

2 2

 19. an = 2 2
1

2
1

2 1

2

0

1n n
k

n k

k

n( ) ( )−
+

− −

=

−
+ ∑

 20. an = n
k

k 20





=

∞

∑
  or an = 2n − S2(n), where S2(n) denote sum of the

binary digits of n.

Challenge Your Understanding

 2. xn = 1

5

1

5
5 10

2− −( )x
n

 3. an
n= −−2

1

2
2 1

 4. ( ) ( ) ( )a n b n c n+ + ⋅ −2 2 3 7 2 3

 5. a
n

n

n nn
n

n
= − − ⋅

⋅

−
−














∀ ∈( ( ) )1 1

1

2

1

1

2

�

 6. (b) 
π
12

⋅

 7. Tn = n! + 2n, n ≥ 0

Z01_Olympiad Mathematics_Answer Keys.indd   4 8/10/2017   7:10:07 PM



Answer Keys  AK.5

 8. a
a a

a a
n

n n

n n=
+ + −
+ − −

− −

− −

( ) ( )

( ) ( )

1 1

1 1

2 2

2 2

1 1

1 1

 9. a2017 = 20172

 10. an
n n=

−
+ +

+
−

4 29 15

2 29
5 29

4 29 15

2 29
5 29( ) ( )

 11. pn = 6 − 2n, qn = 2n−1 − 2

 12. a n b nn
n

n
n= − + = +( ) , ( )1 2 2 5 2 2

 13. 2 122007 +  

 14. xn = ±
=

−

∑1

0

1

n
k

k

n

!
!, here for each term we can choose any 

sign. 

 15. Pn(x) = x

x

−
−

2017

2019
 [(x − 2018)n −1]

 Chapter 5  FUNCTIONAL EQUATIONS

Build-up Your Understanding 1

 1. f (x) = 0

 2. f x
x x

x x
( )

( )
=

− +
−

3 1

2 1

 3. 6044

 4. f (x) = 1
 5. f (x) = a cos x + b sin x

 6. f x
x

x
( ) =

+
−

1

1

 7. f x
x x x

x x
( )

( )
=

+ + −
−

2 5 2

24 1

3 2

Build-up Your Understanding 2

 3. f (x) = x
 4. f (x) = 0;  f (x) = x
 5. No such function exist!

Build-up Your Understanding 3

 1. 21992

 4. 21996 + 1

 6. f x x( ) = −
3

2
 7. f (x) = x + c

 8. f x
x

( ) =
+
1

1

Build-up Your Understanding 4

 1. f (x) = cxax

 2. f x ax b( ) = +2

 3. f (x) = 1;  f (x) = ax − 1
 4. f (x) = ax ln| x |

 5. f (x) = 0; f x a
x

bx
( ) =

+
2

2 , where b∈ +�

 6. f (x) = tan(ax)

Build-up Your Understanding 5

 1. P(x) = x

 2. f x
x

x
( ) = −

+1

 3. No such function exist!

Check Your Understanding

 1. f x
x

c
( )

( )
=

−
−

1

1

3

 2. 
2011

2012
2013,

 4. 1173
 5. cos(( ) ) (cos ) sin(( ) ) (sin )4 1 4 1k x f x k x f x+ = ⇔ + =

 6. (b) min(a) = 3

 7. 
n−1

2

 8. 
2

1n n( )+
 9. 9

 12. f x x f x
x

( ) ; ( )= =
1

 13. f (n) = n
 14. f (x) = x; f (x) = x + 1
 15. f (x) = x

Challenge Your Understanding

 1. P(x) = (x − 2)(x − 4)(x − 8)(x − 16)

 2. f (x) = ax + b + c; g(x) = ax + b; h(x) = ax + c
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 3. f x
x

( )
( )

= −
+

2

1 5

 4. f n

n n

( ) =
+







 −

−























1

5

1 5

2

1 5

2

 5. ( , , ) ( , , ), , ,x y z = 





0 0 0

1

2

1

2

1

2

 6. f x x g x x h x x( ) ; ( ) ; ( )= + = = − +
3

2

3

2

5

2

1

2
 7. No
 8. f n n( ) =

 9. f x

x

x

x nn n n n

( )

,

,

( ), ,

=
=

< <

+ − ≤ < ≥











 + + +

0 0

1 0 2

1

2
1 3 2 2 2 12 3 1

 10. 127

 11. f n
n n

n n

m m m

m m m
( )

,

,
=

+ < < ×
− × ≤ ≤



 + +

3 3 2 3

3 3 2 3 31 1

  f (2016) = 3861
 12. f (x) = 1 − x

 13. f x
x

( ) = −1
2

2

 14. f x f x f x x( ) ; ( ) ; ( )= = =0
1

2
2

 15. f n n( ) =

Chapter 6  NUMBER THEORY

Build-up Your Understanding 1

 4. n can be only 2, 5, 11, 29 and corresponding expression 
will have values: 1, 3, 6, 25

Build-up Your Understanding 2

 8. 28 at a = 23, b = 5 
 16. 42
 18. (a, b) = (1, 5), (14, 5) 
 24. 3

Build-up Your Understanding 3

 7. p q= =3 2,
 8. 6
 9. 5
 11. (p, q) = (3, 11), (11, 3), (r, r) where r is a prime number
 12. (p, q, r) = (2, 3, 5), (3, 2, 5)

Build-up Your Understanding 4

 1. 1999
 2. 256
 3. 661
 4. 25 × 32 × 5 × 7 × 11 = 110880

Build-up Your Understanding 5

 1. (a) x ≡14 21(mod )

  (b) x ≡1 8(mod )

  (c) No solution
  (d) x ≡ 99 105(mod )

 2. 69
 3. 00
 4. 4
 8. Same as for 7
 13. ( , , ) ( , , ), ( , , ), ( , , ); ,a b c mn n n n mn n n n mn m n= ∈�

Build-up Your Understanding 6

 4. 1024
 5. 49
 6. 143
 7. 0. Also last fi ve digits 03125 
 9. n = odd or multiple of 8
 15. 29348, 29349, 29350, 29351; In general 44100 m + 

29348, 44100 m + 29349, 44100 m + 29350, 44100 m 
+ 29351, m∈�0

 16. x ≡ 653 770(mod )

 17. x ≡ 25 60(mod ), Minimum number of students = 25. 

 18. x ≡ 3930 4080(mod ),  Minimum number of coins
= 3930.

 20. (a) 9  (b) 7
 21. 1

 24. (c) n a ba b= ∈ ∈1 2 3 0, ; ,� �
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Build-up Your Understanding 7

 1. 1
 3. 9 98765432 888888888× = ;  

V E X A T I O N+ + + + + + +
= + + + + + + + =9 8 7 6 5 4 3 2 44

 7. There exist no such b. 

 8. (a) 625 10× ∈n n, �

Build-up Your Understanding 8

 6. x = 100.15, y = 100.95, z = 99.05
 7. 2499
 8. x = 29/12, 19/6, 97/24
 12. 1500
 13. 330
 14. 250
 15. 1210, 1211, 1212, 1213, 1214
 16. 781

 20. 2k n k n( ) max .1 3 12 1+



 ⇒ = ++  But for fi rst it 

depends on n even or odd. 

 21. (i) n∈�    (ii) n kk≠ ∈2 0, �
 22. 43

Build-up Your Understanding 9

 10. (a, b, c) = (0, 0, 0)
 12. 12, 16, 60, 144, 320, 588, 1936.
 13. n = 3, 41, 119
 14. n = 0, 280
 15. 861, 168, 259 and 952 
 18. 3 pages 
 20. (x, y, z) = (0, 0, 0)
 21. (x, n) = (59, 12), (−59, 12) 
 22. (x, y, z) = (0, 1, 2), (3, 0, 3), (4, 2, 5),
 23. (x, y, z) = (1, 1, 18), (−1, −1, 18), (2, 2, 3), (−2, −2, 3)
 24. No solution 
 25. (x, y, z) = (5, 8, 11), (5, 11, 8), (8, 5, 11), (8, 11, 5),

(11, 5, 8), (11, 8, 5).
 26. (x, y) = (−11, 0), (0, 11)
 28. Primitive solution set
  (x, y, z) = (|a2 − 2b2|, 2ab, a2 + 2b2), gcd(a, b) = 1 

Check Your Understanding 

 2. (a) 28 11 32 19 112 109 774 7732 2 2 2 2 2 2 2− − − −, , ,

  (b) 43 9 47 21 223 219 443 4412 2 2 2 2 2 2 2− − − −, , ,  

 4. (x, y) = (9, 4)

 9. n = 12

 10. 1972

 12. (x, y) = (1, 0), (1, −2), (−2, −3).

 13. 600

 16. 36

 18. No such number

 21. N = 2 × 3 × 5 = 30

 27. 1995 

 28. t1 = 2012, t2 = 52 = 25, t3 = 72 = 49, t4 = 132 = 169,
t5 = 162 = 256, t6 = 132 = 169 and so on sum = 429211

 29. Number of medals is 30 and medals awarded on the 
successive days are 16, 8, 4, 2.

 30. (12, 16) , (4, 48)

 31.  (a, b, c, d) = (1, 1, 2, 6); (2, 2, 2, 5); (2, 2, 3, 3) 

 32. No such number. 

 36. 729

 38. 44 years

 39. x = y = z = 1 or x = y = z = −2

 40. (a, b) = (9, 1), (8, 2) 

 41. Smallest possible value of c is 675.

 42. There are no consecutive integers of this type.

 43. 86

 51. (x, y) = (20, 40); (8,44)

 52. 3

 57. (x, y) = (9, 11)

 58. Few such six digit numbers are 145690, 235780.
 59. (i)  Min ab = 10 at (a, b) = (1, 10), (10, 1); (ii) Min ab 

= 20 at (a, b) = (4, 5),(5, 4)

Challenge Your Understanding

 3. The Funny Numbers’ are 2, 3, 5, 7, 23, 37, 53, 73, 373 
(in all 9 numbers).

 4. (ii) 120 
 6. 142857 × 5 = 714285
 7. 2013
 10. (b, c) = (30, 60), (35, 140), (36, 180), (38, 380), (39, 

780)
 12. 550, 803 
 15. (a, b) = (18, 1)
 16. T = 174, 175, 339, 505
 17. 1978, 1981, 1984, 2002 
 18. The sequence which is square free is
  202, 291, 445, 581, 869, 949, 1207, 1273, 1403, 1711, 

1643, 1739, 1763 (13 terms)
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 19. 15032 = 2259009
 20. n + 1
 21. n = 1, 3
 25. 1989
 26. (i)  For every n, there exits Sn. Defi ne LCM (1, 2, 3, …, n)

= l.
  Now S nn

l l l l= { , , , ..., }1 2 3

  (ii) No
 27. 337
 30. F4 = 3
 32. n∈�
 37. 2, 3, 6
 38. 5, 6, 7, 7, 8, 10, 12, 13, 14, 15 

 44. (a, b, c) = (2, 4, 13), (2, 5, 8), (3, 3, 7)
 45. (2, 2, 3), (1, 3, 8), (1, 4, 5), and their permutations.
 47. B = {2, 3, 4, 5, 6}, {2, 5, 8, 9}, {3, 4, 6, 10} 
 50. 1996002

 51. ( , ) ( , ),
( )( )

,
( )

,

( )
,

( )( )

m n a a
a a a a

a a a a

≡ −
+ + +








+ + +

1 2

2

1

2

1

2

1 2

2






 ∈, a �

 54. n = 1, 2 

 57. Write each of the terms of these sequences in (mod 8) 
and use the proof by induction to show the result.

 59. 12 

Chapter 7  COMBINATORICS

Build-up Your Understanding 1

 1. (a) 1296, (b) 360
 2. 9(9!)
 3. 240
 4. 376
 5. (a) 60,  (b) 107
 6. 286
 7. 15

 8. Time required = 
15 15 15 1

2

× × −
× 

10

60 60×
 = 

1687

360
 hrs.

  ≈ 4 hrs. 41 min. 10 Seconds > 4
1

2
 hrs.

 9. 720
 10. 18
 11. 64800
 12. 505
 13. 69760
 14. 162
 15. 3 × 44

 16. 45 × 104

 17. 216
 18. 36
 19. 108
 20. 1620
 21. 103
 22. 154
 23. 1020
 24. 4 ⋅ 7!
 25. 17 ⋅ 8 !
 26. 8!
 27. 2n

 28. 91.
 29. nm − 1
 30. 6n − 3n

 31. 300
 32. 300
 33. 31
 34. 15
 35. 134055
 36. 1769580
 37. 6399960
 38. 2239986
 39. Except 5k + 1, for k = 0, 1, 2, ..., 199, all numbers will 

be unmarked.
 40. 180

Build-up Your Understanding 2

 1. (i) n = 5 (ii) n = 7
 2. 8
 3. 20C10

 4. (a) 20 (b) 21  (c) 10

 5. 25
5

24
4C C,

 6. 10
 7. 226
 8. 378
 9. 16
 10. 1512
 11. 124
 12. 292
 13. 135
 15. 20C10 ⋅ 2

10

 16. (i) 243 (ii)1, 10, 40, 80, 80, 32
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 17. p = 5C4 ⋅ 
2C1 = 10, q = 5C2 (

2C1)
3 = 80

  r = 5C0(
2C1)

5 = 32
  ⇒ 2q = 5r, 8p = q, and 2(p + r) > q
 18. 6

 19. 1023

 20. 126

 21. (p + 1)n − 1

 22. 2n − 2n − 2

 23. (m + 1) 2n − 1
 24. 3150

 25. 25

 26. nC2

 27. 37

 28. 20

 29. 9

 30. 16

 31. 126

 32. 6

 33. 72

 34. 5

 35. 945

 36. nm

 37. 91

 38. n−1C2

 39. mk

 40. 22n

 41. 2n–1

 42. nC2 ⋅ 3
n−2

 43. 
( )( )( )n n n+ + +1 2 2 3

6
 44. 23
 45. 63 121 31 3 7 11 312 1 2× × = ⋅ ⋅ ⋅
 46. 84
 47. 276
 48. 11C6

 49. 
( )!

( )!( )!

m n

m n

+ −
− −

2

1 1

 50. 5
 51. Total number of di� erent tickets = 30 and number of 

selection = 30C10

 52. 10C3

 57. 15
 58. 29 − 1
 59. 560
 60. 140

Build-up Your Understanding 3

 1. (a) 4
  (b) 3
  (c) 8
 2. 6P3

 3. 6
3

5
3

4
3P P P× ×

 4. 50400
 5. 10C6 × 4C3 × 9!
 6. 900
 7. 40
 8. 30

 9. 
11

2!

8

2!

!

( )
,

!

( )3 2
12×

 10. 8!4!
 11. (a) 7!, (b) 6!, (c) 5!, (d) 6!2!
 12. 8C4 · 4!
 13. 719
 14. 3600
 15. 1800
 16. Number of ways = n + n2 + … + nr

 17. 
n n

n

n

n

r n r r( )− + +−
−

−
−

1 11

1

1

1
and 

 18. 2
 19. 7C2 2

5

 20. 20
 21. 2(n!)2

 22. 2 · 6! · 6!
 23. 20

 24. 
10

2

!

 25. 3n2 − 2n

 26. m(m − 1)(n − 5)m–2

 27. 1440

 28. 172800

 29. 528

 30. 1620

 31. 43200

 32. 10
3 2 7C × × !

 33. 24

 34. 185

 35. 2454

 36. 758

 37. 917

 38. 89

 39. 236
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 40. (a) 213564,  (b) 267th

 41. 24678

 42. (i) 72nd,  (ii) 51342

 43. 3840

 44. 32

 45. 8

 46. 6(7! − 4!)

 47. 8!

 48. 
9

3

!

 49. 36 553×

 50. 14
5C

Build-up Your Understanding 4

 1. 10!
 2. 20!, 2 18⋅ !

 3. (a) 240 (b) 480
 4. (a) 2 18⋅ !  (b) 19 2 18! !− ⋅

 5. (a) 2 18⋅ !  (b) 19 2 18! !− ⋅

  (c) 18 1 2 19 2 18! ( / ){ ! !}− ⋅

 6. (i) (2n – 2)! × 2  (ii) (2n − 2)!

 7. 10C2 × 2! × 10C8 × 8!

 8. 288

 9. 
24

25
 10. 18
 12. 3
 13. 225
 15. 30

 16. 
( )!

!

n

r

−1
 

Build-up Your Understanding 5

 1. 
15

8 4 3

!

! ! !

 2. 
( !)

( !) ( !)

8

3 22

 3. 
14

2 3 45 2

!

( !) ( !) !⋅ ⋅

 4. 
k

3!

 5. 
16

4 5 7

!

! ! !

 6. 25200
 7. 2940
 8. mn − m
 9. 203, 192

 10. 
10

2 3 5

!

! ! !

 11. 210
 12. 125, 60
 13. n! nC2

 14. 57

 15. L = p+qCp ⋅ 
qCq, M = p+qCp ⋅ 

qCq × 2!, N = p+qCp ⋅ 
qCq ⋅ ⇒

L = M/2 = N
  ⇒ 2L = M = 2N

Build-up Your Understanding 6

 1. 286
 2. 4851
 3. 17C2

 4. 27C3

 5. 28
4C

 6. 13

 7. 
11

3











 8. 210
 9. 100
 10. 56
 11. 330
 12. 52C2

 13. 27C4

 14. 685
 15. 5C2 ⋅ 

10C3 + 9C2 ⋅ 
6C3 + 23C2 ⋅ 

4C1+ 24C3 ⋅ 
3C1

 16. The possibilities are (0, 10, 0), (2, 7, 1), (4, 4, 2) and 
(6, 1, 3), where (r, b, g) denotes the number of red, blue 
and green balls.

 17. 
( )( )n n+ +2 1

2

 18. (i) 35 (ii) 47  (iii) 
8

2










 19. 110551
 20. 9C4

 21. 93C3

 22. 10
 23. 246
 24. 15
 25. 27
 26. 1875
 27. 64
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 28. 2
15

6

12

3

13

4
10 

























  

 29. 2
15

6

12

3

13

4
9 



























 30. 2
10 99

9
10

0

9
−

=









 −








∑ r

r r r

Build-up Your Understanding 7

 1. 28
 2. 134
 3. 33
 4. 6 5 5 4n n n n− − +
 5. 738
 6. 99989526
 7. (a) (1 + 26 + 262 + 263) ⋅ (1 + 10 + 102 + 103 + 104) −1
  (b)  (1 + 26 + 262 + 263 − 85) ⋅ (1 + 10 + 102 + 103

+ 104) −1
 8. 5
 9. 24 134×

 10. 2301
 11. 7! – 5! – 5! + 3!
 12. 169194
 13. 864
 14. 10
 15. 485
 16. 540

 17. 9
2

9
3360 540 58320C C⋅ + ⋅ =

 20. 5400
 22. 191
 23. 101
 24. 233
 25. 144
 26. 44

Build-up Your Understanding 8

 1. 2n − 2

 2. 2 11n− −
 3. 771
 4. 540
 5. 141
 6. 462

 7. 
12

4

 !
!

 8. 9C5

 9. 7000

 10. 440

 11. (i) (ii) (iii) (iv)19
3

15
3

11
3

7
3C C C C

 13. (a) 315 − 3 · 215 + 3,  (b) 2250
 14. 11508
 15. 12C5 ⋅ 2

7

 16. (i) 150 (ii) 6 (iii) 25 (iv) 2
 17. 1275

 18. 
25

5

!

!

 19. (a) 49 (b) 186480 (c) 4 × (9C4)
2 = 63504

Check Your Understanding

 8. 2 × 4n−1

 10. 2n − 1
 11.  (i) 11111111111
  (ii) 999999999999

 15. 45 10 1× × −n n

 16. f n

n
n

n
n

( )
, (mod )

, (mod )

=

+
≡

+
≡










2

2
0 2

1

2
1 2

 18. For

minmum number o

a b

c

m m n n

p p

= + < ≤ = + < ≤

= + < ≤

2 0 2 2 0 2

2 0 2

α α β β

γ γ

, , , ,

, , ff cuts

  = + + +m n p 3
 19. 462
 26. First player has the advantage if he start with 8.
 28. 229
 29. 35, 37, 40, 8, 0 for m = 0, 1, 2, 3, 4 respectively. 
 30. 2047
 31. 37
 32. 4351
 33. 840
 34. 715
 35. 171700
 36. The equal score can be either 4 or 8 according as the 

number of participants of std. XII is either 7 or 14.
 37. Each of the smaller triangles can cover only one vertex 

of the larger triangle.
 43. 1405
 46. 450
 48. m2n2

 49. 12
 50. 36
 51. 32
 52. 7
 53. (n + 1)2
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 54. 56
 55. 147
 56. 57
 58. 473
 59. 8
 60. 12

Challenge Your Understanding

 3. (i) 3  (ii) 3
 5. Consider the following 18 subsets: {1}, {4, 100}, {7, 

97}, …, {49, 55}, {52}. Now from each subset pick 
one element. 

 6. N − 2
 7. 18

9 1 511C − ,

 8.  (i) mn, (ii) mCn × n!, (iii) mCn, (iv) m+n−1Cn

 9. 262
 29. 60

 30. ( ) (( )!)−







 −











=
∑ 1 2

0

r

r

n n

r
n r

 35. an
n n n= − + + + −+ +1

6
2 1 2 3 2 31 1( ( ) ( ) ( ) )

 38.  EDACB
 39. 315
 41. 6
 42. 6 days and 36 medals
 46. n ≡ ±1 3(mod )
 47. 8
 48. 33

 Chapter 8  GEOMETRY

Build-up Your Understanding 1

 1. 30°, 60°, 90°
 2. No
 3. 50°, 70°, 60°
 4. 45
 5. 12°
 7. 10
 8. 30
 9. 9
 10. 15 and excluded angle 130°
 11. 13
 12. 3
 13. 540°
 18. 12, 12, 3; 5, 5, 10

 19. ( , , ) ( , , ), ( , , ), ( , , ), ( , , ),

( , , ), ( ,

a b c ≡ 3 7 42 3 8 24 3 9 18 3 10 15

3 12 12 4 55 20 4 6 12 4 8 8 5 4 20

5 5 10 6 4 12 6 6 6

, ), ( , , ), ( , , ), ( , , ),

( , , ), ( , , ), ( , , )

 20. ∠BCA = 60°, ∠DBC = 10°.

Build-up Your Understanding 2

 4. 30°.
 8. 45°
 9. 1
 10. 45°
 12. 2
 13. 60°
 17. 45°
 18. 30°

Build-up Your Understanding 3

 1. 6

 2. 7

 3. 35

 5. Point of intersection of diagonals AC and BD

 8. P is the point of intersection of perpendicular bisector 
of AB with the line in both cases.

 11. Take refl ection of A in both arms of the angle and Join 
refl ections. Let this line meets arms of the angle at B 
and C respectively. Now make the triangle ABC. 

 14. Open the cube as shown in the following figure.

A

C′

CB

D

B′

C′′ B′′′

D′′  A′′′

B′′

A′′

D′A′

  This is a fl at diagram of a cube net, such that you 
could cut it out and fold it to make the cube. In the fig-
ure there are two acceptable routes, we can easily see 
that there are in total six such routes. Through each 
root we will travel 5  units assuming side of the cube 
1 unit.
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 15. Open the surface so that glass become fl at as shown in 
the figure.

Inner surface

Outer surface A

B

 16. Cut the cone through a generatrix passing through the 
vertex and make it fl at as shown:

    (i) For θ < 30° 

    

A
C

B

l

l sin

O

θ

θ

   (ii) 

A A′M

B
l sin2π

O

θ

l l
α

2
α

  (iii) 

A

O

B

M

  
α

π θ
π θ= = =

arc

radius

2
2

l

l

sin
sin

  ⇒ ′ = = =AA AM l l2 2
2

2sin sin( sin )
α

π θ

  Shortest path is AA l l′ = ≤2 2sin( sin )π θ , for θ < °30 .  

  Shortest path is AOA l l′ = >2 2 sin( sin ),π θ  for θ ≥ °30 .

 17. Cut the cone through a generatrix passing through the 
vertex and make it fl at as shown:

    (i) 

A
C

B

l

l sin

O

θ

θ

   (ii) 

A A′M

B

l sin

l sin

2π

l

L

O

θ

α

α

  (iii) 

A

O

B

L

  Let AL be perpendicular to OA′ at L. 

  Then AL l l l= = < < 







−sin sin( sin ) , sinα π θ θ2
1

4
1for

  AL will be the shortest path.
 19. P will be at the vertex of the triangle containing small-

est angle.

Build-up Your Understanding 4

 1. 
λ

µ λ( )1−

 2. 19

96

 3. 315

 4. 4

13

 6. 4500.
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 8. (i) 
AR

RD

BS

CS
=

−
−

=
−
−

2 1

2 1

2 1

2 1

µ
λ

λ
µ

;  

 9. 
9

5

 11. [ABCDE] = ( 5 + 5)/2

 13. 
27

160

 14. 441

 15. 
7

5
 17. Equality holds when AP

PD

BP

PE

CP

PF
= =

Build-up Your Understanding 5

 1. 
9

4

 2. 
3

2

 10. PQ = 4, XY = 2
 11. 45°–45°–90° triangle and quadrisected angle is right.

 20. 12 cm

 25. 20°

Build-up Your Understanding 6

 1. 5 2  

 3. a2 5
 4. 108
 5. 15

 6. 7 2 6 2,

 7. 4 13

5

126

25
;

 8. (ii) OG R a b c= − + +2 2 2 21

9
( )

Build-up Your Understanding 7

 6. 
1

5

 7. 1 unit square

 8. 
140

3
 unit square

 11. 20 unit square
 12. Equality holds if and only if L coincides with A, i.e., 

AB = AC.

Build-up Your Understanding 9

 2. 
AX

XD

n m

m
=

+( )1

 7. 3

3
.

Build-up Your Understanding 10

 5. 4 3 3+
 6. 60°

 11. 
EG

EF

t

t
=

−1

Build-up Your Understanding 11

 3. 
5

3

 7. 5 2

Build-up Your Understanding 12

 9. 11 units

 12. 
2 2 3 1 2 3 1

2

2 3
2

r r r r r r

r r

+ + +( )
+( )

Build-up Your Understanding 14

 3. 
25 3

4 3 3+
 9. Equality for C being the mid-point of the major

segment.

Build-up Your Understanding 15

 5. 
313

338
 8. (5, 5, 6), (5, 6, 5), (6, 5, 5)

Build-up Your Understanding 16

 6. Shortest side is 10 units and area is 84 sq. units. 
 7. P is the centroid of ΔABC.

Build-up Your Understanding 17

 6. a = 13, b = 15, c = 14

 18. (i) 42  (ii) 65/8

 22. (i) r = xyz

x y z+ +
;  R = 

( )( )( )

( )

x y y z z x

xyz x y z

+ + +

+ +4
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Build-up Your Understanding 18

 3. Let ‘a’ be the measure of a side, b the shortest diagonal 
and d the longest diagonal of a regular nonagon, then
a + b = d.

 9. 7

Check Your Understanding

 4. The locus is the solid annulus centered at P with inner 
radius 1 and outer radius 2.

 7. 
3

5

 12. Locus of P is a circle passing through A, E, C.

 13. 
28

3

 21. Locus is a circle with OB as a diameter.

 27. 45°.
 43. The minimum is attained when ADPE is a cyclic

quadrilateral. 

 45. 
1

3
 

 48. Equality holds when b = c, i.e., when the right ΔABC is 
isosceles also.

 50. Equality holds when a = b = c, i.e., when the Δ is equi-
lateral.

 51. Equality holds when K, L, M are the mid-points of the 
sides BC, CA, AB respectively.

 52. ABCD is a rhombus.

  57. Regular polygon with 3, 4, or 6 sides are possible. 

 58. 996

 62. 90°

 66. Perimeter of KLMN = + > =2 2 2 2( ) π Circumfer-
ence of the circle.

 69 
p qsin sin sin sin

sin( )

2 2

2

α β α β
α β
−
−

 70. 120°

Challenge Your Understanding

 5. Locus is a line perpendicular to OA, at A′ where A′ be the 
point on OA extended beyond A such that OA × OA′ = r2, 
O be the center of the given circle and r be the radius.

 10. 30°

 13. 12°

 22. There are exactly 7 equalizing planes.

 32. PA + PB + PC is minimized when P coincides A.

 34. There are only two tangents with integer length, i.e., 
441, and 1960.

 36. When P is the incentre of ΔABC.

 43. The only triplet forming a right triangle according to 
the given condition is the 3 − 4 − 5 triangle.

 52. If O be in Z part then maximum 
π
π
+
−

2

2
 and minimum 

1. If O be in Y part then maximum 1 and minimum 

π
π
−
+

2

2
. 

 56. AB BC CA= = =
12

5

24

5
12; ;  

 53. Construct a right ∆PSO (by constructing a semi-circle 
on PQ, we get ∠PSQ = 90°) with ∠PSQ = 90° and PS 
= p.

   Through M and N draw lines MX and NY paral-
lel to PS and through P and Q draw lines PR and QZ 
perpendicular to MX and NY meeting them at ABCD. 
ABCD is the required rectangle.

M N P

D

A

R

Z
B

X

Y

C

S

p 90°

Q

  In the right angled ΔPQS, PQ is the hypotenuse hence 
PQ > PS = p. Thus, the construction of ΔPSQ is pos-
sible only if PQ > p.

   By constructing the semicircle on the other half 
plane determined by l, we get a rectangle say A′B′C′D 
which is the refl ection of ABCD about the line l. Thus 
there are two solutions. 

 73. 75°

 76. 60°

 78. 2 : 1

 90. 36, 16, 
81

4

* Comprehensive solutions to all exercises are available on the companion website.
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Appendix
NOTATIONS, SYMBOLS AND DEFINITIONS

A.1 GlossAry of notAtion

 The set of natural numbers
0 The set of all non-negative integers.
P The set of  all prime numbers which are 2, 3, 5, 7, 11, 13, 17, . . .
 Note that 1 ∉ P. We call 1 a ‘unit’, it is neither prime nor composite.
n  The collection of all remainders of any integer divided by ‘n’ which 

are 0, 1, 2, 3, …, n - 1
 The set of integers
 The set of rational numbers
 The set of real numbers
 The set of complex numbers
|A| Cardinality of a set A or the number of elements in A
[a, b] All x such that a ≤ x ≤ b (closed interval)
]a, b[ or (a, b) All x such that a < x < b (open interval)
a | b a divides b or b is a multiple of a
a  b a does not divide b
(a, b) Greatest common divisor (gcd)
⎣ x ⎦ Integer part of x or the largest integer less than or equal to x
{x}  Fractional part of x
a ≡ b (mod c) ‘c’ divides (a - b)
⇔ If and only if (iff)
≈ Approximately equal to
≡ Identically equal to 
Σai Sum a1 + a2 + a3 + … + an

n! n factorial, i.e., 1 ⋅ 2 ⋅ 3…n
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m

n
Cm

n








or   The binomial coefficient; the number of combinations of m things 

taken ‘n’ at a time, i.e.,
m

n

m

n m n









 = −

!

!( )!

f o g Composition of the functions f and g; f o g(x) = f (g(x))
[ABC] Area of ∆ABC
AB The segment AB; also the length of segment AB

AB
� ���

 The vector AB

A.2 GlossAry of symbols

α alpha β beta
γ gamma δ delta
ε epsilon θ theta
ι iota k kappa
λ lamda μ mu
ν nu π pi
ρ rho σ sigma
τ tau ψ psi
ω omega φ phi

A.3 GlossAry of Definitions

Trigonometry

 1. Trigonometric ratios of the sum and difference of two angles:
•	sin(A + B) = sin A cos B + cos A sin B
•	sin(A - B) = sin A cos B - cos A sin B
•	cos(A + B) = cos A cos B - sin A sin B
•	cos(A - B) = cos A cos B + sin A sin B

•	 tan(A + B) = 
tan tan

tan tan

A B

A B

+
−1

•	 tan(A - B) = 
tan tan

tan tan

A B

A B

−
+1

 2. Product to sum formulae:
•	2sin A cos B = sin(A + B) + sin(A - B)
•	2cos A sin B = sin(A + B) - sin(A - B)
•	2cos A cos B = cos(A + B) + cos(A - B)
•	2sin A sin B = cos(A - B) - cos(A + B)

 3. Product to sum formulae:

•	sin C + sin D = 2
2 2

sin cos
C D C D+ −

•	sin C - sin D = 2
2 2

cos sin
C D C D+ −

•	cos C + cos D = 2
2 2

cos cos
C D C D+ −

•	cos C - cos D = 2
2 2

sin sin
C D D C+ −
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Notations, Symbols and Definitions   AP.3

 4. Trigonometric ratios of multiple angles:

•	sin 2A = 2sin A cos A = 
2

1 2

tan

tan

A

A+
 

•	cos 2A = cos2A - sin2A = 2cos2A - 1 = 1 - 2 sin2A = 
1

1

2

2

−
+

tan

tan

A

A
•	 tan 2A = 

2

1 2

tan

tan

A

A−
•	sin 3A = 3sinA - 4sin3A = 4sin(60° - A) sin A sin(60° + A)
•	cos 3A = 4cos3A - 3cos A = 4cos(60° - A) cos A cos(60° + A)

•	 tan 3A = 
3

1 3

3

2

tan tan

tan

A A

A

−
−

= tan(60° - A) tan A tan (60° + A)

 5. Maximum and minimum values of some trigonometric functions:
•	Minimum value of a2tan2 θ + b2cot2 θ = 2ab.

•	Maximum and minimum value of a cos θ + b sin θ are a b2 2+  and − +a b2 2  
respectively.

•	 If α β
π

, ,∈





0

2
 and α + β = c (constant) then the maximum values of the 

expression cos α cos β, cos α + cos β, sin α sin β and sin α + sin β occurs when 

α β= =
c

2
.

•	 If α β
π

, ,∈





0

2
 and α + β = c (constant) then the minimum values of the 

expression sec α + sec β, cosec α + cosec β, tan α + tan β occurs when α β= =
c

2
.

•	 If A, B, C are the angles of a triangle then maximum value of sin A + sin B + 
sin C and sin A sin B sin C occurs when A = B = C = 60°. 

•	 In case a quadratic in cos θ or sin θ  is given then the maximum or minimum 
values can be interpreted by making a perfect square.

 6 Trigonometric ratios of the sum of three angles:
•	sin(A + B + C) 

= sin A cos B cos C + cos A sin B cos C + cos A cos B sin C - sin A sin B sin C
•	cos(A + B + C) 

= cos A cos B cos C - sin A sin B cos C - cos A sin B sinC - sin A cos B sin C

•	 tan(A + B + C) = 
tan tan tan tan tan tan

tan tan tan tan tan tan

A B C A B C

A B B C C A

+ + −
− − −1

 7. Sum of sines or cosines of n angles:
•	sin α + sin(α + β) + sin(α + 2β) + … + sin(α + (n - 1)β) 

= 

sin

sin

sin ( )

n

n

β

β
α

β2

2

1
2



























+ −





 .

•	cos α + cos(α + β) + cos(α + 2β) + … + cos(α + (n - 1)β) 

=



























+ −







sin

sin

cos .( )

n

n

β

β
α

β2

2

1
2
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 8. Conditional identities:
  In a triangle ABC we have following:

•	sin A + sin B + sin C = 4
2 2 2

cos cos cos
A B C

•	cos A + cos B + cos C = 1 4
2 2 2

+ sin sin sin
A B C

•	sin 2A sin 2B sin 2C = 4 sin A sin B sin C

•	 tan A + tan B + tan C = tan A tan B tan C

•	 tan tan tan tan tan tan
A B B C C A

2 2 2 2 2 2
1+ + =

Geometry

 1. Pythagoras’s theorem and its converse: 
  Given any DABC, with sides a, b, c and angles ∠A, ∠B, ∠C, we have:

•	a2 + b2 > c2 ⇔ ∠C is acute,
•	a2 + b2 = c2 ⇔ ∠C is a right angle,
•	a2 + b2 < c2 ⇔ ∠C is obtuse.

 2. Apollonius theorem:
  If D is the mid-point of the side BC of ∆ABC, then, AB2 + AC2 = 2(AD2 + BD2)
  An important consequence:
  4AD2 = 2AB2 + 2AC2 - BC2 or 4AD2 = 2c2 + 2b2 - a2 (where D is the mid-point 

of side BC)

 3. For problem solving following are very useful facts:
  If G is the centroid of ∆ABC then

•	AG2 = 
1

9
 (2AB2 + 2AC2 - BC2)

•	BG2 = 
1

9
 (2BC2 + 2AB2 - AC2) 

•	CG2 = 
1

9
 (2BC2 + 2AC2 - AB2) 

•	 m m ma b c
2 2 2 3

4
+ + = (a2 + b2 + c2); where ma, mb, mc are medians to sides a, b, c.

•	GA2 + GB2 + GC2 = 
1
3

(a2 + b2 + c2)

•	PA2 + PB2 + PC2 = GA2 + GB2 + GC2 + 3PG2; where P is any point in the plane 
of ∆ABC

 4. Stewart’s theorem:
  Let D be a point on side BC of DABC, and let BD = m, DC = n, AD = d. Then:
  a(d2+ mn) = b2m + c2n (or mb2 + nc2 = ad2 + amn)
  If D is the mid-point of BC, this reduces to Apollonius theorem.
  Another form of Stewart’s theorem: 
  Let BD : DC = p : q. Then (p + q) AD2 + p DC2 + q BD2 = p AC2 + q AB2

c

Dm

b

n CB

A

d
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 5. SAS inequality: 
  In DABC, let the lengths of sides AB, AC be fixed, but let ∠A vary. Then the length 

a of the third side BC is an increasing function of ∠A. That is, the larger the angle 
A, the larger the side a, and conversely.

 6. Angle bisector theorems:
•	 In DABC, let the internal bisector of ∠A meet the opposite side BC at D. Then 

BD : DC = AB : AC.
•	 If D is a point on side BC of DABC such that BD : DC = AB : AC, then AD 

bisects ∠A.
•	AD, BE, CF are the angle bisectors of ∠A, ∠B, ∠C respectively meeting the 

opposite sides at D, E, F, then

BD
ac

b c
DC

ab

b c
=

+
=

+
;

CE
ab

a c
EA

bc

a c
=

+
=

+
;

AF
bc

a b
FB

ac

a b
=

+
=

+
;

•	The internal and external bisectors of ∠A meets the circumcircle at X and Y, 
then XY is the circum-diameter and is perpendicular to BC.

•	The internal and external bisectors of the vertical angles of a triangle divide the 
base in the ratio of the sides containing the angle. These points of division on 
the base are said to be conjugates of each other. The line (base) itself is said to 
be divided harmonically.

 7. Cevian:
  Any segment joining the vertex of a triangle to a point on the opposite side.

 8. Ceva’s theorem and its converse:
  Let ABC be a triangle and X, Y, Z points on lines BC, CA, AB respectively, distinct 

from A, B, C.
  Then the lines AX, BY, CZ are concurrent, iff

  
BX

XC

CY

YA

AZ

ZB
⋅ ⋅ = +1  or equivalently 

sin sin sin

sin sin sin

∠ ⋅ ∠ ⋅ ∠
∠ ⋅ ∠ ⋅ ∠

= +
BAX CBY ACZ

XAC YBA ZCB
1

  Second form of Ceva’s theorem is known as the Trigonometric Form of the Ceva’s 
theorem.

  Sometimes it will be useful to know Ceva’s theorem as 
BX ⋅ CY ⋅ AZ = CX ⋅ AY ⋅ BZ.

  Let X, Y, Z be points on the side lines BC, CA, AB of DABC. Suppose that the 

following equality holds: 
BX

XC

CY

YA

AZ

ZB
. . =1  (Condition for concurrency) 

  Then the lines AX, BY, CZ meet in a point.

Note: The following concurrences are true for any triangle:
•	 The perpendicular bisectors of the sides of a triangle concur (at the 

circumcentre).
•	 The internal angle bisectors of a triangle concur (at the incentre).
•	 The medians of a triangle concur (at the centroid).
•	 The altitudes of a triangle concur (at the orthocentre).

A

B

F

bc
a + b

E
I

D C

ac
a + b

ac
b + c a

bc

ab
a + c

ab
b + c

bc
a + c
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 9. Carnot’s theorem:
  Let Points X, Y and Z be located on the sides BC, CA and AB respectively of 

∆ABC. The perpendiculars to the sides of the triangle at points X, Y and Z are 
concurrent if 

    BX2 - XC2 + CY2 - YA2 + AZ2 - ZB2 = 0 (In ∆ABC)

 10. Menelaus theorem and its converse:
  Let a straight line l cut the sidelines BC, CA, AB of DABC in the points D, E, F, 

respectively. Then the following equality holds: . . 1.BD CE AF
DC EA FB

= −

  (As earlier, the lengths are signed lengths.)
  Let D, E, F be points on the sidelines BC, CA, AB of DABC. Suppose that the 

following equality holds: . . 1.BD CE AF
DC EA FB

= −

  Then the points D, E, F lie in a straight line.
 11. Thales theorem: 
  Let lines AA′, BB′ intersect at the point O, A′ ≠ O, B′ ≠ O, then 
  AB || A′B′ ⇔ OA/OA′ = OB/OB′ (Here a/b denotes the ratio of two non-zero 

collinear vectors)
 12. Bramhagupta’s Theorem:
  If AD is the altitude through A of ∆ABC, and if R is the circumradius of ∆ABC, 

then, AB ⋅ AC = (2R) ⋅ AD 
 13. Napolean triangles: 
  Construct equilateral triangles on sides of triangle ABC either all inwardly or all 

outwardly. Then the centres X, Y, Z of these triangles themselves form the vertices 
of an equilateral triangle called inner or outer Napoleon triangle.

 14. Medial triangle:
  A triangle having vertices at mid-point of sides of a given triangle is called medial 

triangle.
•	Centroid of the triangle and its medial triangle is same.
•	Circumcentre of the triangle is the orthocentre of the medial triangle. 

 15. Pedal triangle and orthic triangle:
  Let ABC be a triangle, P a point and X, Y, Z respectively the feet of the perpen-

diculars from P to BC, CA, AB respectively. Now ∆XYZ is called a pedal triangle 
of ∆ABC corresponding to the point P.
•	The pedal triangle formed by the feet of the altitudes is called ‘orthic triangle’.
•	Perimeter of orthic triangle = 2∆/R (where ∆ is the area and R is the circum-

radius of ∆ABC). It is least among all triangles inscribed in the triangle ABC.
 16. The nine point circle: 
  The feet of the altitudes from A, B, C and the mid-points of AB, BC, CA as well as 

mid-points of AH, BH, CH lie on a circle called the nine point circle. Sometimes 
it is known as mid-point circle. Where H is the orthocentre of the DABC.

 17. Feuerbach’s theorem:
  The nine point circle of a triangle is tangent to the in-circle and all three excircles 

of the triangle.
 18. Euler’s formula:

•	 If O and I are the circumcentre and in-centre of ∆ABC, then, OI2 = R2 - 2Rr 
where R and r respectively the circumradius and in-radius of ∆ABC.

•	Also R ≥ 2r or R/r ≥ 2
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 19. Euler’s line:
  The orthocentre H, centroid G, the circumcentre S of an arbitrary triangle, lie on 

a line called Euler’s line and satisfy HG = 2GS.

 20. Simson–Wallace line (or pedal line):
  If a point lies on the circumcircle, then the pedal triangle of P gets degenerated 

into a straight line, known as the Simson–Wallace line of P or the pedal line.
  Converse is also true, i.e., if the feet of the perpendiculars from a point to the 

sides of a triangle are collinear, then the point lies on the circumcircle of the 
 triangle.

 21. Fermat point (or Torricelli’s point):
  If no angle of ∆ABC is greater than or equal to 120° and equilateral triangles 

AC′B, BA′C, CB′A are constructed outwardly on the sides AB, BC, CA of ∆ABC 
then, the lines AA′, BB′, CC′ concur at a point, say P such that AA′ = BB′ = CC′; 
such a point P is called Fermat point or Torricelli’s point of ABC.

 22. Gergonne point: 
  Let the in-circle of DABC touch the sides BC, CA, AB at points P, Q, R, respectively. 

Then AP, BQ, CR meet in a point K called the Gergonne point.

 23. Nagell point: 
  Let the excircles of DABC opposite to vertices A, B, C touch the sides BC, CA, 

AB at points U, V, W, respectively. Then AU, BV, CW meet in a point J called the 
Nagell point.

 24. Symmedian point:
  If the median of DABC through vertex A is reflected in the bisector of ∠A, the 

resulting line is called the symmedian through A. There are three such lines, one 
through each vertex of the triangle, and they meet in a point called the symmedian 
point.

 25. Brocard point:
  Given any triangle ABC, points W, W ′ may be found within it such that
  ∠WAB = ∠WBC = ∠WCA, and ∠W ′BA = ∠W ′CB = ∠W ′AC. These are the 

Brocard points of DABC. Let ∠WAB = θ, ∠W ′BA = θ ′. Then:
•	θ = θ ′
•	cot θ = cot A+ cot B + cot C
•	csc2θ = csc2A + csc2B + csc2C
•	sin3θ = sin(A - θ) ⋅ sin(B - θ) ⋅ sin(C - θ)

 26. For arbitrary points A, B, C, D in space, AC perpendicular to BD iff 
AB2 + CD2 = BC2 + AD2

 27. Newton’s theorem:
  Let ABCD be a quadrilateral; AD BC E AB∩ = { };  ∩ =CD F{ }.  Such points A, 

B, C, D, E, F form a complete quadrilateral. Then, the mid-points of AC, BD and 
EF are collinear.

  If ABCD circumscribes a circle (called in-circle), then in-centre also lies on this line.

 28. Brocard’s theorem: 

  Let ABCD be a quadrilateral, inscribed in a circle with centre ‘O’ and Let 

AB CD P∩ = { }, AD BC Q∩ = { }, AC CD R∩ = { }.  Then ‘O’ is the orthocentre 

of ∆PQR.
  Here ‘O’ is also called Brocard point.
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 29. Cyclic quadrilateral: 
  A quadrilateral ABCD is a cyclic (i.e., there exists a circumcircle of ABCD) iff
  ∠ACB = ∠ADB and ∠ADC + ∠ABC = 180° 
 30. Ptolemy’s theorem:
  A convex quadrilateral ABCD is a cyclic iff AC ⋅ BD = AB ⋅ CD + AD ⋅ BC
 31. Condition for an in-circle of a quadrilateral ABCD:
  A convex quadrilateral ABCD is a tangent (i.e., there exists an in-circle of ABCD) 

iff
  AB + CD = AD + BC (Pitot’s theorem)

  If this condition is satisfied, then it’s in radius r = 
Area of 

Semi-perimeter of 

ABCD

ABCD

 32. Alternate angle theorem:
  In any circle, the angle between a tangent and a chord through the point of contact 

of the tangent is equal to the angle in the alternate segment (formed by the chord)
 33. A common tangent to two circles divides a straight line segment joining the cen-

tres, externally or internally in the ratio of their radii.
  The point S and S′ dividing the line segment of the centres of two circles in the 

ratio of their radii are known as the centres of similitude of the two circles. The 
two common tangents from the external centre of similitude are the direct com-
mon tangents and two common tangents from internal centre of similitude are the 
transverse common tangents.

 34. Power of a point:
  Let C(O, r) be a circle (the notation means that its centre is O, and its radius is r), 

and let P be a point. Consider any line l through P. Suppose it cuts C(O, r) at A, 
B. Then the product PA ⋅ PB does not depend on l, and so is the same no matter 
which line is drawn (so it depends only on P, O, r). In fact: PA ⋅ PB = OP2 - r2.

  As in Ceva’s and Menelaus’s theorems, the lengths here are signed lengths.
  Hence, if PA and PB are oriented in opposite directions, then PA ⋅ PB < 0. (which 

will be the case if P lies within the circle)
  The quantity OP2 - r2 is called the power of P with respect to circle C.

•	 If P lies on C, then its power wrt C is 0.
•	 If P lies outside C, then its power wrt C is the square of the length of the tangent 

from P to C.
•	 If P lies within C, then its power wrt C is negative.

  Two very useful consequence of power of a point:
•	 If AB and CD are any two chords of a circle intersecting at P, then 

PA ⋅ PB = PC ⋅ PD (secant property of a circle).
  Intersection point may be internal or external.

•	 If two straight line segments AB and CD (or both being produced) intersect at 
P such that PA ⋅ PB = PC ⋅ CD, then the four points A, B, C, D are concyclic 
(Condition for concyclicity).

 35. Radical axis of two circles: 
  Let C1 and C2 be two given circles. Consider the locus of points P for which the 

power of P wrt C1 is the same as the power of P wrt C2. This locus is a straight 
line; it is called the radical axis of C1, C2.
•	 If C1, C2 intersect at points A, B, then the radical axis is line AB.
•	 If C1, C2 touch each other at a point P, then the radical axis is the line tangent 

to both circles at P.
•	 If C1, C2 are concentric, then the locus is empty.
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 36. Given the base and the ratio of the other two sides of triangle, locus of its vertex 
is a circle called Apollonius circle.

 37. Area of a triangle:
  There are several formulas for the area of a given DABC:

•	 [ABC] = 
1

2
( ) ( )Base Height×  

•	 [ABC] = 1

2






 bc sin A = 

1

2






 ca sin B = 

1

2






 ab sin C

•	 [ABC] = s s a s b s c( )( )( )− − −  where s is the semi-perimeter of the triangle;

•	 [ABC] = rs, where r is the radius of the in-circle of the triangle

•	 [ABC] = abc

R4
  (where a, b, c are sides, R is the circumradius and r in radius and s the semi 

perimeter of ∆ABC)
 38. Area of a quadrilateral:
  The area S of a quadrilateral ABCD with semi perimeter p and angles α, γ at 

vertices A, C respectively is 

  S p a p b p c p d abcd= − − − − −
+






( )( )( )( ) cos2

2

α γ

•	 If ABCD is a cyclic quadrilateral, the above formula reduces to

   S p a p b p c p d= − − − −( )( )( )( )

•	Area of a bicentric quadrilateral: A bicentric quadrilateral is one which has 
both a circumcircle and an in-circle. If ABCD is such a quadrilateral, then: 

Area (quadrilateral ABCD) = abcd .
 39. For ∆ABC, in the usual notation (O ≡ Circumcentre, H ≡ Ortho-centre, N ≡ 

Centre of nine point circle, I ≡ In-centre, Ia ≡ Ex-centre opposite to angle A, Ib ≡ 
Ex-centre opposite to angle B, Ic ≡ Ex-center opposite to angle C, ra ≡ Ex-radius 
opposite to angle A, rb ≡ Ex-radius opposite to angle B, rc ≡ Ex-radius opposite 
to angle C, etc.)

•	AI = rcosec A

2
; BI = rcosec B

2
; CI = rcosec C

2

•	 r R
A B C

= 4
2 2 2

sin sin sin

•	 OI R rR OI R Rr OI R Rr OI R Rra a b b c c
2 2 2 2 2 2 2 22 2 2 2= − = + = + = +, , ,

•	 (HI)2 = 4R2 cos A cos B cos C
•	OH2 = R2(1 - 8 cos A cos B cos C) = 9R2 - a2 - b2 - c2

•	 NI
R

r NI
R

ra a= − = +
2 2

; ,  etc.

•	 OG R
a b c2 2

2 2 2

9
= −

+ +

•	AH2 + BH2 + CH2 = 3R2

•	 OI OI OI OI Ra b c
2 2 2 2 212+ + + =

•	For the orthic triangle, the sides are acos A or Rsin 2A, bcos B or Rsin 2B and 
c cos C or Rsin 2C. Its angles are π - 2A, π - 2B, π - 2C.
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•	 IA IB IC Rr
AI BI CI

R
r⋅ ⋅ =

⋅ ⋅
=4 42 2or

•	 r
s

s a
A

s b
B

s c
C

R
A B C

= = − = − = − =
∆

( ) tan ( ) tan ( ) tan sin sin sin
2 2 2

4
2 2 2

•	 r
s a

r
s b

r
s c

a b c=
−

=
−

=
−

∆ ∆ ∆
, ,

•	 r s
A

r s
B

r s
C

a b c= = =tan , tan , tan
2 2 2

•	 r R
A B C

r R
A B C

r R
A B

a b c= = =4
2 2 2

4
2 2 2

4
2 2

sin cos cos , cos sin cos , cos cos ssin ,
C

2
•	rrarbrc = ∆2

•	rarb + rbrc + rcra = s2

•	
1 1 1 1 1 1 1

r r r h h h ra b c a b c

+ + = + + =

•	 If X, Y, Z are points of contact of the in-circle of ∆ABC with its sides, then,

   (a) The sides of XYZ are 2r cos 
A

2
, 2r cos 

B

2
 and 2r cos 

C

2

   (b) Its angles are 
π π π− − −A B C

2 2 2
, ,

   (c) Its area is 
∆r

R2
⋅ or Rr sin A sin B sin C

•	Cosine rule:
  a2 = b2 + c2 - 2bc cos A
  b2 = c2 + a2 - 2ca cos B
  c2 = a2 + b2 - 2ab cos C

•	Sine rule: Let the radius of the circumcircle of DABC be R. Then:

  
a

A

b

B

c

C
R

sin sin sin
= = = 2

•	Projection rule:
  a = b cos C + c cos B
  b = c cos A + a cos C
  c = a cos B + b cos A

•	Napier’s rule: 

  tan cot
B C b c

b c

A−
=

−
+







2 2

  tan cot
C A c a

c a

B−
=

−
+







2 2

  tan cot
A B a b

a b

C−
=

−
+







2 2

•	Half angle ratios:

  sin
( )( )

, sin
( )( )

, sin
( )( )A s b s c

bc

B s c s a

ca

C s a s b

ab2 2 2
=

− −
=

− −
=

− −
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  cos ,cos
( )

,cos
( )( )A s s a

bc

B s s b

ca

C s s c

ab2 2 2
=

−
=

−
=

−

  tan
( )( )

( )
, tan

( )( )

( )
, tan

( )(A s b s c

s s a

B s c s a

s s b

C s a

2 2 2
=

− −
−

=
− −

−
=

− ss b

s s c

−
−

)

( )

inequAlities

 1. Trivial inequality: 
  If x is any real number, we have: x2 ≥ 0.
  This seems ‘trivial’ but is the basis for every other inequality!
 2. Mean inequality:
  Let a1, a2,…, an be n positive numbers. Then A ≥ G ≥ H

  Where A = 
a a a a

n
n1 2 3+ + …+

 (AM); G = a a a an
n

1 2 3⋅ ⋅ …  (GM); 

H = n

a a a an

1 1 1 1

1 2 3

+ + + +�
 (HM)

  (Also equality holds if all numbers are equal)

•	 Min Max( , ) ( , )a b
ab

a b
ab

a b a b
a b≤

+
≤ ≤

+
≤

+
≤

2

2 2

2 2

•	More generally, let a1, a2,…, an be n positive numbers; then

  

min{ , ,..., } ...a a a
n

a a a

a a a
a a a

n

a

n

n

n
n n

1 2

1 2

1 2
1 2

1

1 1 1
≤

+ + +
≤ ≤

+ + +

≤

�

�

22
2
2 2

1 2
+ + +

≤
a a

n
a a an

n
�

max{ , ,..., }

  with equality if and only if a1 = a2 = …= an.
  The following inequalities derived from AM ≥ GM ≥ HM, will be very useful  

for problem solving.

•	x2 + y2 + xy ≥ (x + y)2 (Sophie inequality)

•	x2 + y2 - xy ≥ xy

•	x3 + y3 ≥ xy(x + y)

•	
ab

a b

a b

+
≤

+
4

•	 a b

a b

a b a b c

a b c

a b c2 2 2 2 2

2 3

+
+

≥
+ + +

+ +
≥

+ +
;

•	 xy
x y

≤
+






2

2

 3. Quadratic inequality: 
  If x ∈ R, and Ax2 + Bx + C = 0, then D ≥ 0 or B2 - 4AC ≥ 0
  If A > 0, D < 0 or 4AC - B2 > 0 and x is real, then Ax2 + Bx + C ≥ 0
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 4. Triangle inequality:
•	 If a, b, c are the measures of the sides of triangle, then,

  b - c < a < b + c; c - a < b < c + a; a - b < c < a + b
•	The lengths a, b, c can represent the sides of a triangle iff, a + b > c, b + c > a, 

c + a > b.
•	 If a, b are real numbers, then |a + b| ≤ |a| + |b|, |a - b| ≥ ||a| - |b||.

 5. Weirstras’s inequality:
  For positive numbers a1, a2, a3,…, an

  ( )( )( ) ( )1 1 1 1 11 2 3 1 2 3+ + + + > + + + + +a a a a a a a an n� �

  If a1 are fractions (i.e., less than unity), then,

  ( )( )( ) ( ) ( )1 1 1 1 11 2 3 1 2 3− − − − > − + + + +a a a a a a a an n� �

 6. Cauchy-Schwarz inequality: (C–S Inequality)
  If a, b, c, x, y, z are real numbers (positive, zero, or negative)
  Then, (a2 + b2 + c2)(x2 + y2 + z2) ≥ (ax + by + cz)2; With equality iff 

a : b : c :: x : y : z
  In general, let a1, a2, …, an and b1, b2, …, bn be any 2n real numbers; then

a b a bi
i

n

i
i

n

i i
i

n
2

1

2

1 1

2

= = =
∑ ∑ ∑

















 ≥











  with equality precisely when there exist constants μ, λ, not both zero, such that 
μai = λbi for all i.

 7. Tchebycheff’s inequality:
  If x1 ≤ x2 ≤ x3 ≤ … ≤ xn and y1 ≤ y2 ≤ y3 ≤ … ≤ yn then

  
x y x y x y

n

x x x x

n

y y y y

n
n n n n1 1 2 2 1 2 3 1 2 3+ + +

≥
+ + + +








+ + + +







� � �

  If one of the sequences is increasing and the other decreasing, then, the direction 
of the inequality changes.

 8. Holders inequality:

  a a a b b b a b a b a bp p
n
p p q q

n
q q

n n1 2

1

1 2

1

1 1 2 2+ + +( ) + + +( ) ≥ + + +( )� � �

where 
1 1

p q
+ = 1 and a, b are non-negative real numbers.

 9. Ptolemy’s inequality:
  For any four points A, B, C, D; AB ⋅ CD + AD ⋅ BC ≥ AC ⋅ BD
  Equality occurs if and only if ABCD is cyclic.
 10. The parallelogram inequality: 
  For any four points A, B, C, D we have AB2 + BC2 + CD2 + DA2 ≥ AC2 + BD2.
  Equality occurs if and only if ABCD is a parallelogram.

 11. Toricelli’s (or Fermat’s) point for maxima/minima:
  For a given triangle ABC, the point X for which AX + BX + CX is minimal is Tor-

ricelli’s point, when all angles of ∆ABC are less than 120° and is the vertex of the 
obtuse angle otherwise.

 12. Let P be a point in the plane of the triangle. Then point P for which AP2 + BP2 + 
CP2 is minimal is the centroid of the triangle. (Leibniz’s theorem)
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 13. The Erodos–Mordell inequality:
  Let P be a point in the interior of ∆ABC and X, Y, Z projections of P onto BC, CA, 

AB respectively. Then PA + PB + PC ≥ 2(PX + PY + PZ)
  Equality holds iff ∆ABC is equilateral and P is its centroid.
 14. Jensen’s inequality:
  If f (x) is open down (or concave) for all x ∈ [a, b] then we have following 

inequality:

  

w f x w f x w f x w f x

w w w w

f
w x w x

n n

n

1 1 2 2 3 3

1 2 3

1 1 2 2

( ) ( ) ( ) ( )+ + + +
+ + + +

≤
+ +

�
�

ww x w x

w w w w
n n

n

3 3

1 2 3

+ +
+ + + +











�
�

  for all x1, x2, x3, …, xn ∈ [a, b] and where w1, w2, w3, …, wn ∈ + called weights. 
Equality will holds when x1 = x2 = x3 = … = xn 

  In case of function is open up (or convex) inequality will be reverse.

AlGebrA

 1. a ann =| |, if n is even and a ann = ,  if n is odd.

 2. Difference of two squares:
  This is of use more often than one would expect:
  a2 - b2 = (a - b) ⋅ (a + b).
 3. Two simple and useful factorizations:
  xy + x + y + 1 = (x + 1)(y + 1), xy - x - y + 1 = (x - 1)(y - 1).
 4. Sophie Germain identity:
  a4 + 4b4 = (a2 + 2b2 + 2ab)(a2 + 2b2 -2ab) = ((a + b)2 + b2)((a - b)2 + b2).
 5. Important identities and concepts (Useful for problem solving):

•	a3 + b3 + c3 - 3abc ≡ (a + b + c)(a2 + b2 + c2 - ab - bc - ca) 

•	 (a2 + b2)(x2 + y2) ≡ (ax + by)2 + (ay - bx)2

•	 (xn - yn) is always divisible by (x - y).

•	 (xn + yn) is divisible by (x + y) when ‘n’ is odd.

•	a2b + ab2 + b2c + bc2 + c2a + ca2 ≡ (a + b)(b + c)(c + a) - 2abc

•	 (a + b)(b + c)(c + a) + abc ≡ (a + b + c)(ab + bc + ca)

•	 (x + y + z)(xy + yz + zx) ≡ (x + y)(y + z)(z + x) + xyz

•	 (x + y + z)3 ≡ x3 + y3 + z3 + 3(x2y + xy2 + y2z + yz2 + z2x + zx2) + 6xyz

•	 (x + y + z)3 - (x3 + y3 + z3) ≡ 3(x + y)(y + z)(z + x)

•	 (x + y)(y + z)(z + x) ≡ ∑x2y + 2xyz

•	x2(y - z) + y2(z - x) + z2(x - y) ≡ x2 y - xy2 + y2 z - z2y + z2x - zx2 
≡ - (x - y) (y - z)(z - x)

•	a4 + b4 + a2b2 ≡ (a2 + ab + b2)(a2 - ab + b2)

•	x2 + y2 + xy ≡ 
3

4
 (x + y)2 + 

1

4
2( )x y−  

 6. If a + b + c = 0, a3 + b3 + c3 = 3abc
 7. If u, v are given numbers, then the quadratic equation whose roots are u, v is 

(x - u)(x - v) = 0.
 8. Let a, b, c be real numbers, a ≠ 0. Then the roots of the quadratic equation 

ax2 + bx + c = 0 are real if and only if D ≥ 0 or b2 - 4ac ≥ 0.
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 9. Relations between the roots and coefficients:

•	 If α, β are the roots of ax2 + bx + c = 0, then α β αβ+ = − =
b

a

c

a
;

•	 If α, β, γ are the roots of ax3 + bx2 + cx + d = 0, then 

  α + β + γ = −
b

a
; αβ + βγ + γα = 

c

a
; αβγ = − d

a
•	 If α, β, γ and δ are the roots of the equation ax4 + bx3 + cx2 + dx + e = 0, then 

  α + β + γ + δ = −
b

a
; αβ + α γ +  αδ + βγ + βδ + γδ = c

a
; 

  αβγ + αβδ + αγδ + βγδ = −
d

a
; αβγδ = 

e

a
.

 10. Polynomials:
•	Every polynomial equation of degree n ≥ 1, has exactly ‘n’ roots.
•	 If a polynomial equation with real coefficients has a complex root (p + iq). 

Where p, q are real numbers, q ≠ 0, then, it also has a complex root (p - iq).
•	 If a polynomial equation with rational coefficients has an irrational root 

(p + q), (p, q rational, q > 0, q not the square of any rational number), then, it 

also has an irrational root ( ).p q−

 11. Remainder/factor theorem:
  If f (x) is a polynomial in x, and c is any real number, then the remainder in the 

division of f (x) by (x - c) is f (c). 
  If f (c) = 0 then x - c is called a factor of f (x).
 12. A number α is a common root of the polynomial equations f (x) = 0 and g(x) = 0 

iff, it is a root of h(x) = 0, where h(x) is the GCD of f (x) and g(x).
 13. A number α is repeated root of a polynomial equation f (x) = 0 iff  it is a common 

root of f (x) = 0 and f ′(x) = 0.
 14. Rational root theorem:
  If the rational number p/q (where p, q are integers q ≠ 0, (p, q) = 1) is a root of 

the equation a x a x an n
n0 1

1 0+ + + =− �  where a0, a1, a2,…, an are integers and 

a0 ≠ 0, then p is a divisor of an and q ia a divisor of a0.
 15. Integral root theorem:
  Let xn + a1x

n-1 + a2x
n-2 +…+ an-1x + an = 0, represent a polynomial equation that 

has leading coefficient of 1, all coefficients and constant integer. Any rational root 
of this equation must be an integer and divisor of an.

 16. Descarte’s rule of signs: 
  Suppose P(x) be a polynomial whose terms are arranged in descending powers of 

x of the variable. Thus, the number of positive real zeros of P(x) is the same as the 
number of changes in sign of the coefficients of the terms or less than this by an 
even number.

  The number of negative real zeros of P(x) is the same as the number of changes 
in sign of the coefficients of the terms of P(-x) or is less than this number by an 
even number.

 17. The sum of a n-term arithmetic progression a, a + d, a + 2d, …, a + (n - 1)d is

  
( )

( ( ) ) ( term )

2
a kd

n a n d
n

k

n

+ =
+ −

= ×
+

=

−

∑
0

1 2 1

2

First Last term

  Examples:1 + 2 + 3 + … + n = 
1

2






 n(n + 1), 1 + 3 + 5 + … + (2n - 1) = n2.
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 18. The sum of a n-term geometric progression a, ar, ar2, …, arn-1(r ≠ 1) is 
1

;
1

nr
a

r

 −
 − 

  for r =1, sum is na.
  Examples: 1 + 2 + 22+ …+ 2n-1 = 2n - 1, 1 + 3 + 32+…+3n-1 = 

1

2
 
 
 

 (3n - 1).
 19. We have:

	 •	 1	+ 2 + 3 +…+ n = 
1

2






 n(n + 1).

	 •	 12 + 22+ 32 +…+ n2 = 1

6






  n(n + 1)(2n + 1).

	 •	 13 + 23 + 33 +…+ n3= 
1

4






 n2(n + 1)2.

 20. The harmonic series 1
1

2

1

3

1

4
+ + + +� does not converge to a finite number. There 

is no simple formula for the sum 1
1

2

1
+ + +�

n
.  Rather: 

1 1
1 ln ,

2
n

n
γ+ + + ≈ +�

  where ln n is the ‘natural logarithm’ of n, and γ ≈ 0.577216 is the ‘Euler– 
Mascheroni constant’.

number theory

 1. Notation: a | b means: ‘a is a divisor of b’. We read it as: ‘a divides b’.
  Example: 4 | 12, but 4  13.
 2. If a | b and a | c then a | (pb + qc)
 3. Greatest common divisor (GCD):
  Let a and b two non zero integers. Then the gcd of a and b exists and is written as 

(a, b) and it is unique also. Examples: GCD(10, 15) = 5, GCD (8, 9) = 1.
•	The gcd of a, b can be represented as a linear function of a, b, i.e., there exists 

integers m, n for (a, b) such that (a, b) = am + bn. (Linearity property)
•	 If (a, b) = 1, then a and b are said to be relatively primes or co-primes of each 

other.
  Example:15 and 22 are co-prime. 

•	Two consecutive integers are always co-prime.
 4. Congruencies:
  a ≡ b (mod c) means: ‘a - b is divisible by c’. We read it as: ‘a  is congruent to b 

modulo c’.
  Example: 19 ≡ 4 (mod 5).
  (a)  The congruence relation modulo n for a fixed non-zero integer n is reflexive, 

symmetric, and transitive. Thus: if a ≡ b (mod n), and b ≡ c (mod n), then 
a ≡ c (mod n).

  (b) Let a ≡ b (mod m) and c ≡ d (mod m); then
•	 a + c ≡ (b + d) (mod m)
•	 a - c ≡ (b - d) (mod m)
•	 ac ≡ bd(mod m)
•	 pa + qc ≡ pb + qd(mod m) ∀ integers p, q
•	 an ≡ bn (mod m) ∀ integers n ∈ 
•	 f (a) ≡ f (b)(mod m) for every polynomial with integer coefficients
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 5. An integer x0, satisfying the linear congruence ax ≡ b (mod m) has a solution. 
Further, if x0 is a solution, then the set of solutions is precisely (x0 + km) where k 
is an integer.

 6. Some extremely useful and far reaching results: For any n ∈ , we have:
•	Either n2 ≡ 0 (mod 3) or n2 ≡ 1 (mod 3). That is, all squares are of the form 3k 

or 3k + 1; a square cannot be of the form 3k + 2.
•	Either n2 ≡ 0 (mod 4) or n2 ≡ 1 (mod 4). That is, all squares are of the form 4k 

or 4k + 1; a square cannot be of the form 4k + 2 or 4k + 3.
•	 If p is a prime number, and p | ab, then p | a or p | b.

Note: this claim is not true for composite number. That is, if n is composite, 
and n | ab, we cannot conclude that n | a or n | b.

•	 If a, b are co-prime positive integers, and ab is a square, then both a and b are 
squares.

•	 If a, b are co-prime integers, and ab is a cube, then both a and b are cubes.
•	Suppose that a, b, c, d are positive integers, and ab = cd. Further, suppose that a, 

b are co-prime, and c, d are co-prime. Then either a = c and b = d, or a = d and 
b = c. In any case, {a, b} = {c, d}.

 7. Multiplicative inverse:
  If n is a number, and a is co-prime to n, then an integer b can be found such that 
  ab ≡ 1 (mod n). We call ‘b’ the multiplicative inverse of ‘a’ modulo n.
  Example: Let n = 11. The multiplicative inverses of 2, 3, 4, 5 are 6, 4, 3, 9, re-

spectively.

 8. Fermat’s little theorem: 
  If p is a prime number, and a is co-prime to p, then a pp− ≡1 (mod ).
  Example: 26 ≡ 1 (mod 7), and 34 ≡ 1 (mod 5).
 9. Another form of the Fermat little theorem:
  If p is a prime number, and a is any integer, then ap ≡ a (mod p).

 10. Wilson’s theorem:
  If p is a prime number, then ( )! (mod )p p− + ≡1 1

  Example: 6! + 1 = 721 ≡ 0 (mod 7).

 11. Euler’s totient function:
  Let n be any positive integer. The number of all positive integers less than or equal 

to n and prime to it is denoted by f(n); the function f is called Euler’s totient 
function.

  Example: f(1) = 1, f(2) = 1, f(3) = 2, f(10) = 4. Note that:
•	n is a prime number ⇔ f(n) = n -1.

•	n is a power of 2 ⇔ f(n) = 1

2






 n.

•	The Euler phi function is multiplicative. This means that if m, n are co-prime, 
then f(mn) = f (m) ⋅ f(n).

  Example: f(12) = f(3) ⋅ (4).
•	Here is a quick way of computing f(n): List the distinct primes p which divide 

n, then multiply n by the product of 
p

p

−1
 for all such p.

   That is, if n = ap ⋅ bq  ⋅ cr .…where a, b, c are distinct primes and p, q, r are 

positive integers, then φ( )n n
a b c

= −





 ⋅ −





 ⋅ −





1

1
1

1
1

1
…
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   Example: Take n = 20. The distinct primes dividing 20 are 2 and 5, so 

φ( ) .20 20
1

2

4

5
8= × × =

  Example: Take n = 350. The distinct primes dividing 350 are 2, 5, 7, so 

  φ ( ) .350 350
1

2

4

5

6

7
120= × × × =

 12. Euler’s theorem:
  If x be any positive integer prime to n, then xf(n) = 1 (mod n)

  eg: 34 ≡ 1 (mod 10), 1510 ≡ 1 (mod 22).

 13. Infinitude of primes:
•	There are infinitely many prime numbers.
•	There are infinitely many prime numbers of each of the types 1 (mod 4) and 3 

(mod 4):
  1 (mod 4) : {5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, . . .},
  3 (mod 4) : {3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, . . .}.

•	There are infinitely many prime numbers of each of the types 1 (mod 3) and 2 
(mod 3):

  1 (mod 3) : {7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, . . .},
  2 (mod 3) : {2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, . . .}.
 14. If n ≡ 3 (mod 4), then n has at least one prime factor of the form 3 (mod 4).
 15. If p is a prime number of the type 3 (mod 4), then it cannot be expressed as 

x2 + y2, where x, y are integers.
 16. If p is a prime number of the type 1 (mod 4), then it can be expressed as x2 + y2, 

where x, y are integers. Moreover, this representation is unique.
  Example: 13 = 22 + 32, 89 = 52 + 82.
 17. If a positive integer n can be expressed as x2 + y2 where x, y are integers, then:

•	n has at least one prime factor p of the form 1 (mod 4).
•	 the number of primes p which divide n and which are of the form 3 (mod 4) is 

even.
   Example: Take n = 2205. It can be expressed as 212 + 422, and its prime 

factorization is 2205 = 32 × 5 × 72. Note that it has a prime factor of the type 1 
(mod 4), and the number of primes p which divide n and which are of the form 
3 (mod 4) is 4 (two 3’s and two 7’s).

 18. Pythagorean triples: 
  The equation x2 + y2 = z2 has infinitely many ‘primitive solutions’ (i.e., with x, y, 

z co-prime). They may be found as follows: Choose any two positive integers u, v 
of opposite parity, with u > v. Put x = u2 - v2, y = 2uv, z = u2 + v2.

  (We can switch the roles of x and y: put x = 2uv, y = u2 - v2.) This generates the 
entire set of primitive solutions.

  Example: Put u = 5, v = 2; we get (x, y, z) = (21, 20, 29).
 19. Let N be a positive integer, greater than 1, say N = ap ⋅ bq ⋅ cr .…; where a, b, c are 

distinct primes and p, q, r are positive integers. The number of ways in which N 

can be resolved into two positive factors is 
1

2
(p + 1)(q + 1)(r + 1)….

 20. Number of ways in which a composite number can be resolved into two positive 
factors which are prime to each other is given by 2n-1, where n is the number of 
distinct prime factors of n.
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 21. Let N be a positive integer greater than 1 and let N = ap ⋅ bq ⋅ cr.… where a, b, c, 
… are  distinct primes and p, q, r … are integers (positive), then the sum of all the 

positive divisors in the product is equal to 
a

a

b

b

c

c

p q r+ + +−
−











−
−











−
−











1 1 11

1

1

1

1

1
….

 22. The greatest integer function:
  The greatest integer written symbolically as   , is defined by setting x   = the 

greatest integer not exceeding x for every real x, i.e., x   ≤ x.
 23. The highest power of prime p which is contained in n! is

  vp(n!) =








 +









 +









 +

n

p

n

p

n

p2 3
�

CombinAtoriCs

 1. Two laws of enumeration:
•	Law of addition. If A, B are two sets, then |A ∪ B| = |A| + |B| - |A ∩ B|.
•	Law of multiplication. If A, B are two sets, then |A × B| = |A| |B|. Here, A × B is 

the Cartesian product of the sets A, B.

 2. One-to-one correspondence:
  If the elements of two finite sets A, B can be placed into one-to-one mapping, then 

|A| = |B|.

 3. Properties of binomial coefficient nCr :

•	nC0 = nCn = 1

•	nCr = nCn-r

•	 If nCr = nCk, then r = k or n - r = k

•	nCr + nCr-1 = n+1Cr

•	r . nCr = n n-1Cr-1

•	 If n is even, nCr is greatest for r = 
n

2
 and if n is odd, nCr is greatest for 

r
n n

=
− +1

2

1

2
, .

 4. Combinations:
  From a set containing n distinct elements, a subset with k elements can be chosen 

in 
n

k








  distinct ways.

•	Number of points of intersection between n non-concurrent and non-parallel 
lines is nC2.

•	Number of lines, joining any two points out of n points ( no three are collinear), 
is nC2.

•	Number of triangles formed using n points in which no three of them are 
collinear is nC3.

•	Number of diagonals that can be drawn in a ‘n’ sided polygon is nC2 - n. 
•	The number of ways of selecting one or more items from n distinct items is 

2n - 1.
•	The number of subsets of n elements is 2n; the number of non-empty subsets 

is 2n - 1.
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•	The number of ways to select r objects from n distinct objects where p particu-
lar objects should always be included in the selection = n-pCr-p.

•	The number of ways to select r objects from n distinct objects where p particu-
lar objects should never be included in the selection = n-pCr.

•	Number of ways to select r objects from n distinct objects where each object can 
be selected any number of times is n+r-1Cr.

•	The number of ways to select at least one object from n identical objects = n.
•	The number of ways to select one or more objects from (p + q + r +…+ n) 

objects where p objects are alike of one kind, q are alike of second kind, r 
are alike of third kind, ... and remaining n are distinct from each other 
= [(p + 1) (q + 1)(r + 1)...2n] - 1.

 5. Permutations:
  Number of permutations of n distinct objects taken r objects at a time is  

n
rP

n

r
r=








 !

•	The number of 1-1 function from a set of m elements to a set of n elements 

(m ≤ n) is nPm = 
n

n m

!

( )!−
 = n(n - 1)(n - 2)…(n - m + 1).

•	Total number of ways to permutate (arrange, order) n distinct objects in a row 
= n!.

•	The number of bijections from a n-set on to itself is n!.
•	Number of ways to permuate (arrange) n objects out of which p are identical of 

one kind, q are identical of another kind, r are identical of third kind and rest all 

are distinct is 
n

p q r

!

! ! !
.

•	Total number of ways to permutate n distinct things taken r at a time when 
objects can be repeated any number of times is nr.

•	The number of functions from an r-set to an n-set is nr.
•	The number of ways to select and arrange (permutate) r objects from n dis-

tinct objects such that arrangement should always included p particular objects 
= n-pCr-p ⋅ r!.

•	The number of ways to select and arrange r objects from n distinct objects such 
that p particular objects are always excluded in the selection = n-pCr ⋅ r!.

•	The number of ways to arrange n distinct objects such that p particular objects 
remain together in the arrangement = (n + 1 - p)!p!.

•	The number of ways to arrange n distinct objects such that out of p particular 
objects no two are together = (n - p)! n-p+1Cp p!.

 6. Circular permutations:
  Number of ways to arrange n distinct objects in a circle = (n - 1)!.
  Number of circular permutations of n distinct objects such that clockwise and 

anticlockwise arrangements of objects are same =
−

≥
( )!

,
n

n
1

2
3 .

 7. Derangement formulae (or no fix point formulae):
  If n distinct objects are to be arranged in a line such that no object occupies 

its original place, then it is called derangement. Number of ways to derange is 

n
n

n!
! ! !

( )
!

.1
1

1

1

2

1

3
1

1
− + − + + −





�
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 8. Distribution Problems:
  Number of objects is predefined in each group or box: 

•	Number of ways in which a + b + c distinct objects (out of a, b, c no two num-
bers are equal) can be divided into 3 unnumbered groups containing a, b, c  
objects respectively 

=
+ +









+















 =

+ +a b c

a

b c

b

c

c

a b c

a b c

( )!

! ! !

•	Number of ways in which a + b + c  distinct objects (out of a, b, c no two 
numbers are equal) can be divided into 3 numbered groups containing a, b, c 
objects

   = Number of ways to divide a + b + c objects (out of a, b, c no two numbers are 

equal) in 3 unnumbered groups × (Number of groups)! = 
( )!

! ! !
!

a b c

a b c

+ +
×3

•	Number of ways to divide mn distinct objects equally in m unnumbered groups 

(each group gets n objects) =
( )!

! !

mn

n mm
.

•	Number of ways to divide and distribute mn distinct objects equally in m  

numbered groups (each group gets n objects) = × =
( )!

! !
!

( )!

!
.

mn

n m
m

mn

nm m
 

•	Number of ways to divide ma + nb + pc distinct objects (out of a, b, c no two 
numbers are equal) in m + n + p unnumbered groups such that m groups 
contains a objects each, n groups contains b objects each, p groups contains c 

objects each =
+ +( )!

( !) ( !) ( !) ! ! !

ma nb pc

a b c m n pm n p

•	Number of ways to divide and distribute ma + nb + pc distinct objects (out of 
a, b, c no two numbers are equal) in m + n + p numbered groups such that m 
groups contains a objects each, n groups contains b objects each, p groups con-

tains c objects each =
+ +

× + +
( )!

( !) ( !) ( !) ! ! !
( )!.

ma nb pc

a b c m n p
m n p

m n p

  Number of objects is not predefined in each group or box:
•	The number of ways to divide n identical objects into r numbered groups such 

that each group gets 0 or more objects (empty groups are allowed) = n+r-1Cr-1.
•	The number of ways to divide n identical objects into r numbered groups such 

that each group receives at least one object (empty groups are not allowed) 
= n-1Cr-1.

•	The number of ways to divide n identical objects in r numbered groups such 
that each groups gets minimum m objects and maximum k objects = Coefficient 
of xn in (xm + xm+1 +…+ xk)r.

•	Number of ways to divide n non-identical objects in r numbered groups such 
that each groups gets 0 or more number of objects (empty groups are allowed) 
= rn.

•	Number of ways to divide n non-identical objects in r numbered groups 
such that each group gets at least one object (empty groups are not allowed) 
= rn - rC1 (r - 1)n + rC2 (r - 2)n - rC3 (r - 3)n +…+(-1)r-1 rCr-1 1

n.

 9. Principle of inclusion-exclusion (PIE):
  This is a far reaching generalization of the law of addition. 
  If A, B, C are three finite sets, then
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•	 A B A B A B∪ = + − ∩

•	 A B C A B C A B B C C A A B C∪ ∪ = + + − ∩ − ∩ ∩ + ∩ ∩–

•	Let A1, A2, A3, …, An be n sets, then in general:

  A A A A A A Ai
i

n

i
i

n

i j
i j

i j k
i j k

n

= = < < <
= − ∩ + ∩ ∩ − + −∑ ∑ ∑

1 1

11∪ �| | | | | | ( ) |- AA An1 ∩…∩ |

 10. Pigeon hole principle: (PHP or Dirichlets’s principle)
  If more than ‘n’ objects are distributed in ‘n’ boxes, then, at least, one box has 

more than one object in it.
 11. Recursion: 
  Sometimes a sequence is defined recursively. This means that we compute each 

element in terms of the elements preceding it, using some fixed rule. This applies 
to all elements except for a few initial terms which are fixed independently.
•	Powers of 2:  Let an = 2n for n ∈ N. Then: a1 = 2, an = 2an-1 for n >1.
•	Squares:  Let an = n2 for n ∈ N. Then: a1 = 1, an = an-1 + 2n - 1 for n > 1.
•	Factorials:  Let an = n! for n ∈ N. Then: a1 = 1, an = nan-1 for n > 1.

 12. Compositions:
  For n ∈ , let an be the number of ways of writing n as a sum of one or more posi-

tive integers, with order being taken into account (so, 1 + 2 is counted separately 
from 2 + 1). These expressions are called the compositions of n. So the composi-
tions of 2 are 2, 1 + 1, and the compositions of 3 are 3, 2 + 1, 1 + 2, 1 + 1 + 1.

 We may show that: an = 2n-1.
 13. Fibonacci numbers: 
  The Fibonacci numbers Fn for n ∈  are defined thus: F1 = 1, F2 = 1, Fn = Fn-1 + 

Fn-2, n ≥ 3.
  Here are the first few Fibonacci numbers:

  

n

Fn

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

...

...

  These numbers are ubiquitous. For example:
•	The number of compositions of n in which all the summands exceed 1 is a

  Fibonacci number; in fact it is Fn-1.
  Example: For n = 6 we get the compositions 6, 4 + 2, 3 + 3, 2 + 4, 2 + 2 + 2.

•	The number of compositions of n in which the summands are only 1’s and 2’s is 
a Fibonacci number; in fact it is Fn+1.

   Example: For n = 4 we get the compositions 1 + 1 + 1 + 1, 2 + 1 + 1, 1 + 2 +1, 
1 +1 +2, 2 + 2.

•	The number of subsets of the n-element set {1, 2, …, n} in which no two con-
secutive numbers occur is a Fibonacci number; in fact it is Fn+2.

  Example: For n = 3 we get the 5 subsets: {},{1}, {2}, {3}, {1, 3}.
  For n = 4 we get the 8 subsets:{}, {1}, {2}, {3}, {4}, {1, 3}, {1, 4}, {2, 4}.
 14. Taxicab paths:
  If we have to walk on the coordinate plane from the initial point O(0, 0) to the 

terminal point P(m, n) where m, n ∈ 0, so that our path consists of steps one unit 

‘North’ or one unit ‘East’, then the number of possible paths is 
m n

n

+







 .

 15. Catalan numbers:
  If we have to walk on the coordinate plane from the initial point O(0, 0) to the 

terminal point P(n, n) where n ∈ , so that our path consists of steps one unit 
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‘North’ or one unit ‘East’ and never goes above the line y = x, then the number 
of possible paths is defined to be the nth Catalan number, Cn. We may show that 

C
n

n

n
n = +











1

1

2

  They may be recursively defined:

  C0 = 1, and Cn+1 = C0Cn+ C1Cn-1+ C2Cn-2 +… = −
=
∑C Ck n k
k

n

0

  Here are the first few Catalan numbers:

  
n

Cn

1 2 3 4 5 6 7 8 9 10 11

1 2 5 14 42 132 429 1430 4862 16796 58786

...

...

  Like the Fibonacci numbers, the Catalan numbers too are ubiquitous:
•	The number of ways a convex n-sided polygon can be triangulated is a Catalan 

number; in fact it is Cn-2.
•	The number of correctly matched strings of n pairs of parenthesis is Cn.

  Example: n = 3: ((( ))), ( )(( )), ( )( )( ), (( ))( ), (( )( )).
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(Continued)

N 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

10 0000 0043 0086 0128 0170 5 9 13 17 21 26 30 34 38
0212 0253 0294 0334 0374 4 8 12 16 20 24 28 32 36

11 0414 0453 0492 0531 0569 4 8 12 16 20 23 27 31 35
0607 0645 0682 0719 0755 4 7 11 15 18 22 26 29 33

12 0792 0828 0864 0899 0934 3 7 11 14 18 21 25 28 32
0969 1004 1038 1072 1106 3 7 10 14 17 20 24 27 31

13 1139 1173 1206 1239 1271 3 6 10 13 16 19 23 26 29
1303 1335 1367 1399 1430 3 7 10 13 16 19 22 25 29

14 1461 1492 1523 1553 1584 3 6 9 12 15 19 22 25 28
1614 1644 1673 1703 1732 3 6 9 12 14 17 20 23 26

15 1761 1790 1818 1847 1875 3 6 9 11 14 17 20 23 26
1903 1931 1959 1987 2014 3 6 8 11 14 17 19 22 25

16 2041 2068 2095 2122 2148 3 6 8 11 14 16 19 22 24
2175 2201 2227 2253 2279 3 5 8 10 13 16 18 21 23

17 2304 2330 2355 2380 2405 3 5 8 10 13 15 18 20 23
2430 2455 2480 2504 2529 3 5 8 10 12 15 17 20 22

18 2553 2577 2601 2625 2648 2 5 7 9 12 14 17 19 21
2672 2695 2718 2742 2765 2 4 7 9 11 14 16 18 21

19 2788 2810 2833 2856 2878 2 4 7 9 11 13 16 18 20
2900 2923 2945 2967 2989 2 4 6 8 11 13 15 17 19

20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201 2 4 6 8 11 13 15 17 19
21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404 2 4 6 8 10 12 14 16 18
22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598 2 4 6 8 10 12 14 15 17
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784 2 4 6 7 9 11 13 15 17
24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962 2 4 5 7 9 11 12 14 16
25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133 2 3 5 7 9 10 12 14 15
26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 2 3 5 7 8 10 11 13 15
27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456 2 3 5 6 8 9 11 13 14
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609 2 3 5 6 8 9 11 12 14
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757 1 3 4 6 7 9 10 12 13
30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900 1 3 4 6 7 9 10 11 13
31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 1 3 4 6 7 8 10 11 12
32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172 1 3 4 5 7 8 9 11 12
33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302 1 3 4 5 6 8 9 10 12
34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428 1 3 4 5 6 8 9 10 11
35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 1 2 4 5 6 7 9 10 11
36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670 1 2 4 5 6 7 8 10 11
37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786 1 2 3 5 6 7 8 9 10
38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899 1 2 3 5 6 7 8 9 10
39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010 1 2 3 4 5 7 8 9 10
40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117 1 2 3 4 5 6 8 9 10
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222 1 2 3 4 5 6 7 8 9
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325 1 2 3 4 5 6 7 8 9
43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425 1 2 3 4 5 6 7 8 9
44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522 1 2 3 4 5 6 7 8 9
45 6532 6542 6551 6561 6471 6580 6590 6599 6609 6618 1 2 3 4 5 6 7 8 9
46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712 1 2 3 4 5 6 7 7 8
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803 1 2 3 4 5 5 6 7 8
48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893 1 2 3 4 4 5 6 7 8
49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981 1 2 3 4 4 5 6 7 8

Logarithms Table
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Logarithms Table  LT.2

N 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067 1 2 3 3 4 5 6 7 8
51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152 1 2 3 3 4 5 6 7 8
52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235 1 2 2 3 4 5 6 7 7
53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316 1 2 2 3 4 5 6 6 7
54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396 1 2 2 3 4 5 6 6 7
55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474 1 2 2 3 4 5 5 6 7
56 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551 1 2 2 3 4 5 5 6 7
57 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627 1 2 2 3 4 5 5 6 7
58 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701 1 1 2 3 4 4 5 6 7
59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774 1 1 2 3 4 4 5 6 7
60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846 1 1 2 3 4 4 5 6 6
61 7853 7860 7768 7875 7882 7889 7896 7903 7910 7917 1 1 2 3 4 4 5 6 6
62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987 1 1 2 3 3 4 5 6 6
63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055 1 1 2 3 3 4 5 5 6
64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122 1 1 2 3 3 4 5 5 6
65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189 1 1 2 3 3 4 5 5 6
66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254 1 1 2 3 3 4 5 5 6
67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319 1 1 2 3 3 4 5 5 6
68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382 1 1 2 3 3 4 4 5 6
69 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445 1 1 2 2 3 4 4 5 6
70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506 1 1 2 2 3 4 4 5 6
71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567 1 1 2 2 3 4 4 5 5
72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627 1 1 2 2 3 4 4 5 5
73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686 1 1 2 2 3 4 4 5 5
74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745 1 1 2 2 3 4 4 5 5
75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802 1 1 2 2 3 3 4 5 5
76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859 1 1 2 2 3 3 4 5 5
77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915 1 1 2 2 3 3 4 4 5
78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971 1 1 2 2 3 3 4 4 5
79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025 1 1 2 2 3 3 4 4 5
80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079 1 1 2 2 3 3 4 4 5
81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133 1 1 2 2 3 3 4 4 5
82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186 1 1 2 2 3 3 4 4 5
83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238 1 1 2 2 3 3 4 4 5
84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289 1 1 2 2 3 3 4 4 5
85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340 1 1 2 2 3 3 4 4 5
86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 1 1 2 2 3 3 4 4 5
87 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 0 1 1 2 2 3 3 4 4
88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489 0 1 1 2 2 3 3 4 4
89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538 0 1 1 2 2 3 3 4 4
90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586 0 1 1 2 2 3 3 4 4
91 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633 0 1 1 2 2 3 3 4 4
92 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680 0 1 1 2 2 3 3 4 4
93 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727 0 1 1 2 2 3 3 4 4
94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773 0 1 1 2 2 3 3 4 4
95 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818 0 1 1 2 2 3 3 4 4
96 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863 0 1 1 2 2 3 3 4 4
97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908 0 1 1 2 2 3 3 4 4
98 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952 0 1 1 2 2 3 3 4 4
99 9956 9961 9965 9969 9974 9978 9983 9987 9997 9996 0 1 1 2 2 3 3 3 4

Logarithms Table
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